
Contrastive self‑supervised clustering
of scRNA‑seq data
Madalina Ciortan and Matthieu Defrance* 

Abstract 

Background:  Single-cell RNA sequencing (scRNA-seq) has emerged has a main strat-
egy to study transcriptional activity at the cellular level. Clustering analysis is routinely
performed on scRNA-seq data to explore, recognize or discover underlying cell identi-
ties. The high dimensionality of scRNA-seq data and its significant sparsity accentu-
ated by frequent dropout events, introducing false zero count observations, make
the clustering analysis computationally challenging. Even though multiple scRNA-seq
clustering techniques have been proposed, there is no consensus on the best perform-
ing approach. On a parallel research track, self-supervised contrastive learning recently
achieved state-of-the-art results on images clustering and, subsequently, image
classification.

Results:  We propose contrastive-sc, a new unsupervised learning method for scRNA-
seq data that perform cell clustering. The method consists of two consecutive phases:
first, an artificial neural network learns an embedding for each cell through a repre-
sentation training phase. The embedding is then clustered in the second phase with
a general clustering algorithm (i.e. KMeans or Leiden community detection). The
proposed representation training phase is a new adaptation of the self-supervised
contrastive learning framework, initially proposed for image processing, to scRNA-seq
data. contrastive-sc has been compared with ten state-of-the-art techniques. A broad
experimental study has been conducted on both simulated and real-world datasets,
assessing multiple external and internal clustering performance metrics (i.e. ARI,
NMI, Silhouette, Calinski scores). Our experimental analysis shows that constastive-sc
compares favorably with state-of-the-art methods on both simulated and real-world
datasets.

Conclusion:  On average, our method identifies well-defined clusters in close agree-
ment with ground truth annotations. Our method is computationally efficient, being
fast to train and having a limited memory footprint. contrastive-sc maintains good
performance when only a fraction of input cells is provided and is robust to changes in
hyperparameters or network architecture. The decoupling between the creation of the
embedding and the clustering phase allows the flexibility to choose a suitable cluster-
ing algorithm (i.e. KMeans when the number of expected clusters is known, Leiden
otherwise) or to integrate the embedding with other existing techniques.

Keywords:  Single cell, sc-RNA seq, Clustering, Contrastive learning, Self-supervised
representation learning, Neural networks, Deep learning, Optimization

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280
https://doi.org/10.1186/s12859-021-04210-8

*Correspondence:
matthieu.dc.defrance@ulb.
ac.be
Interuniversity Institute
of Bioinformatics in Brussels,
Université Libre de Bruxelles,
Brussels, Belgium

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04210-8&domain=pdf

Page 2 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

Background
Single-cell RNA sequencing (scRNA-seq) provides transcriptional profiling of individ-
ual cells, enabling researchers to study the transcription dynamics, the composition of
tissues or the relationships within gene-networks [1]. In the absence of cell type anno-
tations, unsupervised clustering models are typically employed to identify or discover
cellular subtypes in scRNA-seq data. Despite the extensive study of clustering models in
machine learning [2, 3], single-cell transcriptomic clustering remains challenging due to
the high dimensionality of data (the number of transcripts is usually greater than 20,000,
leading to “the curse of dimensionality”), the high sparsity due to low mRNA expression
level and dropout events.

During the last decade, numerous clustering methods emerged to propose diverse
solutions to the technical challenges raised by scRNA-seq data analysis, as shown in
review papers [4–7]. CIDR [8] started by addressing the dropout problem with a data
imputation phase before clustering the PCA-reduced representation using hierarchical
clustering. RaceID [9] has been customized for identifying rare cell types improving the
clustering performance by replacing KMeans with K-medoids. SIMLR [10] learns a simi-
larity measure between cells using multiple kernels and performs spectral clustering on
this robust distance metric. ScRNA [11] applies transfer learning to unsupervised clus-
tering problems by incorporating information from a larger annotated dataset via non-
negative matrix factorization. SOUP [12] allows to cluster both pure and transitional
cells by leveraging soft cluster memberships, computed based on the expression similar-
ity matrix. Seurat [13] performs a cell-community detection on top of the shared near-
est neighbor graph, using the Louvain algorithm. Several scRNA-seq analysis methods,
including Seurat, have been made available in the python package scanpy [14].

More recently, deep learning techniques have been adapted to analyzing scRNA-
seq data. A deep count autoencoder, DCA [15], was proposed to denoise and impute
scRNA-seq data by learning three components: (1) the count distribution, (2) the spar-
sity and (3) the overdispersion. DCA proposed to approximate the zero-inflated negative
binomial (ZINB) distribution of the expression data using an autoencoder model. The
autoencoder consists of 3 output layers, each corresponding to one of the three com-
ponents (1–3). This architecture became a baseline for several other state-of-the-art
clustering methods. ScDeepCluster [16] enriched the DCA model with a clustering layer
attached to the autoencoder’s learned embedding space (i.e. the bottleneck layer). This
approach followed the DEC [17] method, initially proposed for image and text unsu-
pervised analysis. ScDeepCluster employs as loss a linear combination of the ZINB loss
and the Kullback–Leibler (KL) divergence between the distribution of soft labels of the
embedding layer (measured by a Student’s t distribution) and the derivation of the target
distribution. This combined loss helped to preserve the local structure of the data gen-
erating distribution while refining the clusters. The DESC model [18] followed a simi-
lar approach as scDeepCluster but separated the data construction from the clustering
phase. ScziDesk [19] proposed a weighted soft KMeans clustering (instead of hard clus-
tering) to enhance similar cells’ association under the same cluster. ScziDesk employs as
loss function a linear combination of (1) the ZINB loss, (2) a weighted soft KMeans loss
and (3) a KL divergence between the Student’s t distribution of the embedding space and
that of a target distribution, as proposed in DEC [17]. The weights in the soft KMeans

Page 3 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

were computed with a Gaussian kernel function, assessing each cell’s proximity to the
cluster center. The KL divergence loss was based on the pairwise similarity of data points
in the latent space and encouraged similar points to be clustered to the same cluster.
ScVI [20] is another neural-network approach to approximate the underlying ZINB dis-
tribution of the observed expression values; it performed several tasks such as batch cor-
rection, clustering, differential expression and visualizations.

Despite the abundance of clustering methods, there is no consensus regarding the
best approach under every circumstance. Freytag et al. showed in the Cluster Headache
publication [6] that 11 state-of-the-art methods for scRNA-seq clustering produced dif-
ferent results, also having little in common with a supervised labeling approach. This
analysis highlights well the challenges of the field.

Methods
In this work, we propose an unsupervised deep learning method to cluster scRNA-seq
data using contrastive representation learning. Our method, contrastive-sc, analyzes the
expression count matrix D = {xij} ∈ R

n∗d(having n samples [i.e. cells] and d features
[i.e. transcripts]) in a two-phased process in order to identify clusters of well-separated
groups of cells. In a nutshell, an artificial neural network (the encoder model) is trained
to produce representations (embeddings) for each cell which is then clustered in a sec-
ond phase with a general clustering algorithm. The training of the encoder model follows
the contrastive representation learning framework which was detailed below.

Data preprocessing

Our method adopts the preprocessing phase proposed in scziDesk [19] and imple-
mented in the python package scanpy [14]. First, the genes expressed in only one cell or
less are discarded. Next, the expression count matrix is normalized by the library size
so that the total counts are identical across cells. The scanpy library implements this by
dividing each cell by the sum of all its count values and then multiplying it by the median
of all cells’ total expression values. A natural logarithm is applied to the normalized
data. Next, as proposed in scziDesk, only the most variable genes (i.e. top 500 genes)
are selected according to their dispersion ranking, computed by scanpy following [13].
This selection step maximizes the underlying information in the retained genes while
significantly reducing the computational load. Finally, the data are scaled such that each
gene has zero mean and unit variance. The result of the preprocessing phase was used as
input to the predictive model, described below.

Representation learning

Self-supervised contrastive learning is a representation learning technique that has been
recently explored in the context of computer vision, where it typically produces repre-
sentations (embeddings) for unlabeled images. The resulting embeddings can be either
clustered directly or, if a set of labels is available, a classification layer can be added
and trained accordingly. Self-supervised contrastive learning produced state-of-the-art
results in semi-supervised [21] and unsupervised (clustering) [21, 22] settings. The train-
ing process consists of creating augmented versions of each image, which, in combina-
tion with the contrastive loss [23] (detailed in Additional file 1), pushes closer together

Page 4 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

(in the representation space) the augmented versions of the same image and farther away
from all other images. Several contributions [21, 23, 24] reported that stronger image
augmentations bring a significant performance gain. In image analysis, traditional image
augmentations represent transformations such as rotations, translations or blurring.
Strong data augmentations change the original image significantly, for instance, by crop-
ping multiple random portions or applying high levels of noise, as illustrated in Fig. 1a.

In this work, we explored the application of self-supervised contrastive learning, typi-
cally employed for image processing, to scRNA-seq data. As illustrated in Fig. 1b1, for
each input cell xi two distinct augmented views of the same data are created (i.e. the pair
of samples from the same class : x′i and x′′ii ). As many of the transformations available
for images (i.e. change in colors, rotations, translations) do not have an equivalent on
scRNA-seq data, our augmentation technique consists primarily in masking an arbitrary
random set of genes in each view so that they are ignored from the underlying compu-
tation. This technique was implemented by using a dropout neural network layer [25]

Fig. 1  Method overview. The method is inspired by the contrastive learning techniques proposed for
image analysis (a). For each image, an embedding (i.e. the value of the representation layer) is learned
by applying a contrastive loss on the representations from 2 copies of the same image, modified with
strong transformations such as multiple cropping, pixel noise, rotations, translations. This embedding can
be analyzed with a general clustering algorithm in order to produce cluster assignments for each image.
A similar process was proposed for scRNA-seq data (b1, b2): first, a representation learning phase (b1),
produces an embedding for each cell (e.g. the vector [2.3, − 3.1, 0.2] is the embedding for the depicted Cell
i). After training the network, all generated cell embeddings are clustered with a general clustering algorithm
like KMeans or Leiden (b2). The representation learning starts from two strongly augmented copies of the
input data ( x′

i
 and x′′

i
 ) created by masking an arbitrary number (e.g. 80%) of input genes, denoted as [g1, …,

gd]. The network is trained with an unsupervised contrastive loss, guiding the model to map the similar views
to neighboring representations and the dissimilar to non-neighboring representations

Page 5 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

directly on the input data, which assigned a weight of 0 to randomly selected gene val-
ues. For disambiguation, the name of the neural-network layer (dropout) is not related
to the false zero counts affecting scRNA-seq data (also named dropout); the former
will be referred to as neural network dropout or NN dropout. Other data augmentation
techniques such as adding random Gaussian noise to each view have been explored and
presented in the results section but did not provide a performance gain.

Representation learning was performed with a single artificial neural network, con-
stituting the encoder model. Each of the two augmented copies of input cells was pro-
cessed by the same encoder model trained to minimize the contrastive loss proposed in
[23] (see details in Additional file 1) and, thus, the distance between the augmented cop-
ies. At each iteration, different randomly augmented versions were generated for each
cell, which exposed the model to a wide variety of augmentations and prevented the
memorization of a particular instance. The output of the last hidden layer of the encoder,
also named the representation layer, provides an embedding (a vector representation)
for each cell. The architecture of the encoder model consists of several stacked linear
layers. An extensive neural architecture search presented in the results section identified
the optimal architecture consisting of 3 layers of size [200, 40, 60], thus producing a cell
embedding of 60 values.

Unlike images, scRNA-seq data is affected by dropout events, representing missing
gene measurements that produce incorrect zero count observations. Existing scRNA-
seq clustering methods start by addressing the dropout using models such as NB or
ZINB autoencoder [15, 19, 26], which models the expected negative binomial or zero
inflated negative binomial distribution of counts data. Our method pursues an alterna-
tive approach to this analytical framework and relies primarily on the strong data aug-
mentation to acquire robustness to dropout without performing an explicit imputation
before the clustering step.

Clustering phase

After the representation learning phase produced cell embeddings, a general clustering
algorithm (i.e. KMeans, Leiden [27]) can be employed to obtain cell-cluster assignments.
The decoupling between the embedding creation and the cluster assignment provides
flexibility to adapt to both cases when the expected number of clusters is known (as
required by KMeans) or unknown (Leiden community detection), as well as incorporat-
ing any other suitable clustering technique.

Results
Clustering analysis is typically performed when no class membership annotations (i.e.
the ground truth labels) are available. From the point of view of the end-user, two sce-
narios can be distinguished: (1) an exploitation setting, in which searches start from a
prior knowledge or a good definition of the sample groups to be identified and (2) an
exploratory setting when no prior expectations about the number or the size of the data
clusters exist. This distinction has been made because some of the existing libraries
require to input the number of clusters to be identified while others can dynamically
infer it from various data density or connectivity criteria. However, the first category of
libraries can still be used in an exploratory setting by computing the clustering several

Page 6 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

times (each for a number of clusters in a plausible range of values) and selecting the
best result. The selection typically maximizes internal quality measures, assessing if the
identified clusters are compact and well defined. However, this parameter exploration
process introduces an additional cost in terms of computation time, complexity, and, as
detailed below, there is no consensus on the best internal quality score to employ.

Evaluation scores

The evaluation of clustering performance has been made using four metrics: Adjusted
Rand Index (ARI) score [28], Normalized Mutual Information (NMI), Silhouette score
[29] and Calinski and Harabasz [30]. For all selected scores, the higher the value, the bet-
ter the performance. This detailed strategy has been implemented because, contrary to
supervised analysis, there is no consensus on the optimal measure to evaluate clustering
methods [31]. Secondly, in a typical scenario, ground truth information about the cluster
assignment is not available, and as such, requires to optimize various internal quality
scores. For example, Silhouette scores measure the predicted clusters’ compactness and
produce values between − 1 and 1; the higher the score, the denser and better separated
the clusters are. Calinski Harabasz score represents the ratio of the sum between cluster
dispersion and within-cluster dispersion for all clusters and produces positives scores
that are not bounded. However, various clustering methods may create different data
projections, each with well-defined clusters, and still, the resulting partitioning can be
significantly different from one another, especially when working with scRNA-seq data
[6]. To mitigate this relativism, the main alternative is to employ for validation purposes
datasets having ground truth annotations, which allows to compute external measures
such as ARI or NMI. The former produces scores from − 1 to 1 and is proportional to
the number of sample pairs whose labels are the same in the annotation and the model
prediction, while NMI measures the agreement of the true and predicted cluster assign-
ments, ignoring permutations. Moreover, most clustering publications [16, 19] report
their results primarily in terms of one or several external quality measures, while the
internal quality analysis is reduced to a visual comparison of the 2D representation of
identified clusters. To keep the presentation of results easy to follow, for some exper-
iments only the ARI and/or Silhouette scores have been included in the main manu-
script. The complete assessment is provided in Additional file 1.

Competing methods

An extensive empirical study has been carried out by comparing the performance of con-
trastive-sc with 11 alternative techniques, representing both methods requiring or not
the number of clusters as input. ScziDesk [19], scDeepClustering [16], scRNA [11], cidr
[8] and soup [12] take as input the expected number of clusters while Seurat [13] (scanpy
[14] implementation), desc [18], scedar [32], raceid [33] and scvi [20] perform clustering
without any alternative information. Additionally, a naive baseline method consisting of
clustering with KMeans the first 2 principal components of the expression matrix has
been assessed. A detailed record of all benchmarked methods and their repositories has
been made available in Additional file 1: Table S1. The testing of all methods has been
performed by employing their default parameters proposed in the issuing paper or in
the official repository listed in Additional file 1: Table S1. The code used for executing

Page 7 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

each method has been made available on GitHub, along with the underlying results. As
highlighted in Additional file 1: Table S1, half of the methods are available in python and
the other half in R. To facilitate the reproducibility of the analysis, two docker containers
have been made available for each environment. For statistical significance, all experi-
ments have been performed three times, and the reported result represents the average
score. To provide a rapid assessment of each method’s stability, most results have been
presented as bar plots, highlighting the variation of results across runs.

Implementation

contrastive-sc has been implemented in Python 3 using the deep-learning framework
pytorch [34]. The clustering algorithms use publicly available implementations for
KMeans1 and Leiden2 community detection. The Encoder network consisted of 3 linear
layers of [200, 40, 60] neurons and produced cell embeddings in 60D. The neural net-
work was trained with the Adam [35] optimizer using an initial learning rate of 0.4 and
a default cosine scheduler. The model training was carried out for 30 epochs using ran-
domly sampled mini-batches with 200 cells. Similar to scziDesk, our method employed
a preprocessed dataset with the 500 most variable genes for simulated and biological
datasets. All our experiments continued the representation phase by clustering the
embedding with both KMeans (labeled Contrastive + KM) and Leiden community
detection (Contrastive + LD). Our tests were executed on 1GPU GeForce RTX 2060. For
a complete computational assessment, our method was equally benchmarked on CPU.
The experimental setting consisted of analyzing a collection of 24 simulated and 15 real
scRNA-seq datasets, as detailed below.

Analysis of simulated data

The data simulation strategy consisted of generating balanced and imbalanced datasets
(i.e. uniform and non-uniform distribution of cluster sizes). The R package splatter [36]
has been used to produce datasets approximating various biological scenarios in which
we controlled the number of clusters, samples, genes and dropout rates. The same exper-
imental setting (i.e. the same parameters for splatter) as scziDesk and scDeepCluster has
been reused to facilitate comparisons, but we extended the range of explored parameters
to assess the methods’ behavior under new conditions. The number of clusters per data-
set was extended from 7 to 16, to evaluate the impact of a growing number of clusters on
the method performances. The dropout rate was extended from 30% to approximately
40% to study the model performances under more severe dropout conditions.

The balanced datasets consist of 2500 genes, 4, 8 and 16 clusters and dropout rates
ranging from 5 to 38% (splatter parameters being shape =  −1, type = “experiment”,
facScale = 0.2 and mid in [−1, 0, 1, 1.5]). Note that the dropout rates are estimated
by the library for each input mid parameter and are inferior to the data sparsity (the
number of 0 values in the expression matrix), as scRNA seq data also contains a sig-
nificant number of 0 values associated with the genes not expressed in the studied
cells. A constant cluster size of 250 samples has been employed on balanced datasets,

1  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​clust​er.​KMeans.​html.
2  https://​github.​com/​vtraag/​leide​nalg.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/vtraag/leidenalg

Page 8 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

and the total sample size is thus proportional to the number of embedded clusters
(i.e. 4 × 250 to 32 × 250). The imbalanced datasets consist of 2500 genes, 3000 cells,
4, 8 and 16 clusters with size ratios from 0.6 to 0.01 and dropout rates from 5 to 38%.

The scores on balanced data (Fig. 2a) are generally higher than those on imbal-
anced data (Fig. 2d), indicating that the latter raises a technical challenge to most
techniques. The methods that did not use the number of clusters as input parameter,
(annotated with * in the figure) overestimate it up to 2 times the actual value (i.e. 4, 8
and 16 clusters) on balanced data and more significantly on imbalanced data (Fig. 2f).
In turn, this behaviour penalizes the external score and explains the relative loss of
performance in the imbalanced setting. On the other hand, these methods (*) pro-
vide higher internal scores on Silhouette (Fig. 2b, e) and Calinski metrics (Additional
file 1: Fig. S2d, S2h). contrastive-sc provides encouraging results in both balanced and
imbalanced settings. The two clustering implementations (KMeans and Leiden) dis-
play similar results on balanced data, but in the imbalanced setting, the Leiden com-
munity detection provides on average the best results across all competitors. In both
settings, contrastive + Leiden tends to under-estimate the number of clusters. How-
ever, this behavior can be fine-tuned by changing the input neighborhood size param-
eter in the Leiden clustering execution. A dataset-level analysis has been performed
(Additional file 1: Fig. S1) and confirms the speculation that most methods suffer sig-
nificant degradation in performance when the dropout rate or the number of clusters
increases. The method ranking per dataset (Additional file 1: Fig. S1) indicates there is

Fig. 2  Simulated data analysis. A set of 12 simulated balanced (a–c) and 12 imbalanced (d–f) datasets
has been analyzed. For simplicity, only one external (ARI) and one internal (Silhouette) evaluator across
all datasets are displayed. The complete analysis is provided in Additional file 1: Fig. S1, S2. Each method
processed each dataset 3 times with different initialization seeds. The error as the relative difference between
the predicted and the true number of clusters [(pred − true)/true] is illustrated in c for balanced data and f
for imbalanced data. The methods annotated with (*) are those that did not receive as input the number of
clusters. Most methods in this category tend to overestimate the number of clusters in the data, behavior
which is more pronounced in the imbalanced setting

Page 9 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

no constant best method across all experiments, however scedar, scanpy-seurat, soup,
scziDesk, and our methods provided repeatedly the top results.

As simulated datasets remain an approximation of the biological data, the following
part of the article focuses on the analysis of a collection of 15 real-world datasets.

Analysis of scRNA‑seq datasets

The scRNA-seq datasets made available in scziDesk and scDeepCluster have been com-
bined to produce a collection of 15 real-world datasets to benchmark the model perfor-
mance. The datasets from scziDesk have been assembled at Stanford University from
mouse scRNA-seq data for various organs using both Smart-seq2 and 10 × Genomics
sequencing [37]. The Smart-seq2 datasets have been prefixed with “Quake Smart” while
the latter with “Quake10 ×”. Other publicly available datasets have been added, as fol-
lows: Adam [38], Muraro [33], Romanov [39] and Young [40]. The scDeepCluster data
had been collected using four sequencing platforms: 10 × genomics platform for the
PBMC cells [41], droplet barcoding for mouse embryonic stem cells [42], Microwell-seq
for mouse bladder cells [43] and sci-RNA-seq for worm neuron cells [44]. As detailed in
Table 1, all datasets are imbalanced and contain 4–16 annotated clusters across 870 to
9552 cells. Further details about data sparsity and other descriptive statistics specific to
each dataset can be found in Additional file 1: Table S4.

The average results across all methods have been summarized in Fig. 3, depicting
the 4 clustering measures, the execution time and the error in the estimated number
of clusters. Our methods compared favorably to state-of-the-art techniques (scziDesk,
scDeepCluster, scanpy-seurat, scedar) across all clustering scores. Clustering the learned

Table 1  Description of scRNA-seq datasets

The datasets made available in scziDesk have been combined with those in scDeepClusters to create a wider benchmark of
15 datasets

Dataset name Size (cells × genes) Number
of
clusters

Cluster sizes

1 Quake Smart seq2 Trachea 1350 × 23,341 4 (830, 206, 201, 113)

2 Quake10 × Bladder 2500 × 23,341 4 (1203, 1167, 73, 57)

3 Quake10 ×  Spleen 9552 × 23,341 5 (6886, 1930, 464, 230, 42)

4 Quake Smart seq2 Diaphragm 870 × 23,341 5 (439, 241, 81, 78, 31)

5 Quake10 ×  Limb Muscle 3909 × 23,341 6 (1330, 1136, 461, 354, 320, 308)

6 Quake Smart seq2 Limb Muscle 1090 × 23,341 6 (540, 258, 141, 71, 45, 35)

7 Romanov 2881 × 21,143 7 (1001, 898, 356, 267, 240, 71, 48)

8 Adam 3660 × 23,797 8 (629, 617, 516, 513, 463, 396, 302, 224)

9 Muraro 2122 × 19,046 9 (812, 448, 245, 219, 193, 101, 80, 21, 3)

10 Young 5685 × 33,658 11 (1498, 1201, 731, 621, 483, 373, 268,
259, 118, 73, 60)

11 Quake Smart seq2 Lung 1676 × 23,341 11 (693, 423, 113, 90, 85, 65, 57, 53, 37,
35, 25)

12 10 PBMC 4271 × 16,653 8 (1292, 702, 606, 459, 450, 332, 295, 135)

13 Mouse ES cells 2717 × 24,175 4 (933, 798, 683, 303)

14 Worm neuron cell 4186 × 13,488 10 (1015, 842, 443, 400, 334, 314, 305, 239,
224, 70)

15 Mouse bladder cell 2746 × 20,670 16 (717, 357, 344, 316, 236, 224, 131, 80,
75, 64, 44, 41, 38, 36, 30, 13)

Page 10 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

embedding with KMeans performs better than the Leiden community clustering. The
latter overestimates the number of identified clusters by 1.65 times (Fig. 3f), penaliz-
ing the external scores. On average, the partitions identified with constastive + KMeans
agree most with ground truth (average ARI is 0.77 and NMI 0.81), but they also have
a good internal quality as indicated by the Silhouette (0.6) and Calinski scores (4100).
Moreover, in terms of execution time, constastive-sc + KMeans is the fastest method
from all state-of-the-art techniques with an average execution time of 5.29 s, surpassed
only by the naive baseline. A detailed computational analysis is depicted in the next
section.

As expected, the worst-performing method is the naive baseline, consisting of cluster-
ing with KMeans, the first two principal components of the expression matrix. The best
performing methods on the benchmarked real-world datasets use the number of clusters
to be identified while running KMeans related heuristics: scziDesk, scDeepCluster. The
other methods (annotated with *) have a significant tendency to overestimate the num-
ber of clusters in the data, on average by a factor of 2 (desc, scanpy-seurat, scvi, raceid),
but up to 5 times (scedar); however, the identified partitions have generally higher inter-
nal quality scores, as indicated by both the Silhouette (Fig. 3c) and Calinski (Fig. 3d)
scores. In some cases, this behavior may be attenuated with an additional work of
method-specific hyper-parameter tuning for each dataset, but this introduces additional
computational load and requires defining an experimental setup adapted for each tech-
nique, which goes beyond the scope of a broad benchmarking exercise. For comparison,
both constrative-sc methods used the same model hyper-parameters across all experi-
ments. The most computationally expensive methods are scDeepCluster and scziDesk.

Fig. 3  Real scRNA-seq data analysis. A method comparison has been performed across all 15 real datasets
in terms of ARI—Adjusted Rand Index (a), NMI—Normalized Mutual Information (b), Silhouette (c), Calinski
(d) scores, the execution time (e) and the error of the predicted number of clusters (f). The execution time
and the Calinski scores have been depicted in log scale. The error as the relative difference between the
predicted and the true number of clusters [(pred − true)/true)] is illustrated in f. The methods annotated with
(*) indicate those where the clustering was performed without inputting the number of clusters. All methods
in this category tend to overestimate the number of clusters in the data and do more so in the imbalanced
setting. For each dataset and method, three runs have been performed

Page 11 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

Being based on neural networks, they perform a long pretraining phase (600 and 1000
epochs) before a final clustering fine-tuning. Unlike scziDesk, which employs the top
500 most variable genes and thus reduces the input data’s dimensionality, scDeepClus-
ter employs all genes, thus explaining the associated peak in computational time. The
external quality measures (ARI and NMI) are aligned across all methods, as indicated
in Fig. 3a, b and confirmed computationally by significant correlation values (above 0.86
Pearson coefficients as per Additional file 1: Fig. S5a). However, as depicted in Fig. 3c, for
some methods (desc, scDeepCluster), the best-separated cell partitioning is not always
aligned with the ground truth annotation, and conversely. This observation is confirmed
computationally by the diverse correlation levels between external and internal scores,
computed per method (from − 0.26 for desc to 0.9 for raceid Additional file 1: Fig. S5a).

Next, a dataset-level method comparison on real-world datasets has been performed
on ARI scores (Fig. 4). The results indicate no consensus regarding the best method,
the performance depending on the specificities of the analyzed dataset. contrastive-sc
provides better results when using KMeans than when using a default configuration for
Leiden community detection, which generally identifies smaller sized clusters. Further
dataset level hyperparameter tuning for Leiden will be explored in future works. How-
ever, our method compares favorably with the best performing techniques (scziDesk,
scDeepCluster, desc, scanpy-seurat): it provided the highest score on 6 datasets, the sec-
ond-best on another 5 from a total of 13 explored techniques. A detailed analysis of the
underlying internal quality of identified clusters has been performed (Additional file 1:
Fig. S3). For simplicity, the comparison focuses only on the best performing methods
(scziDesk, scDeepCluster, desc, scanpy-seurat) on the benchmarked datasets. Both Sil-
houette and Calinski scores indicate that clusters identified by contrastive-sc are gener-
ally well defined. Desc and scDeepClusters identify the best-separated data partitions;
however, they are not always in agreement with the ground truth.

Selection of input genes

A comprehensive study on the importance of gene selection has been performed in
scziDesk, comparing the performance obtained by selecting the top 500 most variable
genes with that of scDeepCluster, where no such selection was performed. Their analysis
reported a statistically significant gain between the original scDeepCluster and a version
modified to select the top 500 most variable genes. In this section, a similar study has
been performed on contrastive-sc by comparing the results of selecting most variable
500, 1000, 1500, 3000 and 5000 genes with selecting all genes (Fig. 5). The best perfor-
mance is achieved when using the top 500 most variable genes, as suggested in scziDesk.
Using the entire dataset brings a loss of performance which can be explained by the
inclusion of low-expressed genes, more affected by dropout events. To assess the sta-
tistical significance of the performance gain brought by using the top 500 most variable
genes instead of the entire dataset, a one-sided greater pairwise t-test was performed
on the ARI and NMI scores of the 2 groups. The statistical tests reported P values of
5.15× 10

−8 and 2.22× 10
−5 , thus confirming the importance of the gene selection step

in the preprocessing phase.
To validate that selecting most variable 500 genes is the optimal setting for all data-

sets, a dataset-level visualization of the underlying ARI and Silhouette scores has been

Page 12 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

performed (Fig. 5a, c). For some datasets (e.g. Worm neuron cell, Mouse bladder cell)
selecting the top 5000 genes provides a significant performance improvement both for
the external and internal evaluators. For this reason, we took a step further from the
default setting proposed in scziDesk and selected the dataset input size, which maxi-
mized the internal Silhouette score (Fig. 5c). For example, the Worm Neuron Cell

Fig. 4  Dataset-level analysis of real scRNA-seq data on ARI (Adjusted Rand Index) scores. The results
aggregate 3 consecutive runs of all 13 explored methods over the 15 biological datasets. The dataset
annotations (e.g. #1, #6) indicate the ranking of contrative-sc with KMeans and Leiden on each analyzed
dataset: the best performing method 6 datasets and the second best on another 6

Page 13 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

dataset’s optimal size is 5000 genes, while for Quake Spleen, it is 500. This improvement
can be applied to any dataset, as it does not require ground truth annotations. The opti-
mal parameters identified for each real-world dataset is provided in Additional file 1:
Table S5. Input size optimization brings a performance boost to achieve an average of
0.77 ARI scores across all real datasets instead of a 0.75 ARI score when using the default
value of 500 genes.

Computational performance analysis

This section compares the computational cost of contastive-sc with the other tech-
niques and analyzes its scalability with increasing input size. The average run-time of all
benchmarked methods on the real-world datasets (over 3 runs) has been summarized
in Fig. 6a. From the selected state-of-the-art techniques, contrastive + KMeans has the
highest computational efficiency, requiring, on average, 5.3 s to run on GPU and 12 s on
CPU. Similar architectural methods (sczi, scDeepCluster, desc) require from 43 s to sev-
eral orders of magnitude more execution time. The computation speed gain is explained
by the short convergence time (30 epochs) in combination with a reduced number of
selected input genes.

The scalability of contrastive-sc when increasing the number of input cells (from
1000 to 50,000) and input variables (from 500 to 250,000) is depicted in Fig. 6b, c. The
maximum values in both these scenarios produced execution times on average less
than 60 s per run. Additionally, Leiden community detection impacts the method’s

Fig. 5  Gene selection analysis on real data. The selection of the top variable genes (500–5000) was
compared with no selection (all genes). The plots depict 3 runs on each of the 15 real datasets on all
computed scores (a–d). On average, best scores are achieved using the top 500 genes. Both the internal and
external quality decline when using more than 1000 genes, which corresponds to including many genes
with low levels of expression. The dataset-level results, depicted as ARI (e) and Silhouette scores (f), indicate
that for some datasets, a significant gain in performance can be attained when using up to 5000 genes (e.g.
Worm Neuron Cell dataset)

Page 14 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

overall performance, which grows with the number of input cells (Fig. 6b). The num-
ber of features analyzed by both KMeans and Leiden is constant, as it represents the
size of the representation layer (60 values). Thus, the variation of the number of input
genes impacts only the representation learning phase’s performance. The training time
to learn meaningful representations has been analyzed (Fig. 6b, c) in terms of model
performances recorded after an arbitrary number of epochs (ranging from 5 to 100),
averaged over 3 different runs. Our results indicate that 30 epochs are enough to learn
meaningful representations having good external and internal quality scores. Moreo-
ver, continuing the training beyond 30 epochs changed the external performance only
marginally. The computational complexity of contrastive-sc consists of the computa-
tional complexity of training the neural network combined with the complexity of the
clustering algorithm. The complexity of training the neural network grows linearly
with the number of samples (cells) and can be estimated as O(n × numberOfEpochs ×
(d × sizeLayer1 + sizeLayer1 × sizeLayer2 + sizeLayer2 × sizeLayer3)), equivalent to
O(n× 30× (500× 200+ 200× 40+ 40× 60)) . As the structure of the network is con-
stant, the computational complexity depends only on the number of input samples. If
KMeans runs for t iterations, its computational complexity is O(t × k × n× d) where k
is the number of clusters.

The memory footprint of contrastive-sc consists of only 111.180 trainable parame-
ters, while other deep-learning techniques such as scziDesk or scDeepCluster require
551.164 and, respectively, above 10.000.000 parameters (the latter grows with the num-
ber of genes).

Biological interpretation of results

To attach a biological interpretation to the cell clustering predicted by contrastive-sc,
a set of 4 real-world datasets has been selected for visualization (Fig. 7). contrastive-sc

Fig. 6  Execution time and scalability analysis. Average execution time for all benchmarked methods (a). The
relation between the performance of contrastive + KMeans and the other methods has also been computed
as a speed factor. All methods have been run on GPU. For comparison, the contrastive methods have also
been benchmarked on CPU (contrastive + KM CPU and contrastive + LD CPU). b Depicts how our method
scales with an increasing number of cells (from 1000 to 50,000); c illustrates how our method scales with an
increasing number of input variables (from 500 to 250,000); the number of epochs needed for contrastive-sc
to reach maximum performance measured as ARI (d) and Silhouette (e) scores. The annotated values in c
and d represent the mean score. For most datasets, 30 epochs are enough for the model to learn meaningful
representations, which brings a computational speed gain compared to other deep-learning competitor
methods. This plot depicts three runs of the proposed method for each of the selected numbers of epochs

Page 15 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

has been compared, for simplicity, only with the best competitor methods: scziDesk,
scDeepCluster and desc. The same embedding predicted by contrastive-sc has been
clustered with KMeans and Leiden. Leiden tends to identify many small-sized clus-
ters, and in doing so, it splits larger groups, thus penalizing the external score across
most datasets. One exception is the Young dataset, containing a larger number of
clusters (11). Leiden identified 13 clusters and achieved the highest performance from
all explored methods (0.71 ARI). A similar behavior characterized the desc method,
which overestimated up to 2 times the annotated number of clusters in the data and
confirmed the tendency summarized in Fig. 3f. However, the identified partitions are
generally composed of well-separated clusters. On the Quake Limb Muscle dataset,
contrastive-sc + KMeans managed to identify an almost perfect partitioning (ARI
0.99). A similarly good result is achieved with scziDesk (0.97); scDeepCluster man-
aged to create an embedding with well-defined clusters; however, they were in less
agreement with the ground truth (0.76 ARI score). This misalignment between the
internal and external scores is a general tendency for scDeepCluster, extending to
most of the other datasets; it explains the results in Fig. 3c, placing scDeepCluster
as the best performing method on Silhouette scores. On the Quake Bladder dataset,
scziDesk outperformed contrastive-sc + KMeans, which incorrectly split the bladder

Fig. 7  Visualization of identified clusters. scDeepCluster, scziDesk, desc, contrastive + KM, contrastive + LD
identified clusters on 4 datasets (Quake Limb Muscle, Muraro, Romanov, Young) are compared using a 2D
data projection. All selected methods start by creating an embedding for the cells which is clustered in
a second phase. The quality of the method depends on both the created embedding and the clustering
algorithm. For scDeepCluster and scziDesk, we depicted the clustering prediction relative to the underlying
embedding. Our methods (contrastive + KM and contrastive + LD) clustered the same embedding. All plots
present a 2D t-SNE projection of the underlying embeddings

Page 16 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

cell types into two large subgroups. As indicated in the underlying ground truth visu-
alization, this differentiation was produced during the representation learning phase
and could be traced back to the input cells’ distribution in future works. Further-
more, the Quake Bladder dataset has an extreme class imbalance (containing clus-
ters of sizes 1203, 1167, 73 and 57). In this context, our method divided the largest
group, also having the highest sample variance. On the Romanov dataset, contrastive-
sc + KMeans identified the partitioning closest to the ground truth with an ARI score
of 0.73.

A detailed validation of results has been conducted relative to the ground truth infor-
mation, depicted in Fig. 8. Leiden identified several partitions within the endothelial
and mesenchymal stem cells on the Limb muscle dataset and thus predicted twice as
many clusters as in the ground truth annotation. Similar behaviors can be observed
on the remaining datasets. Unlike KMeans based methods, the performance of Lei-
den is relatively better on datasets having a higher number of clusters. Additionally, a

Fig. 8  Contrastive-sc clustering compared to ground truth. The comparison of predicted and ground truth
clusters on 4 scRNA-seq datasets (Quake Limb Muscle, Muraro, Romanov, Young) is displayed. Our methods
(contrastive + KM and contrastive + LD) clustered the same embedding and we also illustrated the ground
truth in this space. All plots present a 2D t-SNE projection of the underlying embeddings. contrastive + LD
consistently overestimated the number of clusters in the data and performed best on datasets with a large
number of clusters

Page 17 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

positive correlation between the ARI score of contrastive-sc + Leiden ARI and the num-
ber of clusters in the dataset is observed (Additional file 1: Fig. S5b). However, the iden-
tified subclusters have a spatial continuity in the 2D t-SNE projection, which leads us
to believe that they may correspond to cellular sub-types. On the Limb Muscle dataset,
contrastive-sc + KMeans produces a nearly perfect partition (ARI score 0.99), the errors
being caused by a few mesenchymal stem cells confounded with macrophage cells as
well as a T-cell confounded with a B-cell. A comprehensive analysis of this dataset indi-
cates that 28 cells out of a total of 3909 cells have been assigned to the incorrect cluster,
and as illustrated in Additional file 1: Fig. S4, most of the incorrectly predicted cells have
low expression values. This visualization exercise demonstrated that most of the embed-
dings and cell-groups identified with contrastive-sc were aligned with the ground truth
while forming well-separated clusters, confirming the encouraging average results as
ARI and Silhouette scores, reported in Fig. 3a, c.

Impact of the selected clustering algorithm

Different clustering algorithms may have different behaviors, computational costs and
produce different partitions of the same input data. This section explores the specificities
of the two selected clustering algorithms (KMeans and Leiden) and compares their per-
formance with a set of another 5 state-of-the-art clustering methods.

Leiden clustering does not require prior knowledge about the expected number of
clusters, making it more suitable to be employed in a knowledge discovery setting. Our
experiments employed the Leiden implementation integrated into the Scanpy pack-
age [14]. The Leiden [27] graph-clustering performs community detection based on
optimizing modularity and processes the cells’ neighborhood graph. Seurat computes
the graph using a PCA representation of the data matrix, while our method uses the
learned embedding directly. contrastive-sc + KMeans requires knowing the number of
input clusters in the data. The same constraint applies to half of the selected methods
(i.e. scziDesk, scDeepCluster, scrna, cidr). Unlike KMeans, community detection is not
biased towards identifying equal-sized clusters. Leiden community detection is 7 times
more computationally expensive than KMeans (Table 3), and this gap increases with the
number of input cells. If contrastive-sc + KMeans is used in an exploratory setting (i.e.
to determine the optimal number of clusters in the data) a computational cost growing
linearly with the number of explored values should be foreseen.
contrastive-sc computes by default a cell partitioning with KMeans or Leiden. How-

ever, the decoupling between the representation learning and the clustering phase
allows the flexibility to cluster the produced cell embedding with any other tool. A
set of 5 clustering methods (Birch, GMM, MeanShift, Spectral Clustering and Ward
Hierarchical Clustering), implemented in the scikit-learn library3 have been used to
cluster the same embedding created by contrastive-sc. The predicted partition has
been evaluated using the ARI score (Table 2). The results indicate no best performing
method across all datasets, suggesting the data specificities play an essential role in
the clustering performance. On average, KMeans and Ward Hierarchical clustering

3  https://​scikit-​learn.​org/​stable/​modul​es/​clust​ering.​html.

https://scikit-learn.org/stable/modules/clustering.html

Page 18 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

performed best across all datasets and achieved the same mean score (0.77). The NMI
scores show that Ward Hierarchical Clustering (Additional file 1: Table S6) is margin-
ally better than KMeans (achieving 0.81 instead of 0.80). The internal scores (Addi-
tional file 1: Tables S7, S8) place KMeans as the best performing method. MeanShift
[45] determines the number of clusters based on the sample relative density and out-
performed Leiden community detection (0.51), achieving an ARI score of 0.65. How-
ever, MeanShift was on average 30 times slower than Leiden (Table 3). The execution
time analysis indicates that KMeans is the most computationally efficient method,
3 times faster than the next alternatives (e.g. Birch, GMM, Ward Hierarchical Clus-
tering). This exercise demonstrated our method’s flexibility to integrate with other

Table 2  Comparison between 7 clustering methods, applied on the embedding learned with
contrastive-sc 

The results depict the average ARI score across 3 consecutive runs. The methods annotated with aare those where the
correct number of clusters was not provided as input. The complete analysis of the remaining clustering scores has been
provided in Additional file 1: Tables S6–S8

The best scores per dataset are highlighted in bold

Dataset name KMeans Leidena Birch GMM MeanShifta Spectral
Clustering

Hierarchical
Clustering

1 Quake Smart seq2 Trachea 0.86 0.3 0.87 0.88 0.78 0.84 0.89
2 Quake10 × Bladder 0.75 0.29 0.75 0.75 0.72 0.75 0.75
3 Quake10 × Spleen 0.91 0.17 0.72 0.74 0.84 0.83 0.9

4 Quake Smart seq2 Dia-
phragm

0.98 0.7 0.98 0.98 0.96 0.98 0.98

5 Quake10 × Limb Muscle 0.99 0.58 0.9 0.91 0.69 0.96 0.99
6 Quake Smart seq2 Limb

Muscle
0.98 0.67 0.97 0.92 0.92 0.97 0.98

7 Romanov 0.73 0.49 0.52 0.48 0.62 0.73 0.69

8 Adam 0.83 0.67 0.64 0.61 0.54 0.84 0.8

9 Muraro 0.91 0.57 0.85 0.85 0.83 0.85 0.92
10 Young 0.66 0.68 0.57 0.6 0.39 0.65 0.65

11 Quake Smart seq2 Lung 0.59 0.49 0.59 0.49 0.48 0.57 0.6

12 10 PBMC 0.7 0.51 0.61 0.6 0.66 0.66 0.69

13 Mouse ES cells 0.73 0.52 0.64 0.64 0.69 0.72 0.74
14 Worm neuron cell 0.49 0.49 0.34 0.36 0.15 0.47 0.49
15 Mouse bladder cell 0.46 0.56 0.53 0.5 0.51 0.42 0.44

Average score 0.77 0.51 0.70 0.69 0.65 0.75 0.77

Table 3  Average execution time of clustering algorithms

We measured the mean duration across 3 consecutive runs on clustering the embedding produced by contrastive-sc for
all real-world datasets. The methods annotated with aare those where the correct number of clusters was not provided as
input. KMeans provides the highest computational speed from the set of 7 explored clustering algorithms

The fastest methods are highlighted in bold

KMeans Leidena Birch GMM MeanShifta Spectral
Clustering

Hierarchical
Clustering

Avg execu-
tion time

0.14 7.94 0.44 0.46 14.01 0.78 0.48

Speed factor
relative to
KMeans

1 56.71 3.17 3.29 100.09 5.60 3.47

Page 19 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

clustering frameworks to search and identify the optimal configuration depending
on the analyzed data. Moreover, choosing KMeans and Leiden as default clustering
algorithms provided the best trade-off between performance, usage requirements and
efficiency.

Method stability

The stability of our method across runs and regarding input downsampling has been
assessed. First, the stability across consecutive runs has been evaluated using the coeffi-
cient of variation (the standard deviation divided by the mean score) for each computed
clustering score (Fig. 9a1–a4). The coefficient of variation normalizes the variance in the
data by the mean, which makes it a suitable method to compare results across datasets
having a diverse range of scores. contrastive-sc displays an average stability on all evalu-
ators. The closest competitor methods, scziDesk and scDeepCluster are generally more
unstable. contrastive-sc + Leiden produces more variant partitions than contrastive-sc
with KMeans. Given that the 2 clustering algorithms (KMeans and Leiden) processed
the same embedding, the clustering algorithm was responsible for the variations in the
predicted partition. The most unstable methods were scedar and scDeepCluster on
external evaluators. On internal evaluators, soup, scDeepCluster and scvi had the high-
est variability across consecutive runs.

The stability to input downsample analysis was performed by assessing the change
in method performance when only partial input data was provided. Our experimental
setup consisted of evaluating the results when only 25%, 50%, 75% and 100% of cells

Fig. 9  Model stability across consecutive runs (a1–a4) and to input downsample (b1–b4). The model
stability across 3 runs on the real-world datasets has been depicted as the coefficient of variation (for each
dataset, the standard deviation across runs divided by the average result). Here, the lower the score, the more
stable the model. For this experiment, the input data consisted of all input cells in each dataset. The second
analysis assesses how the model performance changes when only a fraction of cells is passed as input. Three
different stratified subsets have been generated randomly for each dataset, selecting 25%, 50%, 75% and
100% of all cells in each of the benchmarked real datasets. The annotated values represent the mean score
of each experiment. The performance remains relatively stable: providing half of the dataset reduces the ARI
score by 5, while only 25% of data attains an ARI score of 0.67

Page 20 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

were provided as input. The sampling has been performed in a random and stratified
way, to ensure a similar representation of all clusters across experiments. For each set-
ting, three random samples have been generated. The results depicted in Fig. 9b1–b4
show that selecting half of the input cells reduces slightly the ARI score and the Silhou-
ette, while only 25% of input cells are still able to provide competitive results (0.67 ARI
and 0.56 Silhouette). These experiments indicate that contrastive-sc is robust to input
downsampling.

Analysis of data augmentation techniques

The representation learning phase relies on data augmentation techniques to create
variations in input samples, as required by the contrastive loss. Two data augmentation
techniques have been analyzed in detail: the addition of dropout and the addition of
noise to input data. For disambiguation, this dropout does not refer to the false zero
count events occurring on scRNA-seq data but to a type of layer in artificial neural net-
works removing (dropping out) an amount of neuron connections to the forward layer.
When applied directly on the input data (gene expression per cell), dropout masks an
arbitrary ratio of randomly selected genes (by giving a weight of 0 to connection in the
neural-network). The augmented views consist only of a small fraction of the input data
that are different every epoch. This strategy allows the model to learn in detail about
various input genes instead of focusing on a few important features. An experimental
setting consisting of applying dropout ratios from 0.2 to 0.9 across all real datasets has
been implemented, as depicted in Fig. 10a–d. The results indicate that our method’s per-
formance grows with the dropout ratio on external and internal scores and peaks at 0.9
dropout ratio. This finding is aligned with the claims in image analysis [21], that strong
data augmentation techniques bring a gain in performance for contrastive representa-
tion learning. The strong NN dropout can be seen as the equivalent of image cropping

Fig. 10  Analysis of data augmentation techniques for neural network dropout (a–d) and input noise (e–h).
Models masking a different ratio (0.2–0.9) of input genes through dropout NN layers have been trained on
all real-world datasets. Both internal and external evaluators indicate that the performance increases with
the NN dropout rate and peaks at the dropout rate = 0.9. Gaussian random noise has been added to the
input data having a standard deviation from 0.01 to 1. Our results indicate that the addition of noise does not
improve model performance. The annotated values represent the mean across all underlying experiments.
For each setting 3 consecutive runs have been performed

Page 21 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

typically employed on computer vision tasks, which consists of creating the augmented
copies as random segments (i.e. crops) of the original image. When analyzing the cat
image depicted in Fig. 1, selecting only the rectangle around the ears or around the eyes
are examples of random crops, transformations that select only a subset of the origi-
nal image and hide the remaining parts. It was shown [46] that such transformations
work successfully because they create occlusion invariance, giving the model the ability
to recognize the content even when a fraction of the input data is being provided. On
scRNA-seq data, strong NN dropout allows the model to learn about the importance
of each individual gene and minimize the impact of the context (the expression of all
other genes) which could mask relevant gene-level details. The higher the dropout, the
more gene-level granularity is achieved. contrastive-sc analyzes only the most variable
genes, which also have a lower sparsity level than the overall dataset. When the num-
ber of input genes is 1000, a dropout of 90% maintains 100 genes, which appear to be
enough to represent correctly the cell. However, the results would also deteriorate as
the dropout approaches 100%, in which case the risk of selecting one or only a few genes
contaminated by dropout (or irrelevant for the cell identity) increases. This corresponds
to selecting only one pixel as representative of the cat image.

The second explored image augmentation technique consisted of adding gaussian ran-
dom noise to the input data. The experimental results depicted in Fig. 10e–h indicate
that this strategy does not improve the performance. As the input datasets have a signifi-
cant sparsity level, on average above 85% (Additional file 1: Table S4), adding noise to all
input genes, even with a reduced standard deviation, would incorrectly alter the sparsity
corresponding to the genes not expressed in a given cell. Thus, the network is encour-
aged to learn biologically incorrect gene-cell relationships, which justifies performance
degradation.

Network architecture search

The performance of predictive models depends on the set of parameters defining the
model architecture (i.e. the number of NN layers, their sizes) and the training phase (i.e.
the optimizer, the learning rate). Usually, these parameters are strongly dependent on
the input dataset. An experimental study has been conducted to identify the optimal
architecture for contrastive-sc (the encoder model) on all real-work datasets and study
the model’s sensitivity to variations in input configurations. As illustrated in Fig. 11a, a
set of 30 network structures have been generated, consisting of from 1 to 4 stacked lin-
ear layers, each of size from 2 to 200. Across all network architectures, the neural net-
work dropout is the only parameter having a significant impact on model performance.
Figure 11b indicates that the network depth influences only marginally the model per-
formance. The same is valid for the embedding layer size (Fig. 11c), as long as it is large
enough (> 10). Even when using a single layer of 2 values, the proposed training method
can learn a sample separatrix, as shown by the average ARI score of 0.49.

The model training was performed with an Adam optimizer, an initial learning rate of
0.4 and a cosine scheduler, as proposed in [21]. The learning rate has been validated with
a grid search, exploring values from 0.0001 to 2. The results depicted in Fig. 11d indicate
that in addition to being the optimal learning rate for contrastive learning on scRNA-seq

Page 22 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

data, the model performance is stable when sampling other learning rates in the neigh-
borhood of 0.4. All performed experiments indicate that the model performance is sta-
ble across an extended range of network architectures and optimization settings.

Discussion
In this section we review the overall advantages and the limitations of contrastive-
sc while comparing it with the other explored methods. The encouraging experimen-
tal results summarized in Figs. 2 and 3 show that self-supervised contrastive learning
constitutes a good alternative to the analytical way of modeling the dropout in order to
acquire robustness for clustering scRNA-seq data, using NB or ZINB autoencoders [15,
16, 19]. Even though there is no one method performing best across all datasets, con-
trastive-sc compares favorably on external and internal scores with the best performing
techniques on simulated (scedar, scziDesk, scanpy-seurat) and real datasets (scziDesk,
scDeepCluster, desc, scanpy-seurat). The selection of input genes combined with the
quick training time places contrastive-sc among the most computationally efficient state-
of-the-art clustering methods; moreover, it scales well with an increasing number of
cells or genes in the input data. The gain in execution time allows extending the range
of exploratory experiments to perform neural network architecture search or input
parameter optimization. The decoupling between the representation learning phase and

Fig. 11  Network architecture search. A set of 30 neural network architectures consisting of 1–4 stacked
linear layers have been trained on all real datasets (a). The labels indicate the network layer sizes (i.e. [60, 20]
is a network composed of 2 linear layers of size 60 and 20, the latter also representing the cell embedding
size). All values in a–d represent ARI scores of 3 runs for each experiment. The network dropout is the only
parameter having a significant impact on model performance. The number of layers (b) influence only
marginally the model output. Similar results have been obtained for the embedding size (c), as long as it is
large enough (> 10 values). Various learning rates from 0.0001 to 2 have been explored (d) and indicate that
the optimal value is 0.4. The annotated values represent the mean across all underlying experiments

Page 23 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

clustering provides the flexibility to employ other clustering algorithms easily or inte-
grate the learned embeddings in other methods. Thus, both scenarios of data explora-
tion and data exploitation can be addressed.

The extensive experimental study conducted on the clustering methods for scRNA-seq
data allows us to perform a meta-analysis highlighting the idiosyncrasies of each method
and also to place contrastive-sc in the landscape of state-of-the-art clustering models.

Methods meta‑analysis

The collected experimental data allowed us to perform methods comparison and meta-
analysis. The correlations between the internal and the external clustering measures have
been explored in Additional file 1: Fig. S5a. As expected, ARI scores are significantly cor-
related with the other external quality measure, the NMI score. The correlation with the
internal measures varies significantly from one method to the other. Weaker values indi-
cate that when the identified partition is in agreement with the ground truth, it has a low
cluster separability and conversely. contrastive-sc exhibits a strong positive correlation
with the Silhouette scores, both when using KMeans and Leiden community detection
(Pearson correlation coefficient 0.77 and respectively 0.66), indicating that the high ARI
scores also correspond to well-defined clusters. Calinski scores are not bounded, and
their scale depends on the dataset specifics (number of samples/clusters); as such, their
relevance should be assessed only in relative terms and excluded from the correlation
analysis.

The results depicted in Fig. 4 indicated that no method performs best across all data-
sets. In an attempt to identify method idiosyncrasies, we explored the relationship
between dataset specificities and model performance. Each dataset is characterized by
its number of clusters, the sparsity ratio, the mean/median/max values, the skew and the
kurtosis. The Pearson correlation values between these properties and all method scores
on real datasets are illustrated in Additional file 1: Fig. S5b. Some methods are impacted
negatively by a higher data sparsity (i.e. scDeepCluster, scrna). As detailed in Additional
file 1: Table S4, the maximum count values vary in orders of magnitude from one dataset
to another, ranging from 219 to 1.242.300. Some methods provide competitive results on
datasets having larger count values (e.g. scedar) while others conversely (e.g. scrna). A
similar observation can be made about skew and kurtosis, associated with a degradation
in the performance of scrna, and on the naive baseline.
contrastive-sc works best on datasets with fewer clusters when using the KMeans clus-

tering and conversely for Leiden. This phenomenon can be explained by the documented
tendency KMeans has to identify equal-sized [46], combined with the significant class
imbalance associated with the datasets having more than 8 clusters (Table 1).

Future works
For the representation learning training phase, Chen et al. [23] recommended using
larger batch sizes (i.e. 4096 samples). However, most of the studied scRNA-seq datasets
have less than 4000 samples. In our experiments, we employed a fixed batch size of 200
samples. We foresee exploring in future works more recent and improved approaches

Page 24 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

to representation learning, leveraging techniques providing state-of-the-art results with
smaller batch sizes, such as the Moco frameworks [47, 48].

Following the first set of experiments presented in this publication, we foresee
several possible optimizations. One promising idea is to leverage the cluster assign-
ment predictions of the representation embedding as pseudo-labels and formulate the
clustering problem as a classification task under label noise [49]. Another research
track is to enrich the encoder model with a clustering layer, as proposed in scziDesk,
which would allow the network to perform the task of cluster assignment. A topic
studied only in a few publications [50] is the early stopping condition for represen-
tation learning. Most publications [23, 48, 51] propose a dataset- related number of
epochs and do not elaborate on the evolution of performance or overfitting in the
absence of an annotated dataset. We foresee an investigation in terms of the stability
of learned representations which could be used as an early stopping condition. Last
but not least, enriching the current method with a model interpretability step could
help to explain the model’s behavior and provide insights into the features (i.e. genes)
responsible for the cluster assignments of individual cells.

Conclusions
This paper introduced contrastive-sc, a new method leveraging contrastive self-super-
vised learning for clustering scRNA-seq data. We conducted an extensive experi-
mental study to illustrate the importance of the data augmentation strategy and gene
selection, to identify the optimal neural network architecture. Our results showed
that contrastive-sc is stable across runs, robust to input downsample, relatively insen-
sitive to changes in input configuration parameters, computationally efficient both as
execution time and memory footprint and scalable to larger datasets.

The main contributions can be summarized as follows:

•	 Adaptation of contrastive self-supervised training proposed for image processing
to scRNA-seq data.

•	 Analysis of the proposed method on a range of 24 simulated and 15 real-world
datasets, supported by a detailed ablation study. The proposed method showed
encouraging results across all analyzed datasets, which were achieved in a compu-
tationally efficient way.

•	 Comparative analysis of the landscape of state-of-the-art clustering methods for
scRNA-seq data.

Our results showed that there is no constant best-performing method across all
analyzed datasets. However, contrastive-sc compared favorably with other state-of-
the-art methods and achieved top scores on average, both on external and internal
clustering metrics. We hope that the current work inspires future research in con-
trastive learning and provides a bridge between other recent achievements in parallel
research tracks such as computer vision and bioinformatics.

Page 25 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

Abbreviations
D: Input dataset; n: Number of observations; d: Number of dimensions (features); NN: Artificial neural network; ARI:
Adjusted Rand Index; NMI: Normalized Mutual Information; KL: Kullback–Leibler.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04210-8.

Additional file 1. Supplementary method (Contrastive loss); Supplementary Tables S1 to S8; Supplementary Fig-
ures S1 to S5.

Acknowledgements
Not applicable.

Authors’ contributions
MC developed the method, analyzed and interpreted the data. MC and MD contributed to writing the manuscript. Both
authors read and approved the final manuscript.

Funding
Not applicable.

Availability and data materials
All data needed to reproduce the presented results has been made available on GitHub (https://​github.​com/​ciort​anmad​
alina/​contr​astive-​sc).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 11 March 2021 Accepted: 10 May 2021

References
	1.	 Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA

sequencing. Mol Cell. 2015;58(4):610–20. https://​doi.​org/​10.​1016/j.​molcel.​2015.​04.​005.
	2.	 Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2(2):165–93. https://​doi.​org/​

10.​1007/​s40745-​015-​0040-1.
	3.	 Min E, Guo X, Liu Q, Zhang G, Cui J, Long J. A survey of clustering with deep learning: from the perspective of

network architecture. IEEE Access. 2018;6:39501–14. https://​doi.​org/​10.​1109/​ACCESS.​2018.​28554​37.
	4.	 Menon V. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Brief

Funct Genom. 2018;17:240–5.
	5.	 Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev

Genet. 2019;20(5):273–82. https://​doi.​org/​10.​1038/​s41576-​018-​0088-9.
	6.	 Freytag S, Lonnstedt I, Ng M, Bahlo M. Cluster headache: comparing clustering tools for 10x single cell sequenc-

ing data, bioRxiv;2017. https://​doi.​org/​10.​1101/​20375​2v3.
	7.	 Qi R, Ma A, Ma Q, Zou Q. Clustering and classification methods for single-cell RNA-sequencing data. Brief Bioin-

form. 2019. https://​doi.​org/​10.​1093/​bib/​bbz062.
	8.	 Lin P, Troup M, Ho J. CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-Seq data.

bioRxiv;2016 p. 068775. https://​doi.​org/​10.​1101/​068775.
	9.	 Grün D, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature.

2015;525(7568):251–5. https://​doi.​org/​10.​1038/​natur​e14966.
	10.	 Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S. Visualization and analysis of single-cell rna-seq data by

kernel-based similarity learning. Nat Methods. 2017;14(4):414–6. https://​doi.​org/​10.​1038/​nMeth.​4207.
	11.	 Mieth B, et al. Using transfer learning from prior reference knowledge to improve the clustering of single-cell

RNA-Seq data. Sci Rep. 2019. https://​doi.​org/​10.​1038/​s41598-​019-​56911-z.
	12.	 Zhu L, Lei J, Klei L, Devlin B, Roeder K. Semisoft clustering of single-cell data. Proc Natl Acad Sci U S A.

2019;116(2):466–71. https://​doi.​org/​10.​1073/​pnas.​18177​15116.
	13.	 Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat

Biotechnol. 2015;33(5):495–502. https://​doi.​org/​10.​1038/​nbt.​3192.
	14.	 Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol.

2018;19(1):15. https://​doi.​org/​10.​1186/​s13059-​017-​1382-0.

https://doi.org/10.1186/s12859-021-04210-8
https://github.com/ciortanmadalina/contrastive-sc
https://github.com/ciortanmadalina/contrastive-sc
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1109/ACCESS.2018.2855437
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1101/203752v3
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.1101/068775
https://doi.org/10.1038/nature14966
https://doi.org/10.1038/nMeth.4207
https://doi.org/10.1038/s41598-019-56911-z
https://doi.org/10.1073/pnas.1817715116
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1186/s13059-017-1382-0

Page 26 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280

	15.	 Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoen-
coder. Nat Commun. 2019;10(1):1–14. https://​doi.​org/​10.​1038/​s41467-​018-​07931-2.

	16.	 Tian T, Wan J, Song Q, Wei Z. Clustering single-cell RNA-seq data with a model-based deep learning approach.
Nat Mach Intell. 2019;1(4):191–8. https://​doi.​org/​10.​1038/​s42256-​019-​0037-0.

	17.	 Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: 33rd international confer-
ence machine learning ICML 2016, vol. 1;2016. p. 740–749, 48:478–487.

	18.	 Li X, et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.
Nat Commun. 2020;11(1):1–14. https://​doi.​org/​10.​1038/​s41467-​020-​15851-3.

	19.	 Chen L, Wang W, Zhai Y, Deng M. Deep soft K-means clustering with self-training for single-cell RNA sequence
data. NAR Genom Bioinform. 2020. https://​doi.​org/​10.​1093/​nargab/​lqaa0​39.

	20.	 Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat
Methods. 2018;15(12):1053–8. https://​doi.​org/​10.​1038/​s41592-​018-​0229-2.

	21.	 Van Gansbeke W, Vandenhende S, Georgoulis S, Proesmans M, Van Gool L. SCAN: learning to classify images
without labels. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence
and lecture notes in bioinformatics), vol. 12355 LNCS;2020. p. 268–285. https://​doi.​org/​10.​1007/​978-3-​030-​
58607-2_​16.

	22.	 Tian Y, Krishnan D, Isola P. Contrastive multiview coding. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), , vol. 12356 LNCS;2020. p.
776–794. https://​doi.​org/​10.​1007/​978-3-​030-​58621-8_​45.

	23.	 Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations.
arXiv;2020. PMLR 119:1597–1607.

	24.	 Caron M, Goyal P, Misra I, Bojanowski P, Mairal J, Joulin A. Unsupervised Learning of Visual Features by Contrast-
ing Cluster Assignments. arXiv. no. NeurIPS;2020. p. 1–23. http://​arxiv.​org/​abs/​2006.​09882.

	25.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural
networks from overfitting. J Mach Learn Res. 2014;15:1929–58.

	26.	 Suresh RM, Dinakaran K, Valarmathie P. Model based modified k-means clustering for microarray data. In: Pro-
ceedings—2009 International Conference on Information Management and Engineering, ICIME 2009;2009. p.
271–273. https://​doi.​org/​10.​1109/​ICIME.​2009.​53.

	27.	 Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep.
2019;9(1):1–12. https://​doi.​org/​10.​1038/​s41598-​019-​41695-z.

	28.	 Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218. https://​doi.​org/​10.​1007/​BF019​08075.
	29.	 Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl

Math. 1987;20(C):53–65. https://​doi.​org/​10.​1016/​0377-​0427(87)​90125-7.
	30.	 Caliñski T, Harabasz J. A dendrite method foe cluster analysis. Commun Stat. 1974;3(1):1–27. https://​doi.​org/​10.​

1080/​03610​92740​88271​01.
	31.	 Palacio-Niño JO, Berzal F. Evaluation Metrics for Unsupervised Learning Algorithms. arXiv;2019. Accessed 06 July

2020. https://​arxiv.​org/​abs/​1905.​05667.
	32.	 Zhang Y, Kim MS, Reichenberger ER, Stear B, Taylor DM. ScEDAR: a scalable Python package for single-cell RNA-

seq exploratory data analysis. PLoS Comput Biol. 2020;16(4):e1007794. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​
10077​94.

	33.	 Muraro MJ, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3(4):385-394.e3. https://​
doi.​org/​10.​1016/j.​cels.​2016.​09.​002.

	34.	 Paszke A et al. PyTorch: an imperative style, high-performance deep learning library. arXiv;2019. Accessed: 06
Feb 2021. http://​arxiv.​org/​abs/​1912.​01703.

	35.	 Kingma DP, Ba JL. Adam: a method for stochastic optimization. In: 3rd international conference on learning
representations, ICLR 2015—conference track proceedings, 2015, Accessed 20 Feb 2021. https://​arxiv.​org/​pdf/​
1412.​6980.​pdf.

	36.	 Zappia L, Phipson B, Oshlack A. Splatter: Simulation of single-cell RNA sequencing data. Genome Biol.
2017;18(1):174. https://​doi.​org/​10.​1186/​s13059-​017-​1305-0.

	37.	 Schaum N, et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature.
2018;562(7727):367–72. https://​doi.​org/​10.​1038/​s41586-​018-​0590-4.

	38.	 Adam M, Potter AS, Potter SS. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molec-
ular atlas of kidney development. Development. 2017;144(19):3625–32. https://​doi.​org/​10.​1242/​dev.​151142.

	39.	 Romanov RA, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal
subtypes. Nat Neurosci. 2017;20(2):176–88. https://​doi.​org/​10.​1038/​nn.​4462.

	40.	 Young MD, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Sci-
ence (80–). 2018;361(6402):594–9. https://​doi.​org/​10.​1126/​scien​ce.​aat16​99.

	41.	 Zheng GXY, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):1–12.
https://​doi.​org/​10.​1038/​ncomm​s14049.

	42.	 Klein AM, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell.
2015;161(5):1187–201. https://​doi.​org/​10.​1016/j.​cell.​2015.​04.​044.

	43.	 Han X, et al. Mapping the mouse cell Atlas by Microwell-Seq. Cell. 2018;172(5):1091-1107.e17. https://​doi.​org/​10.​
1016/j.​cell.​2018.​02.​001.

	44.	 Cao J, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science (80-).
2017;357(6352):661–7. https://​doi.​org/​10.​1126/​scien​ce.​aam89​40.

https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1038/s42256-019-0037-0
https://doi.org/10.1038/s41467-020-15851-3
https://doi.org/10.1093/nargab/lqaa039
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1007/978-3-030-58607-2_16
https://doi.org/10.1007/978-3-030-58607-2_16
https://doi.org/10.1007/978-3-030-58621-8_45
http://arxiv.org/abs/2006.09882
https://doi.org/10.1109/ICIME.2009.53
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1007/BF01908075
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://arxiv.org/abs/1905.05667
https://doi.org/10.1371/journal.pcbi.1007794
https://doi.org/10.1371/journal.pcbi.1007794
https://doi.org/10.1016/j.cels.2016.09.002
https://doi.org/10.1016/j.cels.2016.09.002
http://arxiv.org/abs/1912.01703
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1242/dev.151142
https://doi.org/10.1038/nn.4462
https://doi.org/10.1126/science.aat1699
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1126/science.aam8940

Page 27 of 27Ciortan and Defrance ﻿BMC Bioinformatics (2021) 22:280 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	45.	 Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach
Intell. 2002;24(5):603–19. https://​doi.​org/​10.​1109/​34.​10002​36.

	46.	 Purushwalkam S, Gupta A. Demystifying contrastive self-supervised learning: Invariances, augmentations and
dataset biases. arXiv;2020. Accessed 10 April 2021. https://​resea​rch.​fb.​com/​wp-​conte​nt/​uploa​ds/​2020/​12/​
Demys​tifyi​ng-​Contr​astive-​Self-​Super​vised-​Learn​ing-​Invar​iances-​Augme​ntati​ons-​and-​Datas​et-​Biases.​pdf.

	47.	 He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning.
Accessed 27 Oct 2020. https://​github.​com/​faceb​ookre​search/​moco.

	48.	 Chen X, Fan H, Girshick R, He K. Improved baselines with momentum contrastive learning. arXiv;2020. Accessed
27 Oct 2020. http://​arxiv.​org/​abs/​2003.​04297.

	49.	 Song H, Kim M, Park D, Lee JG. Learning from Noisy labels with deep neural networks: a survey. arXiv;2020.
Accessed 22 Aug 2020. http://​arxiv.​org/​abs/​2007.​08199.

	50.	 Li M, Soltanolkotabi M, Oymak S. Gradient descent with early stopping is provably robust to label noise for overpa-
rameterized neural networks, vol. 108;2019. p. 4313–4324.

	51.	 Khosla P, et al. Supervised contrastive learning. arXiv;2020. http://​arxiv.​org/​abs/​2004.​11362.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/34.1000236
https://research.fb.com/wp-content/uploads/2020/12/Demystifying-Contrastive-Self-Supervised-Learning-Invariances-Augmentations-and-Dataset-Biases.pdf
https://research.fb.com/wp-content/uploads/2020/12/Demystifying-Contrastive-Self-Supervised-Learning-Invariances-Augmentations-and-Dataset-Biases.pdf
https://github.com/facebookresearch/moco
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/2007.08199
http://arxiv.org/abs/2004.11362

	Contrastive self-supervised clustering of scRNA-seq data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Methods
	Data preprocessing
	Representation learning
	Clustering phase

	Results
	Evaluation scores
	Competing methods
	Implementation
	Analysis of simulated data
	Analysis of scRNA-seq datasets
	Selection of input genes
	Computational performance analysis
	Biological interpretation of results
	Impact of the selected clustering algorithm
	Method stability
	Analysis of data augmentation techniques
	Network architecture search

	Discussion
	Methods meta-analysis

	Future works
	Conclusions
	Acknowledgements
	References

