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Abstract 

Background:  Single-cell RNA sequencing (scRNA-seq) has emerged has a main strat-
egy to study transcriptional activity at the cellular level. Clustering analysis is routinely 
performed on scRNA-seq data to explore, recognize or discover underlying cell identi-
ties. The high dimensionality of scRNA-seq data and its significant sparsity accentu-
ated by frequent dropout events, introducing false zero count observations, make 
the clustering analysis computationally challenging. Even though multiple scRNA-seq 
clustering techniques have been proposed, there is no consensus on the best perform-
ing approach. On a parallel research track, self-supervised contrastive learning recently 
achieved state-of-the-art results on images clustering and, subsequently, image 
classification.

Results:  We propose contrastive-sc, a new unsupervised learning method for scRNA-
seq data that perform cell clustering. The method consists of two consecutive phases: 
first, an artificial neural network learns an embedding for each cell through a repre-
sentation training phase. The embedding is then clustered in the second phase with 
a general clustering algorithm (i.e. KMeans or Leiden community detection). The 
proposed representation training phase is a new adaptation of the self-supervised 
contrastive learning framework, initially proposed for image processing, to scRNA-seq 
data. contrastive-sc has been compared with ten state-of-the-art techniques. A broad 
experimental study has been conducted on both simulated and real-world datasets, 
assessing multiple external and internal clustering performance metrics (i.e. ARI, 
NMI, Silhouette, Calinski scores). Our experimental analysis shows that constastive-sc 
compares favorably with state-of-the-art methods on both simulated and real-world 
datasets.

Conclusion:  On average, our method identifies well-defined clusters in close agree-
ment with ground truth annotations. Our method is computationally efficient, being 
fast to train and having a limited memory footprint. contrastive-sc maintains good 
performance when only a fraction of input cells is provided and is robust to changes in 
hyperparameters or network architecture. The decoupling between the creation of the 
embedding and the clustering phase allows the flexibility to choose a suitable cluster-
ing algorithm (i.e. KMeans when the number of expected clusters is known, Leiden 
otherwise) or to integrate the embedding with other existing techniques.

Keywords:  Single cell, sc-RNA seq, Clustering, Contrastive learning, Self-supervised 
representation learning, Neural networks, Deep learning, Optimization
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Background
Single-cell RNA sequencing (scRNA-seq) provides transcriptional profiling of individ-
ual cells, enabling researchers to study the transcription dynamics, the composition of 
tissues or the relationships within gene-networks [1]. In the absence of cell type anno-
tations, unsupervised clustering models are typically employed to identify or discover 
cellular subtypes in scRNA-seq data. Despite the extensive study of clustering models in 
machine learning [2, 3], single-cell transcriptomic clustering remains challenging due to 
the high dimensionality of data (the number of transcripts is usually greater than 20,000, 
leading to “the curse of dimensionality”), the high sparsity due to low mRNA expression 
level and dropout events.

During the last decade, numerous clustering methods emerged to propose diverse 
solutions to the technical challenges raised by scRNA-seq data analysis, as shown in 
review papers [4–7]. CIDR [8] started by addressing the dropout problem with a data 
imputation phase before clustering the PCA-reduced representation using hierarchical 
clustering. RaceID [9] has been customized for identifying rare cell types improving the 
clustering performance by replacing KMeans with K-medoids. SIMLR [10] learns a simi-
larity measure between cells using multiple kernels and performs spectral clustering on 
this robust distance metric. ScRNA [11] applies transfer learning to unsupervised clus-
tering problems by incorporating information from a larger annotated dataset via non-
negative matrix factorization. SOUP [12] allows to cluster both pure and transitional 
cells by leveraging soft cluster memberships, computed based on the expression similar-
ity matrix. Seurat [13] performs a cell-community detection on top of the shared near-
est neighbor graph, using the Louvain algorithm. Several scRNA-seq analysis methods, 
including Seurat, have been made available in the python package scanpy [14].

More recently, deep learning techniques have been adapted to analyzing scRNA-
seq data. A deep count autoencoder, DCA [15], was proposed to denoise and impute 
scRNA-seq data by learning three components: (1) the count distribution, (2) the spar-
sity and (3) the overdispersion. DCA proposed to approximate the zero-inflated negative 
binomial (ZINB) distribution of the expression data using an autoencoder model. The 
autoencoder consists of 3 output layers, each corresponding to one of the three com-
ponents (1–3). This architecture became a baseline for several other state-of-the-art 
clustering methods. ScDeepCluster [16] enriched the DCA model with a clustering layer 
attached to the autoencoder’s learned embedding space (i.e. the bottleneck layer). This 
approach followed the DEC [17] method, initially proposed for image and text unsu-
pervised analysis. ScDeepCluster employs as loss a linear combination of the ZINB loss 
and the Kullback–Leibler (KL) divergence between the distribution of soft labels of the 
embedding layer (measured by a Student’s t distribution) and the derivation of the target 
distribution. This combined loss helped to preserve the local structure of the data gen-
erating distribution while refining the clusters. The DESC model [18] followed a simi-
lar approach as scDeepCluster but separated the data construction from the clustering 
phase. ScziDesk [19] proposed a weighted soft KMeans clustering (instead of hard clus-
tering) to enhance similar cells’ association under the same cluster. ScziDesk employs as 
loss function a linear combination of (1) the ZINB loss, (2) a weighted soft KMeans loss 
and (3) a KL divergence between the Student’s t distribution of the embedding space and 
that of a target distribution, as proposed in DEC [17]. The weights in the soft KMeans 
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were computed with a Gaussian kernel function, assessing each cell’s proximity to the 
cluster center. The KL divergence loss was based on the pairwise similarity of data points 
in the latent space and encouraged similar points to be clustered to the same cluster. 
ScVI [20] is another neural-network approach to approximate the underlying ZINB dis-
tribution of the observed expression values; it performed several tasks such as batch cor-
rection, clustering, differential expression and visualizations.

Despite the abundance of clustering methods, there is no consensus regarding the 
best approach under every circumstance. Freytag et al. showed in the Cluster Headache 
publication [6] that 11 state-of-the-art methods for scRNA-seq clustering produced dif-
ferent results, also having little in common with a supervised labeling approach. This 
analysis highlights well the challenges of the field.

Methods
In this work, we propose an unsupervised deep learning method to cluster scRNA-seq 
data using contrastive representation learning. Our method, contrastive-sc, analyzes the 
expression count matrix D = {xij} ∈ R

n∗d(having n samples [i.e. cells] and d features 
[i.e. transcripts]) in a two-phased process in order to identify clusters of well-separated 
groups of cells. In a nutshell, an artificial neural network (the encoder model) is trained 
to produce representations (embeddings) for each cell which is then clustered in a sec-
ond phase with a general clustering algorithm. The training of the encoder model follows 
the contrastive representation learning framework which was detailed below.

Data preprocessing

Our method adopts the preprocessing phase proposed in scziDesk [19] and imple-
mented in the python package scanpy [14]. First, the genes expressed in only one cell or 
less are discarded. Next, the expression count matrix is normalized by the library size 
so that the total counts are identical across cells. The scanpy library implements this by 
dividing each cell by the sum of all its count values and then multiplying it by the median 
of all cells’ total expression values. A natural logarithm is applied to the normalized 
data. Next, as proposed in scziDesk, only the most variable genes (i.e. top 500 genes) 
are selected according to their dispersion ranking, computed by scanpy following [13]. 
This selection step maximizes the underlying information in the retained genes while 
significantly reducing the computational load. Finally, the data are scaled such that each 
gene has zero mean and unit variance. The result of the preprocessing phase was used as 
input to the predictive model, described below.

Representation learning

Self-supervised contrastive learning is a representation learning technique that has been 
recently explored in the context of computer vision, where it typically produces repre-
sentations (embeddings) for unlabeled images. The resulting embeddings can be either 
clustered directly or, if a set of labels is available, a classification layer can be added 
and trained accordingly. Self-supervised contrastive learning produced state-of-the-art 
results in semi-supervised [21] and unsupervised (clustering) [21, 22] settings. The train-
ing process consists of creating augmented versions of each image, which, in combina-
tion with the contrastive loss [23] (detailed in Additional file 1), pushes closer together 
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(in the representation space) the augmented versions of the same image and farther away 
from all other images. Several contributions [21, 23, 24] reported that stronger image 
augmentations bring a significant performance gain. In image analysis, traditional image 
augmentations represent transformations such as rotations, translations or blurring. 
Strong data augmentations change the original image significantly, for instance, by crop-
ping multiple random portions or applying high levels of noise, as illustrated in Fig. 1a.

In this work, we explored the application of self-supervised contrastive learning, typi-
cally employed for image processing, to scRNA-seq data. As illustrated in Fig. 1b1, for 
each input cell xi two distinct augmented views of the same data are created (i.e. the pair 
of samples from the same class : x′i and  x′′ii ). As many of the transformations available 
for images (i.e. change in colors, rotations, translations) do not have an equivalent on 
scRNA-seq data, our augmentation technique consists primarily in masking an arbitrary 
random set of genes in each view so that they are ignored from the underlying compu-
tation. This technique was implemented by using a dropout neural network layer [25] 

Fig. 1  Method overview. The method is inspired by the contrastive learning techniques proposed for 
image analysis (a). For each image, an embedding (i.e. the value of the representation layer) is learned 
by applying a contrastive loss on the representations from 2 copies of the same image, modified with 
strong transformations such as multiple cropping, pixel noise, rotations, translations. This embedding can 
be analyzed with a general clustering algorithm in order to produce cluster assignments for each image. 
A similar process was proposed for scRNA-seq data (b1, b2): first, a representation learning phase (b1), 
produces an embedding for each cell (e.g. the vector [2.3, − 3.1, 0.2] is the embedding for the depicted Cell 
i). After training the network, all generated cell embeddings are clustered with a general clustering algorithm 
like KMeans or Leiden (b2). The representation learning starts from two strongly augmented copies of the 
input data ( x′

i
 and x′′

i
 ) created by masking an arbitrary number (e.g. 80%) of input genes, denoted as [g1, …, 

gd]. The network is trained with an unsupervised contrastive loss, guiding the model to map the similar views 
to neighboring representations and the dissimilar to non-neighboring representations
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directly on the input data, which assigned a weight of 0 to randomly selected gene val-
ues. For disambiguation, the name of the neural-network layer (dropout) is not related 
to the false zero counts affecting scRNA-seq data (also named dropout); the former 
will be referred to as neural network dropout or NN dropout. Other data augmentation 
techniques such as adding random Gaussian noise to each view have been explored and 
presented in the results section but did not provide a performance gain.

Representation learning was performed with a single artificial neural network, con-
stituting the encoder model. Each of the two augmented copies of input cells was pro-
cessed by the same encoder model trained to minimize the contrastive loss proposed in 
[23] (see details in Additional file 1) and, thus, the distance between the augmented cop-
ies. At each iteration, different randomly augmented versions were generated for each 
cell, which exposed the model to a wide variety of augmentations and prevented the 
memorization of a particular instance. The output of the last hidden layer of the encoder, 
also named the representation layer, provides an embedding (a vector representation) 
for each cell. The architecture of the encoder model consists of several stacked linear 
layers. An extensive neural architecture search presented in the results section identified 
the optimal architecture consisting of 3 layers of size [200, 40, 60], thus producing a cell 
embedding of 60 values.

Unlike images, scRNA-seq data is affected by dropout events, representing missing 
gene measurements that produce incorrect zero count observations. Existing scRNA-
seq clustering methods start by addressing the dropout using models such as NB or 
ZINB autoencoder [15, 19, 26], which models the expected negative binomial or zero 
inflated negative binomial distribution of counts data. Our method pursues an alterna-
tive approach to this analytical framework and relies primarily on the strong data aug-
mentation to acquire robustness to dropout without performing an explicit imputation 
before the clustering step.

Clustering phase

After the representation learning phase produced cell embeddings, a general clustering 
algorithm (i.e. KMeans, Leiden [27]) can be employed to obtain cell-cluster assignments. 
The decoupling between the embedding creation and the cluster assignment provides 
flexibility to adapt to both cases when the expected number of clusters is known (as 
required by KMeans) or unknown (Leiden community detection), as well as incorporat-
ing any other suitable clustering technique.

Results
Clustering analysis is typically performed when no class membership annotations (i.e. 
the ground truth labels) are available. From the point of view of the end-user, two sce-
narios can be distinguished: (1) an exploitation setting, in which searches start from a 
prior knowledge or a good definition of the sample groups to be identified and (2) an 
exploratory setting when no prior expectations about the number or the size of the data 
clusters exist. This distinction has been made because some of the existing libraries 
require to input the number of clusters to be identified while others can dynamically 
infer it from various data density or connectivity criteria. However, the first category of 
libraries can still be used in an exploratory setting by computing the clustering several 
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times (each for a number of clusters in a plausible range of values) and selecting the 
best result. The selection typically maximizes internal quality measures, assessing if the 
identified clusters are compact and well defined. However, this parameter exploration 
process introduces an additional cost in terms of computation time, complexity, and, as 
detailed below, there is no consensus on the best internal quality score to employ.

Evaluation scores

The evaluation of clustering performance has been made using four metrics: Adjusted 
Rand Index (ARI) score [28], Normalized Mutual Information (NMI), Silhouette score 
[29] and Calinski and Harabasz [30]. For all selected scores, the higher the value, the bet-
ter the performance. This detailed strategy has been implemented because, contrary to 
supervised analysis, there is no consensus on the optimal measure to evaluate clustering 
methods [31]. Secondly, in a typical scenario, ground truth information about the cluster 
assignment is not available, and as such, requires to optimize various internal quality 
scores. For example, Silhouette scores measure the predicted clusters’ compactness and 
produce values between − 1 and 1; the higher the score, the denser and better separated 
the clusters are. Calinski Harabasz score represents the ratio of the sum between cluster 
dispersion and within-cluster dispersion for all clusters and produces positives scores 
that are not bounded. However, various clustering methods may create different data 
projections, each with well-defined clusters, and still, the resulting partitioning can be 
significantly different from one another, especially when working with scRNA-seq data 
[6]. To mitigate this relativism, the main alternative is to employ for validation purposes 
datasets having ground truth annotations, which allows to compute external measures 
such as ARI or NMI. The former produces scores from − 1 to 1 and is proportional to 
the number of sample pairs whose labels are the same in the annotation and the model 
prediction, while NMI measures the agreement of the true and predicted cluster assign-
ments, ignoring permutations. Moreover, most clustering publications [16, 19] report 
their results primarily in terms of one or several external quality measures, while the 
internal quality analysis is reduced to a visual comparison of the 2D representation of 
identified clusters. To keep the presentation of results easy to follow, for some exper-
iments only the ARI and/or Silhouette scores have been included in the main manu-
script. The complete assessment is provided in Additional file 1.

Competing methods

An extensive empirical study has been carried out by comparing the performance of con-
trastive-sc with 11 alternative techniques, representing both methods requiring or not 
the number of clusters as input. ScziDesk [19], scDeepClustering [16], scRNA [11], cidr 
[8] and soup [12] take as input the expected number of clusters while Seurat [13] (scanpy 
[14] implementation), desc [18], scedar [32], raceid [33] and scvi [20] perform clustering 
without any alternative information. Additionally, a naive baseline method consisting of 
clustering with KMeans the first 2 principal components of the expression matrix has 
been assessed. A detailed record of all benchmarked methods and their repositories has 
been made available in Additional file 1: Table S1. The testing of all methods has been 
performed by employing their default parameters proposed in the issuing paper or in 
the official repository listed in Additional file 1: Table S1. The code used for executing 
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each method has been made available on GitHub, along with the underlying results. As 
highlighted in Additional file 1: Table S1, half of the methods are available in python and 
the other half in R. To facilitate the reproducibility of the analysis, two docker containers 
have been made available for each environment. For statistical significance, all experi-
ments have been performed three times, and the reported result represents the average 
score. To provide a rapid assessment of each method’s stability, most results have been 
presented as bar plots, highlighting the variation of results across runs.

Implementation

contrastive-sc has been implemented in Python 3 using the deep-learning framework 
pytorch [34]. The clustering algorithms use publicly available implementations for 
KMeans1 and Leiden2 community detection. The Encoder network consisted of 3 linear 
layers of [200, 40, 60] neurons and produced cell embeddings in 60D. The neural net-
work was trained with the Adam [35] optimizer using an initial learning rate of 0.4 and 
a default cosine scheduler. The model training was carried out for 30 epochs using ran-
domly sampled mini-batches with 200 cells. Similar to scziDesk, our method employed 
a preprocessed dataset with the 500 most variable genes for simulated and biological 
datasets. All our experiments continued the representation phase by clustering the 
embedding with both KMeans (labeled Contrastive + KM) and Leiden community 
detection (Contrastive + LD). Our tests were executed on 1GPU GeForce RTX 2060. For 
a complete computational assessment, our method was equally benchmarked on CPU. 
The experimental setting consisted of analyzing a collection of 24 simulated and 15 real 
scRNA-seq datasets, as detailed below.

Analysis of simulated data

The data simulation strategy consisted of generating balanced and imbalanced datasets 
(i.e. uniform and non-uniform distribution of cluster sizes). The R package splatter [36] 
has been used to produce datasets approximating various biological scenarios in which 
we controlled the number of clusters, samples, genes and dropout rates. The same exper-
imental setting (i.e. the same parameters for splatter) as scziDesk and scDeepCluster has 
been reused to facilitate comparisons, but we extended the range of explored parameters 
to assess the methods’ behavior under new conditions. The number of clusters per data-
set was extended from 7 to 16, to evaluate the impact of a growing number of clusters on 
the method performances. The dropout rate was extended from 30% to approximately 
40% to study the model performances under more severe dropout conditions.

The balanced datasets consist of 2500 genes, 4, 8 and 16 clusters and dropout rates 
ranging from 5 to 38% (splatter parameters being shape =  −1, type = “experiment”, 
facScale = 0.2 and mid in [−1, 0, 1, 1.5]). Note that the dropout rates are estimated 
by the library for each input mid parameter and are inferior to the data sparsity (the 
number of 0 values in the expression matrix), as scRNA seq data also contains a sig-
nificant number of 0 values associated with the genes not expressed in the studied 
cells. A constant cluster size of 250 samples has been employed on balanced datasets, 

1  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​clust​er.​KMeans.​html.
2  https://​github.​com/​vtraag/​leide​nalg.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/vtraag/leidenalg
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and the total sample size is thus proportional to the number of embedded clusters 
(i.e. 4 × 250 to 32 × 250). The imbalanced datasets consist of 2500 genes, 3000 cells, 
4, 8 and 16 clusters with size ratios from 0.6 to 0.01 and dropout rates from 5 to 38%.

The scores on balanced data (Fig.  2a) are generally higher than those on imbal-
anced data (Fig.  2d), indicating that the latter raises a technical challenge to most 
techniques. The methods that did not use the number of clusters as input parameter, 
(annotated with * in the figure) overestimate it up to 2 times the actual value (i.e. 4, 8 
and 16 clusters) on balanced data and more significantly on imbalanced data (Fig. 2f ). 
In turn, this behaviour penalizes the external score and explains the relative loss of 
performance in the imbalanced setting. On the other hand, these methods (*) pro-
vide higher internal scores on Silhouette (Fig. 2b, e) and Calinski metrics (Additional 
file 1: Fig. S2d, S2h). contrastive-sc provides encouraging results in both balanced and 
imbalanced settings. The two clustering implementations (KMeans and Leiden) dis-
play similar results on balanced data, but in the imbalanced setting, the Leiden com-
munity detection provides on average the best results across all competitors. In both 
settings, contrastive + Leiden tends to under-estimate the number of clusters. How-
ever, this behavior can be fine-tuned by changing the input neighborhood size param-
eter in the Leiden clustering execution. A dataset-level analysis has been performed 
(Additional file 1: Fig. S1) and confirms the speculation that most methods suffer sig-
nificant degradation in performance when the dropout rate or the number of clusters 
increases. The method ranking per dataset (Additional file 1: Fig. S1) indicates there is 

Fig. 2  Simulated data analysis. A set of 12 simulated balanced (a–c) and 12 imbalanced (d–f) datasets 
has been analyzed. For simplicity, only one external (ARI) and one internal (Silhouette) evaluator across 
all datasets are displayed. The complete analysis is provided in Additional file 1: Fig. S1, S2. Each method 
processed each dataset 3 times with different initialization seeds. The error as the relative difference between 
the predicted and the true number of clusters [(pred − true)/true] is illustrated in c for balanced data and f 
for imbalanced data. The methods annotated with (*) are those that did not receive as input the number of 
clusters. Most methods in this category tend to overestimate the number of clusters in the data, behavior 
which is more pronounced in the imbalanced setting
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no constant best method across all experiments, however scedar, scanpy-seurat, soup, 
scziDesk, and our methods provided repeatedly the top results.

As simulated datasets remain an approximation of the biological data, the following 
part of the article focuses on the analysis of a collection of 15 real-world datasets.

Analysis of scRNA‑seq datasets

The scRNA-seq datasets made available in scziDesk and scDeepCluster have been com-
bined to produce a collection of 15 real-world datasets to benchmark the model perfor-
mance. The datasets from scziDesk have been assembled at Stanford University from 
mouse scRNA-seq data for various organs using both Smart-seq2 and 10 × Genomics 
sequencing [37]. The Smart-seq2 datasets have been prefixed with “Quake Smart” while 
the latter with “Quake10 ×”. Other publicly available datasets have been added, as fol-
lows: Adam [38], Muraro [33], Romanov [39] and Young [40]. The scDeepCluster data 
had been collected using four sequencing platforms: 10 × genomics platform for the 
PBMC cells [41], droplet barcoding for mouse embryonic stem cells [42], Microwell-seq 
for mouse bladder cells [43] and sci-RNA-seq for worm neuron cells [44]. As detailed in 
Table 1, all datasets are imbalanced and contain 4–16 annotated clusters across 870 to 
9552 cells. Further details about data sparsity and other descriptive statistics specific to 
each dataset can be found in Additional file 1: Table S4.

The average results across all methods have been summarized in Fig.  3, depicting 
the 4 clustering measures, the execution time and the error in the estimated number 
of clusters. Our methods compared favorably to state-of-the-art techniques (scziDesk, 
scDeepCluster, scanpy-seurat, scedar) across all clustering scores. Clustering the learned 

Table 1  Description of scRNA-seq datasets

The datasets made available in scziDesk have been combined with those in scDeepClusters to create a wider benchmark of 
15 datasets

Dataset name Size (cells × genes) Number 
of 
clusters

Cluster sizes

1 Quake Smart seq2 Trachea 1350 × 23,341 4 (830, 206, 201, 113)

2 Quake10 × Bladder 2500 × 23,341 4 (1203, 1167, 73, 57)

3 Quake10 ×  Spleen 9552 × 23,341 5 (6886, 1930, 464, 230, 42)

4 Quake Smart seq2 Diaphragm 870 × 23,341 5 (439, 241, 81, 78, 31)

5 Quake10 ×  Limb Muscle 3909 × 23,341 6 (1330, 1136, 461, 354, 320, 308)

6 Quake Smart seq2 Limb Muscle 1090 × 23,341 6 (540, 258, 141, 71, 45, 35)

7 Romanov 2881 × 21,143 7 (1001, 898, 356, 267, 240, 71, 48)

8 Adam 3660 × 23,797 8 (629, 617, 516, 513, 463, 396, 302, 224)

9 Muraro 2122 × 19,046 9 (812, 448, 245, 219, 193, 101, 80, 21, 3)

10 Young 5685 × 33,658 11 (1498, 1201, 731, 621, 483, 373, 268, 
259, 118, 73, 60)

11 Quake Smart seq2 Lung 1676 × 23,341 11 (693, 423, 113, 90, 85, 65, 57, 53, 37, 
35, 25)

12 10 PBMC 4271 × 16,653 8 (1292, 702, 606, 459, 450, 332, 295, 135)

13 Mouse ES cells 2717 × 24,175 4 (933, 798, 683, 303)

14 Worm neuron cell 4186 × 13,488 10 (1015, 842, 443, 400, 334, 314, 305, 239, 
224, 70)

15 Mouse bladder cell 2746 × 20,670 16 (717, 357, 344, 316, 236, 224, 131, 80, 
75, 64, 44, 41, 38, 36, 30, 13)
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embedding with KMeans performs better than the Leiden community clustering. The 
latter overestimates the number of identified clusters by 1.65 times (Fig.  3f ), penaliz-
ing the external scores. On average, the partitions identified with constastive + KMeans 
agree most with ground truth (average ARI is 0.77 and NMI 0.81), but they also have 
a good internal quality as indicated by the Silhouette (0.6) and Calinski scores (4100). 
Moreover, in terms of execution time, constastive-sc + KMeans is the fastest method 
from all state-of-the-art techniques with an average execution time of 5.29 s, surpassed 
only by the naive baseline. A detailed computational analysis is depicted in the next 
section.

As expected, the worst-performing method is the naive baseline, consisting of cluster-
ing with KMeans, the first two principal components of the expression matrix. The best 
performing methods on the benchmarked real-world datasets use the number of clusters 
to be identified while running KMeans related heuristics: scziDesk, scDeepCluster. The 
other methods (annotated with *) have a significant tendency to overestimate the num-
ber of clusters in the data, on average by a factor of 2 (desc, scanpy-seurat, scvi, raceid), 
but up to 5 times (scedar); however, the identified partitions have generally higher inter-
nal quality scores, as indicated by both the Silhouette (Fig.  3c) and Calinski (Fig.  3d) 
scores. In some cases, this behavior may be attenuated with an additional work of 
method-specific hyper-parameter tuning for each dataset, but this introduces additional 
computational load and requires defining an experimental setup adapted for each tech-
nique, which goes beyond the scope of a broad benchmarking exercise. For comparison, 
both constrative-sc methods used the same model hyper-parameters across all experi-
ments. The most computationally expensive methods are scDeepCluster and scziDesk. 

Fig. 3  Real scRNA-seq data analysis. A method comparison has been performed across all 15 real datasets 
in terms of ARI—Adjusted Rand Index (a), NMI—Normalized Mutual Information (b), Silhouette (c), Calinski 
(d) scores, the execution time (e) and the error of the predicted number of clusters (f). The execution time 
and the Calinski scores have been depicted in log scale. The error as the relative difference between the 
predicted and the true number of clusters [(pred − true)/true)] is illustrated in f. The methods annotated with 
(*) indicate those where the clustering was performed without inputting the number of clusters. All methods 
in this category tend to overestimate the number of clusters in the data and do more so in the imbalanced 
setting. For each dataset and method, three runs have been performed
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Being based on neural networks, they perform a long pretraining phase (600 and 1000 
epochs) before a final clustering fine-tuning. Unlike scziDesk, which employs the top 
500 most variable genes and thus reduces the input data’s dimensionality, scDeepClus-
ter employs all genes, thus explaining the associated peak in computational time. The 
external quality measures (ARI and NMI) are aligned across all methods, as indicated 
in Fig. 3a, b and confirmed computationally by significant correlation values (above 0.86 
Pearson coefficients as per Additional file 1: Fig. S5a). However, as depicted in Fig. 3c, for 
some methods (desc, scDeepCluster), the best-separated cell partitioning is not always 
aligned with the ground truth annotation, and conversely. This observation is confirmed 
computationally by the diverse correlation levels between external and internal scores, 
computed per method (from − 0.26 for desc to 0.9 for raceid Additional file 1: Fig. S5a).

Next, a dataset-level method comparison on real-world datasets has been performed 
on ARI scores (Fig.  4). The results indicate no consensus regarding the best method, 
the performance depending on the specificities of the analyzed dataset. contrastive-sc 
provides better results when using KMeans than when using a default configuration for 
Leiden community detection, which generally identifies smaller sized clusters. Further 
dataset level hyperparameter tuning for Leiden will be explored in future works. How-
ever, our method compares favorably with the best performing techniques (scziDesk, 
scDeepCluster, desc, scanpy-seurat): it provided the highest score on 6 datasets, the sec-
ond-best on another 5 from a total of 13 explored techniques. A detailed analysis of the 
underlying internal quality of identified clusters has been performed (Additional file 1: 
Fig. S3). For simplicity, the comparison focuses only on the best performing methods 
(scziDesk, scDeepCluster, desc, scanpy-seurat) on the benchmarked datasets. Both Sil-
houette and Calinski scores indicate that clusters identified by contrastive-sc are gener-
ally well defined. Desc and scDeepClusters identify the best-separated data partitions; 
however, they are not always in agreement with the ground truth.

Selection of input genes

A comprehensive study on the importance of gene selection has been performed in 
scziDesk, comparing the performance obtained by selecting the top 500 most variable 
genes with that of scDeepCluster, where no such selection was performed. Their analysis 
reported a statistically significant gain between the original scDeepCluster and a version 
modified to select the top 500 most variable genes. In this section, a similar study has 
been performed on contrastive-sc by comparing the results of selecting most variable 
500, 1000, 1500, 3000 and 5000 genes with selecting all genes (Fig. 5). The best perfor-
mance is achieved when using the top 500 most variable genes, as suggested in scziDesk. 
Using the entire dataset brings a loss of performance which can be explained by the 
inclusion of low-expressed genes, more affected by dropout events. To assess the sta-
tistical significance of the performance gain brought by using the top 500 most variable 
genes instead of the entire dataset, a one-sided greater pairwise t-test was performed 
on the ARI and NMI scores of the 2 groups. The statistical tests reported P values of 
5.15× 10

−8 and 2.22× 10
−5 , thus confirming the importance of the gene selection step 

in the preprocessing phase.
To validate that selecting most variable 500 genes is the optimal setting for all data-

sets, a dataset-level visualization of the underlying ARI and Silhouette scores has been 
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performed (Fig. 5a, c). For some datasets (e.g. Worm neuron cell, Mouse bladder cell) 
selecting the top 5000 genes provides a significant performance improvement both for 
the external and internal evaluators. For this reason, we took a step further from the 
default setting proposed in scziDesk and selected the dataset input size, which maxi-
mized the internal Silhouette score (Fig.  5c). For example, the Worm Neuron Cell 

Fig. 4  Dataset-level analysis of real scRNA-seq data on ARI (Adjusted Rand Index) scores. The results 
aggregate 3 consecutive runs of all 13 explored methods over the 15 biological datasets. The dataset 
annotations (e.g. #1, #6) indicate the ranking of contrative-sc with KMeans and Leiden on each analyzed 
dataset: the best performing method 6 datasets and the second best on another 6
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dataset’s optimal size is 5000 genes, while for Quake Spleen, it is 500. This improvement 
can be applied to any dataset, as it does not require ground truth annotations. The opti-
mal parameters identified for each real-world dataset is provided in Additional file  1: 
Table S5. Input size optimization brings a performance boost to achieve an average of 
0.77 ARI scores across all real datasets instead of a 0.75 ARI score when using the default 
value of 500 genes.

Computational performance analysis

This section compares the computational cost of contastive-sc with the other tech-
niques and analyzes its scalability with increasing input size. The average run-time of all 
benchmarked methods on the real-world datasets (over 3 runs) has been summarized 
in Fig. 6a. From the selected state-of-the-art techniques, contrastive + KMeans has the 
highest computational efficiency, requiring, on average, 5.3 s to run on GPU and 12 s on 
CPU. Similar architectural methods (sczi, scDeepCluster, desc) require from 43 s to sev-
eral orders of magnitude more execution time. The computation speed gain is explained 
by the short convergence time (30 epochs) in combination with a reduced number of 
selected input genes.

The scalability of contrastive-sc when increasing the number of input cells (from 
1000 to 50,000) and input variables (from 500 to 250,000) is depicted in Fig. 6b, c. The 
maximum values in both these scenarios produced execution times on average less 
than 60  s per run. Additionally, Leiden community detection impacts the method’s 

Fig. 5  Gene selection analysis on real data. The selection of the top variable genes (500–5000) was 
compared with no selection (all genes). The plots depict 3 runs on each of the 15 real datasets on all 
computed scores (a–d). On average, best scores are achieved using the top 500 genes. Both the internal and 
external quality decline when using more than 1000 genes, which corresponds to including many genes 
with low levels of expression. The dataset-level results, depicted as ARI (e) and Silhouette scores (f), indicate 
that for some datasets, a significant gain in performance can be attained when using up to 5000 genes (e.g. 
Worm Neuron Cell dataset)



Page 14 of 27Ciortan and Defrance ﻿BMC Bioinformatics          (2021) 22:280 

overall performance, which grows with the number of input cells (Fig.  6b). The num-
ber of features analyzed by both KMeans and Leiden is constant, as it represents the 
size of the representation layer (60 values). Thus, the variation of the number of input 
genes impacts only the representation learning phase’s performance. The training time 
to learn meaningful representations has been analyzed (Fig.  6b, c) in terms of model 
performances recorded after an arbitrary number of epochs (ranging from 5 to 100), 
averaged over 3 different runs. Our results indicate that 30 epochs are enough to learn 
meaningful representations having good external and internal quality scores. Moreo-
ver, continuing the training beyond 30 epochs changed the external performance only 
marginally. The computational complexity of contrastive-sc consists of the computa-
tional complexity of training the neural network combined with the complexity of the 
clustering algorithm. The complexity of training the neural network grows linearly 
with the number of samples (cells) and can be estimated as O(n × numberOfEpochs × 
(d × sizeLayer1 +  sizeLayer1 × sizeLayer2 +  sizeLayer2 × sizeLayer3)), equivalent to 
O(n× 30× (500× 200+ 200× 40+ 40× 60)) . As the structure of the network is con-
stant, the computational complexity depends only on the number of input samples. If 
KMeans runs for t iterations, its computational complexity is O(t × k × n× d) where k 
is the number of clusters.

The memory footprint of contrastive-sc consists of only 111.180 trainable parame-
ters, while other deep-learning techniques such as scziDesk or scDeepCluster require 
551.164 and, respectively, above 10.000.000 parameters (the latter grows with the num-
ber of genes).

Biological interpretation of results

To attach a biological interpretation to the cell clustering predicted by contrastive-sc, 
a set of 4 real-world datasets has been selected for visualization (Fig. 7). contrastive-sc 

Fig. 6  Execution time and scalability analysis. Average execution time for all benchmarked methods (a). The 
relation between the performance of contrastive + KMeans and the other methods has also been computed 
as a speed factor. All methods have been run on GPU. For comparison, the contrastive methods have also 
been benchmarked on CPU (contrastive + KM CPU and contrastive + LD CPU). b Depicts how our method 
scales with an increasing number of cells (from 1000 to 50,000); c illustrates how our method scales with an 
increasing number of input variables (from 500 to 250,000); the number of epochs needed for contrastive-sc 
to reach maximum performance measured as ARI (d) and Silhouette (e) scores. The annotated values in c 
and d represent the mean score. For most datasets, 30 epochs are enough for the model to learn meaningful 
representations, which brings a computational speed gain compared to other deep-learning competitor 
methods. This plot depicts three runs of the proposed method for each of the selected numbers of epochs
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has been compared, for simplicity, only with the best competitor methods: scziDesk, 
scDeepCluster and desc. The same embedding predicted by contrastive-sc has been 
clustered with KMeans and Leiden. Leiden tends to identify many small-sized clus-
ters, and in doing so, it splits larger groups, thus penalizing the external score across 
most datasets. One exception is the Young dataset, containing a larger number of 
clusters (11). Leiden identified 13 clusters and achieved the highest performance from 
all explored methods (0.71 ARI). A similar behavior characterized the desc method, 
which overestimated up to 2 times the annotated number of clusters in the data and 
confirmed the tendency summarized in Fig. 3f. However, the identified partitions are 
generally composed of well-separated clusters. On the Quake Limb Muscle dataset, 
contrastive-sc + KMeans managed to identify an almost perfect partitioning (ARI 
0.99). A similarly good result is achieved with scziDesk (0.97); scDeepCluster man-
aged to create an embedding with well-defined clusters; however, they were in less 
agreement with the ground truth (0.76 ARI score). This misalignment between the 
internal and external scores is a general tendency for scDeepCluster, extending to 
most of the other datasets; it explains the results in Fig.  3c, placing scDeepCluster 
as the best performing method on Silhouette scores. On the Quake Bladder dataset, 
scziDesk outperformed contrastive-sc + KMeans, which incorrectly split the bladder 

Fig. 7  Visualization of identified clusters. scDeepCluster, scziDesk, desc, contrastive + KM, contrastive + LD 
identified clusters on 4 datasets (Quake Limb Muscle, Muraro, Romanov, Young) are compared using a 2D 
data projection. All selected methods start by creating an embedding for the cells which is clustered in 
a second phase. The quality of the method depends on both the created embedding and the clustering 
algorithm. For scDeepCluster and scziDesk, we depicted the clustering prediction relative to the underlying 
embedding. Our methods (contrastive + KM and contrastive + LD) clustered the same embedding. All plots 
present a 2D t-SNE projection of the underlying embeddings
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cell types into two large subgroups. As indicated in the underlying ground truth visu-
alization, this differentiation was produced during the representation learning phase 
and could be traced back to the input cells’ distribution in future works. Further-
more, the Quake Bladder dataset has an extreme class imbalance (containing clus-
ters of sizes 1203, 1167, 73 and 57). In this context, our method divided the largest 
group, also having the highest sample variance. On the Romanov dataset, contrastive-
sc + KMeans identified the partitioning closest to the ground truth with an ARI score 
of 0.73.

A detailed validation of results has been conducted relative to the ground truth infor-
mation, depicted in Fig.  8. Leiden identified several partitions within the endothelial 
and mesenchymal stem cells on the Limb muscle dataset and thus predicted twice as 
many clusters as in the ground truth annotation. Similar behaviors can be observed 
on the remaining datasets. Unlike KMeans based methods, the performance of Lei-
den is relatively better on datasets having a higher number of clusters. Additionally, a 

Fig. 8  Contrastive-sc clustering compared to ground truth. The comparison of predicted and ground truth 
clusters on 4 scRNA-seq datasets (Quake Limb Muscle, Muraro, Romanov, Young) is displayed. Our methods 
(contrastive + KM and contrastive + LD) clustered the same embedding and we also illustrated the ground 
truth in this space. All plots present a 2D t-SNE projection of the underlying embeddings. contrastive + LD 
consistently overestimated the number of clusters in the data and performed best on datasets with a large 
number of clusters
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positive correlation between the ARI score of contrastive-sc + Leiden ARI and the num-
ber of clusters in the dataset is observed (Additional file 1: Fig. S5b). However, the iden-
tified subclusters have a spatial continuity in the 2D t-SNE projection, which leads us 
to believe that they may correspond to cellular sub-types. On the Limb Muscle dataset, 
contrastive-sc + KMeans produces a nearly perfect partition (ARI score 0.99), the errors 
being caused by a few mesenchymal stem cells confounded with macrophage cells as 
well as a T-cell confounded with a B-cell. A comprehensive analysis of this dataset indi-
cates that 28 cells out of a total of 3909 cells have been assigned to the incorrect cluster, 
and as illustrated in Additional file 1: Fig. S4, most of the incorrectly predicted cells have 
low expression values. This visualization exercise demonstrated that most of the embed-
dings and cell-groups identified with contrastive-sc were aligned with the ground truth 
while forming well-separated clusters, confirming the encouraging average results as 
ARI and Silhouette scores, reported in Fig. 3a, c.

Impact of the selected clustering algorithm

Different clustering algorithms may have different behaviors, computational costs and 
produce different partitions of the same input data. This section explores the specificities 
of the two selected clustering algorithms (KMeans and Leiden) and compares their per-
formance with a set of another 5 state-of-the-art clustering methods.

Leiden clustering does not require prior knowledge about the expected number of 
clusters, making it more suitable to be employed in a knowledge discovery setting. Our 
experiments employed the Leiden implementation integrated into the Scanpy pack-
age [14]. The Leiden [27] graph-clustering performs community detection based on 
optimizing modularity and processes the cells’ neighborhood graph. Seurat computes 
the graph using a PCA representation of the data matrix, while our method uses the 
learned embedding directly. contrastive-sc + KMeans requires knowing the number of 
input clusters in the data. The same constraint applies to half of the selected methods 
(i.e. scziDesk, scDeepCluster, scrna, cidr). Unlike KMeans, community detection is not 
biased towards identifying equal-sized clusters. Leiden community detection is 7 times 
more computationally expensive than KMeans (Table 3), and this gap increases with the 
number of input cells. If contrastive-sc + KMeans is used in an exploratory setting (i.e. 
to determine the optimal number of clusters in the data) a computational cost growing 
linearly with the number of explored values should be foreseen.
contrastive-sc computes by default a cell partitioning with KMeans or Leiden. How-

ever, the decoupling between the representation learning and the clustering phase 
allows the flexibility to cluster the produced cell embedding with any other tool. A 
set of 5 clustering methods (Birch, GMM, MeanShift, Spectral Clustering and Ward 
Hierarchical Clustering), implemented in the scikit-learn library3 have been used to 
cluster the same embedding created by contrastive-sc. The predicted partition has 
been evaluated using the ARI score (Table 2). The results indicate no best performing 
method across all datasets, suggesting the data specificities play an essential role in 
the clustering performance. On average, KMeans and Ward Hierarchical clustering 

3  https://​scikit-​learn.​org/​stable/​modul​es/​clust​ering.​html.

https://scikit-learn.org/stable/modules/clustering.html
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performed best across all datasets and achieved the same mean score (0.77). The NMI 
scores show that Ward Hierarchical Clustering (Additional file 1: Table S6) is margin-
ally better than KMeans (achieving 0.81 instead of 0.80). The internal scores (Addi-
tional file 1: Tables S7, S8) place KMeans as the best performing method. MeanShift 
[45] determines the number of clusters based on the sample relative density and out-
performed Leiden community detection (0.51), achieving an ARI score of 0.65. How-
ever, MeanShift was on average 30 times slower than Leiden (Table 3). The execution 
time analysis indicates that KMeans is the most computationally efficient method, 
3 times faster than the next alternatives (e.g. Birch, GMM, Ward Hierarchical Clus-
tering). This exercise demonstrated our method’s flexibility to integrate with other 

Table 2  Comparison between 7 clustering methods, applied on the embedding learned with 
contrastive-sc 

The results depict the average ARI score across 3 consecutive runs. The methods annotated with aare those where the 
correct number of clusters was not provided as input. The complete analysis of the remaining clustering scores has been 
provided in Additional file 1: Tables S6–S8

The best scores per dataset are highlighted in bold

Dataset name KMeans Leidena Birch GMM MeanShifta Spectral 
Clustering

Hierarchical 
Clustering

1 Quake Smart seq2 Trachea 0.86 0.3 0.87 0.88 0.78 0.84 0.89
2 Quake10 × Bladder 0.75 0.29 0.75 0.75 0.72 0.75 0.75
3 Quake10 × Spleen 0.91 0.17 0.72 0.74 0.84 0.83 0.9

4 Quake Smart seq2 Dia-
phragm

0.98 0.7 0.98 0.98 0.96 0.98 0.98

5 Quake10 × Limb Muscle 0.99 0.58 0.9 0.91 0.69 0.96 0.99
6 Quake Smart seq2 Limb 

Muscle
0.98 0.67 0.97 0.92 0.92 0.97 0.98

7 Romanov 0.73 0.49 0.52 0.48 0.62 0.73 0.69

8 Adam 0.83 0.67 0.64 0.61 0.54 0.84 0.8

9 Muraro 0.91 0.57 0.85 0.85 0.83 0.85 0.92
10 Young 0.66 0.68 0.57 0.6 0.39 0.65 0.65

11 Quake Smart seq2 Lung 0.59 0.49 0.59 0.49 0.48 0.57 0.6

12 10 PBMC 0.7 0.51 0.61 0.6 0.66 0.66 0.69

13 Mouse ES cells 0.73 0.52 0.64 0.64 0.69 0.72 0.74
14 Worm neuron cell 0.49 0.49 0.34 0.36 0.15 0.47 0.49
15 Mouse bladder cell 0.46 0.56 0.53 0.5 0.51 0.42 0.44

Average score 0.77 0.51 0.70 0.69 0.65 0.75 0.77

Table 3  Average execution time of clustering algorithms

We measured the mean duration across 3 consecutive runs on clustering the embedding produced by contrastive-sc for 
all real-world datasets. The methods annotated with aare those where the correct number of clusters was not provided as 
input. KMeans provides the highest computational speed from the set of 7 explored clustering algorithms

The fastest methods are highlighted in bold

KMeans Leidena Birch GMM MeanShifta Spectral 
Clustering

Hierarchical 
Clustering

Avg execu-
tion time

0.14 7.94 0.44 0.46 14.01 0.78 0.48

Speed factor 
relative to 
KMeans

1 56.71 3.17 3.29 100.09 5.60 3.47
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clustering frameworks to search and identify the optimal configuration depending 
on the analyzed data. Moreover, choosing KMeans and Leiden as default clustering 
algorithms provided the best trade-off between performance, usage requirements and 
efficiency.

Method stability

The stability of our method across runs and regarding input downsampling has been 
assessed. First, the stability across consecutive runs has been evaluated using the coeffi-
cient of variation (the standard deviation divided by the mean score) for each computed 
clustering score (Fig. 9a1–a4). The coefficient of variation normalizes the variance in the 
data by the mean, which makes it a suitable method to compare results across datasets 
having a diverse range of scores. contrastive-sc displays an average stability on all evalu-
ators. The closest competitor methods, scziDesk and scDeepCluster are generally more 
unstable. contrastive-sc + Leiden produces more variant partitions than contrastive-sc 
with KMeans. Given that the 2 clustering algorithms (KMeans and Leiden) processed 
the same embedding, the clustering algorithm was responsible for the variations in the 
predicted partition. The most unstable methods were scedar and scDeepCluster on 
external evaluators. On internal evaluators, soup, scDeepCluster and scvi had the high-
est variability across consecutive runs.

The stability to input downsample analysis was performed by assessing the change 
in method performance when only partial input data was provided. Our experimental 
setup consisted of evaluating the results when only 25%, 50%, 75% and 100% of cells 

Fig. 9  Model stability across consecutive runs (a1–a4) and to input downsample (b1–b4). The model 
stability across 3 runs on the real-world datasets has been depicted as the coefficient of variation (for each 
dataset, the standard deviation across runs divided by the average result). Here, the lower the score, the more 
stable the model. For this experiment, the input data consisted of all input cells in each dataset. The second 
analysis assesses how the model performance changes when only a fraction of cells is passed as input. Three 
different stratified subsets have been generated randomly for each dataset, selecting 25%, 50%, 75% and 
100% of all cells in each of the benchmarked real datasets. The annotated values represent the mean score 
of each experiment. The performance remains relatively stable: providing half of the dataset reduces the ARI 
score by 5, while only 25% of data attains an ARI score of 0.67
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were provided as input. The sampling has been performed in a random and stratified 
way, to ensure a similar representation of all clusters across experiments. For each set-
ting, three random samples have been generated. The results depicted in Fig.  9b1–b4 
show that selecting half of the input cells reduces slightly the ARI score and the Silhou-
ette, while only 25% of input cells are still able to provide competitive results (0.67 ARI 
and 0.56 Silhouette). These experiments indicate that contrastive-sc is robust to input 
downsampling.

Analysis of data augmentation techniques

The representation learning phase relies on data augmentation techniques to create 
variations in input samples, as required by the contrastive loss. Two data augmentation 
techniques have been analyzed in detail: the addition of dropout and the addition of 
noise to input data. For disambiguation, this dropout does not refer to the false zero 
count events occurring on scRNA-seq data but to a type of layer in artificial neural net-
works removing (dropping out) an amount of neuron connections to the forward layer. 
When applied directly on the input data (gene expression per cell), dropout masks an 
arbitrary ratio of randomly selected genes (by giving a weight of 0 to connection in the 
neural-network). The augmented views consist only of a small fraction of the input data 
that are different every epoch. This strategy allows the model to learn in detail about 
various input genes instead of focusing on a few important features. An experimental 
setting consisting of applying dropout ratios from 0.2 to 0.9 across all real datasets has 
been implemented, as depicted in Fig. 10a–d. The results indicate that our method’s per-
formance grows with the dropout ratio on external and internal scores and peaks at 0.9 
dropout ratio. This finding is aligned with the claims in image analysis [21], that strong 
data augmentation techniques bring a gain in performance for contrastive representa-
tion learning. The strong NN dropout can be seen as the equivalent of image cropping 

Fig. 10  Analysis of data augmentation techniques for neural network dropout (a–d) and input noise (e–h). 
Models masking a different ratio (0.2–0.9) of input genes through dropout NN layers have been trained on 
all real-world datasets. Both internal and external evaluators indicate that the performance increases with 
the NN dropout rate and peaks at the dropout rate = 0.9. Gaussian random noise has been added to the 
input data having a standard deviation from 0.01 to 1. Our results indicate that the addition of noise does not 
improve model performance. The annotated values represent the mean across all underlying experiments. 
For each setting 3 consecutive runs have been performed
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typically employed on computer vision tasks, which consists of creating the augmented 
copies as random segments (i.e. crops) of the original image. When analyzing the cat 
image depicted in Fig. 1, selecting only the rectangle around the ears or around the eyes 
are examples of random crops, transformations that select only a subset of the origi-
nal image and hide the remaining parts. It was shown [46] that such transformations 
work successfully because they create occlusion invariance, giving the model the ability 
to recognize the content even when a fraction of the input data is being provided. On 
scRNA-seq data, strong NN dropout allows the model to learn about the importance 
of each individual gene and minimize the impact of the context (the expression of all 
other genes) which could mask relevant gene-level details. The higher the dropout, the 
more gene-level granularity is achieved. contrastive-sc analyzes only the most variable 
genes, which also have a lower sparsity level than the overall dataset. When the num-
ber of input genes is 1000, a dropout of 90% maintains 100 genes, which appear to be 
enough to represent correctly the cell. However, the results would also deteriorate as 
the dropout approaches 100%, in which case the risk of selecting one or only a few genes 
contaminated by dropout (or irrelevant for the cell identity) increases. This corresponds 
to selecting only one pixel as representative of the cat image.

The second explored image augmentation technique consisted of adding gaussian ran-
dom noise to the input data. The experimental results depicted in Fig. 10e–h indicate 
that this strategy does not improve the performance. As the input datasets have a signifi-
cant sparsity level, on average above 85% (Additional file 1: Table S4), adding noise to all 
input genes, even with a reduced standard deviation, would incorrectly alter the sparsity 
corresponding to the genes not expressed in a given cell. Thus, the network is encour-
aged to learn biologically incorrect gene-cell relationships, which justifies performance 
degradation.

Network architecture search

The performance of predictive models depends on the set of parameters defining the 
model architecture (i.e. the number of NN layers, their sizes) and the training phase (i.e. 
the optimizer, the learning rate). Usually, these parameters are strongly dependent on 
the input dataset. An experimental study has been conducted to identify the optimal 
architecture for contrastive-sc (the encoder model) on all real-work datasets and study 
the model’s sensitivity to variations in input configurations. As illustrated in Fig. 11a, a 
set of 30 network structures have been generated, consisting of from 1 to 4 stacked lin-
ear layers, each of size from 2 to 200. Across all network architectures, the neural net-
work dropout is the only parameter having a significant impact on model performance. 
Figure 11b indicates that the network depth influences only marginally the model per-
formance. The same is valid for the embedding layer size (Fig. 11c), as long as it is large 
enough (> 10). Even when using a single layer of 2 values, the proposed training method 
can learn a sample separatrix, as shown by the average ARI score of 0.49.

The model training was performed with an Adam optimizer, an initial learning rate of 
0.4 and a cosine scheduler, as proposed in [21]. The learning rate has been validated with 
a grid search, exploring values from 0.0001 to 2. The results depicted in Fig. 11d indicate 
that in addition to being the optimal learning rate for contrastive learning on scRNA-seq 
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data, the model performance is stable when sampling other learning rates in the neigh-
borhood of 0.4. All performed experiments indicate that the model performance is sta-
ble across an extended range of network architectures and optimization settings.

Discussion
In this section we review the overall advantages and the limitations of contrastive-
sc while comparing it with the other explored methods. The encouraging experimen-
tal results summarized in Figs.  2 and 3 show that self-supervised contrastive learning 
constitutes a good alternative to the analytical way of modeling the dropout in order to 
acquire robustness for clustering scRNA-seq data, using NB or ZINB autoencoders [15, 
16, 19]. Even though there is no one method performing best across all datasets, con-
trastive-sc compares favorably on external and internal scores with the best performing 
techniques on simulated (scedar, scziDesk, scanpy-seurat) and real datasets (scziDesk, 
scDeepCluster, desc, scanpy-seurat). The selection of input genes combined with the 
quick training time places contrastive-sc among the most computationally efficient state-
of-the-art clustering methods; moreover, it scales well with an increasing number of 
cells or genes in the input data. The gain in execution time allows extending the range 
of exploratory experiments to perform neural network architecture search or input 
parameter optimization. The decoupling between the representation learning phase and 

Fig. 11  Network architecture search. A set of 30 neural network architectures consisting of 1–4 stacked 
linear layers have been trained on all real datasets (a). The labels indicate the network layer sizes (i.e. [60, 20] 
is a network composed of 2 linear layers of size 60 and 20, the latter also representing the cell embedding 
size). All values in a–d represent ARI scores of 3 runs for each experiment. The network dropout is the only 
parameter having a significant impact on model performance. The number of layers (b) influence only 
marginally the model output. Similar results have been obtained for the embedding size (c), as long as it is 
large enough (> 10 values). Various learning rates from 0.0001 to 2 have been explored (d) and indicate that 
the optimal value is 0.4. The annotated values represent the mean across all underlying experiments
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clustering provides the flexibility to employ other clustering algorithms easily or inte-
grate the learned embeddings in other methods. Thus, both scenarios of data explora-
tion and data exploitation can be addressed.

The extensive experimental study conducted on the clustering methods for scRNA-seq 
data allows us to perform a meta-analysis highlighting the idiosyncrasies of each method 
and also to place contrastive-sc in the landscape of state-of-the-art clustering models.

Methods meta‑analysis

The collected experimental data allowed us to perform methods comparison and meta-
analysis. The correlations between the internal and the external clustering measures have 
been explored in Additional file 1: Fig. S5a. As expected, ARI scores are significantly cor-
related with the other external quality measure, the NMI score. The correlation with the 
internal measures varies significantly from one method to the other. Weaker values indi-
cate that when the identified partition is in agreement with the ground truth, it has a low 
cluster separability and conversely. contrastive-sc exhibits a strong positive correlation 
with the Silhouette scores, both when using KMeans and Leiden community detection 
(Pearson correlation coefficient 0.77 and respectively 0.66), indicating that the high ARI 
scores also correspond to well-defined clusters. Calinski scores are not bounded, and 
their scale depends on the dataset specifics (number of samples/clusters); as such, their 
relevance should be assessed only in relative terms and excluded from the correlation 
analysis.

The results depicted in Fig. 4 indicated that no method performs best across all data-
sets. In an attempt to identify method idiosyncrasies, we explored the relationship 
between dataset specificities and model performance. Each dataset is characterized by 
its number of clusters, the sparsity ratio, the mean/median/max values, the skew and the 
kurtosis. The Pearson correlation values between these properties and all method scores 
on real datasets are illustrated in Additional file 1: Fig. S5b. Some methods are impacted 
negatively by a higher data sparsity (i.e. scDeepCluster, scrna). As detailed in Additional 
file 1: Table S4, the maximum count values vary in orders of magnitude from one dataset 
to another, ranging from 219 to 1.242.300. Some methods provide competitive results on 
datasets having larger count values (e.g. scedar) while others conversely (e.g. scrna). A 
similar observation can be made about skew and kurtosis, associated with a degradation 
in the performance of scrna, and on the naive baseline.
contrastive-sc works best on datasets with fewer clusters when using the KMeans clus-

tering and conversely for Leiden. This phenomenon can be explained by the documented 
tendency KMeans has to identify equal-sized [46], combined with the significant class 
imbalance associated with the datasets having more than 8 clusters (Table 1).

Future works
For the representation learning training phase, Chen et  al. [23] recommended using 
larger batch sizes (i.e. 4096 samples). However, most of the studied scRNA-seq datasets 
have less than 4000 samples. In our experiments, we employed a fixed batch size of 200 
samples. We foresee exploring in future works more recent and improved approaches 
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to representation learning, leveraging techniques providing state-of-the-art results with 
smaller batch sizes, such as the Moco frameworks [47, 48].

Following the first set of experiments presented in this publication, we foresee 
several possible optimizations. One promising idea is to leverage the cluster assign-
ment predictions of the representation embedding as pseudo-labels and formulate the 
clustering problem as a classification task under label noise [49]. Another research 
track is to enrich the encoder model with a clustering layer, as proposed in scziDesk, 
which would allow the network to perform the task of cluster assignment. A topic 
studied only in a few publications [50] is the early stopping condition for represen-
tation learning. Most publications [23, 48, 51] propose a dataset- related number of 
epochs and do not elaborate on the evolution of performance or overfitting in the 
absence of an annotated dataset. We foresee an investigation in terms of the stability 
of learned representations which could be used as an early stopping condition. Last 
but not least, enriching the current method with a model interpretability step could 
help to explain the model’s behavior and provide insights into the features (i.e. genes) 
responsible for the cluster assignments of individual cells.

Conclusions
This paper introduced contrastive-sc, a new method leveraging contrastive self-super-
vised learning for clustering scRNA-seq data. We conducted an extensive experi-
mental study to illustrate the importance of the data augmentation strategy and gene 
selection, to identify the optimal neural network architecture. Our results showed 
that contrastive-sc is stable across runs, robust to input downsample, relatively insen-
sitive to changes in input configuration parameters, computationally efficient both as 
execution time and memory footprint and scalable to larger datasets.

The main contributions can be summarized as follows:

•	 Adaptation of contrastive self-supervised training proposed for image processing 
to scRNA-seq data.

•	 Analysis of the proposed method on a range of 24 simulated and 15 real-world 
datasets, supported by a detailed ablation study. The proposed method showed 
encouraging results across all analyzed datasets, which were achieved in a compu-
tationally efficient way.

•	 Comparative analysis of the landscape of state-of-the-art clustering methods for 
scRNA-seq data.

Our results showed that there is no constant best-performing method across all 
analyzed datasets. However, contrastive-sc compared favorably with other state-of-
the-art methods and achieved top scores on average, both on external and internal 
clustering metrics. We hope that the current work inspires future research in con-
trastive learning and provides a bridge between other recent achievements in parallel 
research tracks such as computer vision and bioinformatics.
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