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Introduction
At a time of global health crisis, drug discovery is of utter importance to bring the soci-
ety back to its order. Beyond the crisis, drugs have helped to improve life quality and 
increase the life expectancy. However, despite the growing research and development 
expenditure every year [1, 2], the yearly FDA-approval of drugs has mostly stalled since 
1993 [3]. In fact, there were a total of 3437 FDA approved small-molecule and large-mol-
ecule drugs or therapeutics in 2018 [4], with a yearly addition of only ∼ 1.2% (2014–2018 
average). The so-called “Eroom’s law” overshadows the pharmaceutical industry, with 

Abstract 

Background:  Drug discovery is a multi-stage process that comprises two costly major 
steps: pre-clinical research and clinical trials. Among its stages, lead optimization easily 
consumes more than half of the pre-clinical budget. We propose a combined machine 
learning and molecular modeling approach that partially automates lead optimization 
workflow in silico, providing suggestions for modification hot spots.

Results:  The initial data collection is achieved with physics-based molecular dynam‑
ics simulation. Contact matrices are calculated as the preliminary features extracted 
from the simulations. To take advantage of the temporal information from the simula‑
tions, we enhanced contact matrices data with temporal dynamism representation, 
which are then modeled with unsupervised convolutional variational autoencoder 
(CVAE). Finally, conventional and CVAE-based clustering methods are compared with 
metrics to rank the submolecular structures and propose potential candidates for lead 
optimization.

Conclusion:  With no need for extensive structure-activity data, our method provides 
new hints for drug modification hotspots which can be used to improve drug potency 
and reduce the lead optimization time. It can potentially become a valuable tool for 
medicinal chemists.

Keywords:  Lead optimization, Drug discovery, Molecular dynamics simulation, 
Machine learning, Variational autoencoder, Clustering

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhang et al. BMC Bioinformatics          (2021) 22:338  
https://doi.org/10.1186/s12859-021-04214-4

*Correspondence:   
zhangle@us.ibm.com; 
gdomeniconi@ibm.com 
†Ruhong Zhou and  Guojing 
Cong: Work done during the 
affiliation at IBM Thomas J. 
Watson Research Center
†Leili Zhang and Giacomo 
Domeniconi have 
contributed to this work
1 IBM Thomas J. Watson 
Research Center, 
1101 Kitchawan Rd, 
10598 Yorktown Heights, 
NY, USA
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04214-4&domain=pdf


Page 2 of 21Zhang et al. BMC Bioinformatics          (2021) 22:338 

new molecular entity (NME) drugs per billion dollars spent decreasing since 1950 [5]. 
While millions of people globally are suffering from incurable diseases such as Parkin-
son’s disease [6], Huntington’s disease [7], HIV/AIDS [8] and hepatitis B [9], technologi-
cal revolutions are required to find the cures and possibly avert Eroom’s law.

Computer-aided drug discovery (CADD) methods have been widely used in the phar-
maceutical industry, from quantitative structure-activity relationships (QSAR,  [10]), 
pharmacophore modeling  [11] to drug-target docking algorithms  [12]. Along with the 
conventional high-throughput screening (HTS [13]) method and rising fragment-based 
drug discovery (FBDD [14]) method, computational methods have helped to lower the 
initial cost of drug discovery (target-to-hit and hit-to-lead, specifically). The resulting 
lead products usually have a dissociation constant ( Kd ) in the micromolar range. The 
subsequent process would aim to optimize the drug lead by lowering the Kd value to 
the nanomolar range while ensuring the safety of the drug (and therefore termed “lead 
optimization”). However, the optimization processes highly rely on domain knowledge 
and luck because of the astronomical possibilities in the chemical space. Several com-
putational methods have been developed to assist lead optimization. For example, a 
semi-automated optimization method was suggested by Lewis, combining 3D-QSAR 
model, random structure permutation methods and human decisions [15]. Jain applied a 
combined QSAR-docking method to an existing library of CDK2 inhibitors and showed 
encouraging agreement with the experiments [16]. Tang et al. improved zinc endopepti-
dase inhibitor by intuitively suggesting drug modifications from a binding mode sug-
gested by the molecular dynamics (MD) simulation [17]. Jorgensen et al. adopted Monte 
Carlo (MC) simulations and free energy perturbation (FEP) simulations to virtually 
screen chemical groups on a drug lead [18]. However, despite these developments, lead 
optimization remains the most costly step before the clinical trials, constituting ∼ 74% 
of the pre-clinical costs [19]. A common issue of the previous computational methods 
lies in the generation of new structures, which mostly relies on time-consuming system-
atic exploration of substitutions at each location in the molecule. Therefore, an efficient 
way of identifying improvable molecular fragments is needed to assist lead optimization 
decisions. Notably, computer-aided FBDD algorithms [20] can suggest leads by combin-
ing the fragment hits (fragments with relatively strong affinity, typically with Kd < 10 
mM [21]). But the use is limited once the lead has been identified.

In this study, we propose a computational method, coined Clustered Atom Subtypes 
aidEd Lead Optimization (CASTELO), that identifies modifiable submolecular moieties 
in a lead molecule to narrow down the substitution sites to a few possibilities. The pro-
cess is depicted in Fig. 1. Briefly, we first obtain the target-lead binding complexes from 
either crystal structures or reasonable computational methods (such as homology mod-
eling, docking and MD simulations). Using this structure, ∼ 100 ns of MD simulations 
are then conducted. Subsequently, contact matrices, containing the relative distances 
between atoms in the lead and atoms in the target protein, are extracted from the sim-
ulations. The contact matrices are processed to contain temporal information (coined 
“dynamism tensor”) and atom subtype information (see details below). Compressed 
vectors are then created with convolutional variational autoencoder (CVAE) using the 
processed contact matrices. CVAE automatically reduces the high dimensionality of the 
contact matrix into a latent space where states that share similar structural and energetic 
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characteristics [22] to each other. In order to consider the dynamic behavior of the target 
and the lead, each time step is modeled with a dynamism tensor (a 2-dimensional con-
tact matrix) that contains target-lead interaction information from the MD simulation. 
This tensor, closely resembling as a 2-channel image, is then fed to the CVAE. The latent 
space representation generated by the CVAE allows the clustering of the time steps of 
the MD simulation, grouping time steps with similar behavior. Stable snapshots will be 
clustered in big clusters, while unstable ones will generate a number of small clusters 
[23–25].

The goal of our method is to discover specific submolecular moieties of the lead 
molecule that harm the target-lead interactions (thus termed as “malicious atoms”). 
One way to group the atoms in a molecule to “submolecular moieties” is to categorize 
them in subtypes based on their physical properties (see Method for details). To dif-
ferentiate the contributions of the subtypes, CVAE and clustering are not only applied 
on the whole dynamism tensors, but also to the tensors of each subtype. Clustering 
information is thus generated for each subtype and compared with conventional clus-
tering information (such as from root mean sqaure displacement (RMSD) clustering) 

Fig. 1  The general pipeline for CASTELO. The starting point is the generation of MD trajectories, with tools 
such as GROMACS. RMSD clustering can be done with VMD software. In another route, we process MD 
trajectories with python scripts to obtain contact matrices. Atom subtype information is used to aggregate 
the calculated contact matrices. Following that, dynamism tensors with temporal information is generated 
on top of the contact matrices using python scripts. CVAE model is used to encode the dynamism data, 
before clusters are calculated with tools such as HDBSCAN. Finally, we converge the two routes by comparing 
clusters from conventional RMSD clustering and CVAE clustering with proposed comparison metrics. 
The atom subtypes are ranked, as the final output of CASTELO. With domain knowledge, we suggest 
modifications for the lowest ranked atoms. Methods such as free energy perturbation calculations can be 
used to verify CASTELO’s suggestions
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of the whole molecule. Finally, using comparison metrics such as cosine similarity 
(CosSim) or average difference (see details below), we rank the subtypes from mali-
cious atoms to beneficial atoms. If the overall simulation renders a stable binding 
structure for the lead (which is often the case), the atom subtypes with lower values 
of comparison metrics are labeled as malicious atoms, i.e. modifiable atoms for lead 
optimization, because of their “deviation” from the stable binding state of the rest 
of the molecule. To verify if these atoms are indeed improvable, we modify the sug-
gested atoms and calculate binding free energy change using FEP calculations.

As an example, we applied this process to the sweetness taste receptor T1R2 with 
five well-known sweeteners: sucrose (the reference for relative sweetness, RS = 1 [26]), 
(1R,2R,3R,4R,5R)-4-Chloro-1-[(2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)
oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4-diol (4R-Cl-sucrose thereafter, RS = 
5 [27]), sucralose (RS = 600 [26]), dulcin (RS = 250 [26]), and an isovanillyl sweetener 
(isovanillyl thereafter, RS = 400  [28]). Note that because of the conceptual similar-
ity between drug potency and sweetener potency, drug discovery methods such as 
systematic substitutions have been often seen in improving sweeteners  [27, 28]. To 
model the sweeteners with MD simulations, the structure of sweetness taste receptor 
T1R2 is taken from Perez-Aguilar et  al.  [29], shown in Fig.  2a. The sweetener mol-
ecules are shown in Fig.  2c. The search of the binding modes for all five sweeten-
ers follows the the combined docking-MD method reported previously  [30]. With 
CASTELO, we are able to suggest modifications that improve molecular sweetness of 
the simulated molecules by identifying malicious atoms. Importantly, no structure-
activity data are needed for this process. The minimal requirement is a lead molecule 
and a target protein structure.

Fig. 2  The structure of sucrose bound T1R2 is shown in subplot a and b. The T1R2 structure is drawn in two 
colors (gray and blue) just to highlight its venus-flytrap-like structure. The detailed interactions between 
sucrose and its surrounding residues are depicted in b. The structures of the five sweeteners tested in this 
study are illustrated in c 
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Methods
Molecular docking

The protein structure of T1R2 was taken from Perez-Aguilar et al. [29]. The structures 
of sucrose, 4R-Cl-sucrose, sucralose, dulcin and isovanillyl were constructed with 
Jmol [31]. We referred to previous studies [32] and assumed that the “flytrap” domain 
(referring to the boxed region in Fig. 2a due to the resemblance between T1R2 and 
the venus flytrap) of T1R2 should be the binding domain for sweeteners. Initial bind-
ing structures were then constructed by selecting the “flytrap” domain in T1R2 using 
Autodock Vina [33].

Molecular dynamics simulation (dataset)

The initial binding structures constructed from Autodock Vina were solvated with 
water in a simulation box of 10 ×10× 10 nm3 . 0.1 M of NaCl was then used to ion-
ize and neutralize the simulation box. The resulting simulation systems contained 
roughly 105,000 atoms. CHARMM36 force field [34] was used for the T1R2 protein, 
water and ions. CGenFF force field was generated with the online server [35] for the 
five sweeteners. NAMD2.9 [36] was used to run all simulations on Blue Gene super-
computer. Particle mesh Ewald (PME) was used for electrostatic interaction calcula-
tions with a grid size of 1 Å. A switching function was used for van der Waals (VDW) 
interactions calculations, where switching distance was 10 Å, cutoff distance was 12 Å 
and VDW pairlist distance was 13.5 Å. Before production runs, 20,000 steps of energy 
minimization and 250 ps of equilibration using 0.5 fs time step were performed. For 
the production runs we used 2 fs as the time step. Depending on the stability of the 
structures, 50 to 100 ns of simulations were performed for each of the docked struc-
tures. Snapshots of the trajectories were saved every 20 ps for the data collection. 
Overall, 11 simulations were conducted (2 for sucrose, 1 for 4R-Cl-sucrose, 1 for 
sucralose, 2 for dulcin and 5 for isovanillyl). RMSD clusering method [37] was used 
to determine the stability of the binding modes in these simulations. 5 simulations 
(1 simulation per each sweetener) were chosen as “stable simulations” (more details 
below). All simulations were used to train machine learning models.

Free energy perturbation (FEP) calculations

Following previous studies  [25, 30], we used Zwanzig equation  [38] and thermody-
namic cycle shown in Additional file 1: Fig. S1 to calculate the relative binding free 
energy of the five sweeteners with “muted ethane” (refered to as ethane thereafter 
for simplicity) as the reference point. This ethane construction had the structure of 
ethane but was chargeless. We performed two sets of simulations with NAMD2.9 
for each sweeteners (the thermodynamic cycle is shown in Additional file  1: Figure 
S1): the “bind” simulations where T1R2 was present and sweeteners were mutated 
to ethane; and “free” simulations where T1R2 was absent and sweeteners were 
mutated to ethane. The resulting free energy change was denoted as �Fbind and 
�Ffree . The relative binding free energy of the sweeteners can then be calculated 
as: ��FSWT = �FSWT −�Fethane = �Ffree −�Fbind . Assuming that the relative 
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sweetness of the sweeteners was a direct measurement of the dissociation constant 
Kd , we could compute the relative sweetness as follows:

Grouping submolecular moieties using atoms subtypes

We categorized atoms using the VDW parameters of the atom types (such as CG331) 
from the CHARMM36 force field. Atom types that fell in the range of 10% of σ (parti-
cle size) and ǫ (dispersion energy) with each other were classified into the same “atom 
subtype”. Such classification resulted in 46 atom subtypes from the approximate 300 
atom types from the CHARMM36 protein, carbohydrate and cgenff force field. The 46 
atom subtypes were used to differentiate “beneficial atoms” (atom subtypes that likely 
strengthened sweetener-T1R2 interactions) from “malicious atoms” (atom subtypes that 
likely weakened sweetener-T1R2 interactions). Note that we chose these the atom sub-
types based on our experience with the current dataset. Other subtyping methods are 
also possible and will be explored in future studies.

AI‑enhanced clustering

Autoencoders are unsupervised neural networks widely used for dimensionality reduc-
tion and pattern recognition. Their architecture is composed of an encoder part gφ that 
compresses an input into a latent space and a decoder part fθ that reconstructs the orig-
inal input using the low-dimensional features. Variational autoencoders (VAEs) intro-
duce the optimization constraint to the latent space to be normally distributed, this 
coerces the network to distribute the information more evenly into the latent space [39]. 
In MD simulation analysis, a common input is a contact matrix from a single MD time 
step; hence, convolutional layers (CVAE) rather than regular feedforward are typically 
used. This leads to filter maps that can better recognize local patterns independently of 
the position.

We used CVAE to model each MD trajectory in a low-dimensional space. Similar to 
previous works [22, 40], we modelled the input as a contact matrix between atoms of the 
drug molecule and atoms of the protein in each structure of the simulation. Specifically, 
the contact matrix has size of N ×M , where N is the number of drug atoms and M is the 
number of protein atoms. Our goal was to find binding patterns during the simulation, 
hence the temporal information over time was important to locate stable and unstable 
states. We enriched each time step t input with a contacts’ dynamism representation: 
the difference of contacts between the current time t and a previous one t − δ , where δ 
is a parameter of our framework. To maintain the dynamism matrix binary AND indip-
endent to the direction of the movement, we used the absolute value of the difference. 
In this matrix, 0 cells represented a stable situation, while 1 cells showed a dynamic 
behavior (either a new contact or the disappearance of a previous contact). Each time 
step of the simulation was then modeled as a tensor of 2× N ×M (termed as the dyna-
mism tensor), with the two elements of the first dimension representing respectively the 
contact matrix in t and the temporal difference of the contacts in t and t − δ . We used 
δ = 500 (i.e. 10 ns) in our experimental setting.

(1)CRS(SWT ) = e−(��FSWT−��Fsucrose)/RT
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CVAE represents each contact tensor in a d-dimensional latent space, i.e. a vector of 
d elements. This intrinsically brings time steps with similar contact matrices to closer 
positions in the latent space, allowing clustering techniques to group sets of time 
steps with similar behavioral patterns. In other words, applying clustering over the 
latent space vectors allows the discrimination of big clusters with several time steps of 
similar behavior, i.e. stable situation, or small clusters, i.e. unstable. In CASTELO, we 
used HDBSCAN [41] as our clustering method. This algorithm overcame the limita-
tion of knowing in advance the number of clusters, that was the typical drawback of 
partitioning techniques such as K-means, and density threshold, a typically required 
by the standard DBSCAN.

The procedure described above would provide general binding information of a MD 
simulation, i.e. states of the whole drug molecule. CASTELO could provide a fine-
grained perspective of the drug molecule behavior: a specific binding view of each 
atom, or group of atoms. For this purpose, we grouped the drug atoms according to 
their physical properties (as described in previous Section) and we applied the CVAE 
and clustering pipeline described above by only focusing on the contacts of each 
individual atom subtype. In this case, each time step was sampled by a tensor of size 
2× 1×M (N became 1 for each individual atom subtype), which becomes a 2-chan-
nel image of size 2×M by squeezing the N-dimension. Figure 3 shows the pipeline 
with the input preparation of one targeted atom subtype. We repeated the CVAE and 
clustering procedure for each atom subtype of the drug. By differentiating the individ-
ual atom subtypes, this approach allows the selection of atoms that behave differently 
from the overall binding behavior (detailed in next section).

CASTELO pipeline was completely formed by unsupervised techniques, that were 
hard to tune and evaluate. In order to provide reliable suggestions, we trained slightly 
different CVAE architectures varying the hyper-parameters. In our experiments, we 
varied the latent dimensions d and the number of convolutional filters f. This choice 
was made because we noticed few cases of all non-clustered samples when latent 
space dimension d is too big. We also tested the results by varying the time δ of the 
contacts’ dynamism, but the contribution was not pronounced.

Fig. 3  CVAE pipeline. Left part of the Fig. shows the input preparation: the contact matrix of a time step t is 
grouped over the y-axis by drug atom subtypes (yellow cells are contacts). Each contact matrix of a time step 
t is paired to its temporal difference with a previous one t − δ to form a dynamism tensor (violet/yellow cells 
are new/disappearing contacts, green cells are stable). Each atom subtype is selected in turn and fed to the 
CVAE. The representation in the latent space is used to cluster the time steps by similar behaviors
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Experimental settings

As described above, we trained a number of CVAE models for each atom subtype. 
Each input sample, i.e. a time step t, is represented by a 2×M tensor selecting the 
contact and dynamism vectors related to the targeted subtype. In our experimental 
settings the CVAE encoder part was formed by four convolutional layers with f fil-
ters of size 1x7, we decided to keep the convolutions between contacts and dynamism 
separated, thus the 1-sized filter in the first dimension. We trained models varying 
the filter numbers f ∈ {32, 64} . Considering the highly narrowed shape of the input, 
we used a stride of 2 in the second dimension, i.e. on the protein atoms. We did not 
use pooling or padding. The decoder part was specular to the encoder. We used three 
different values for the latent space size: d ∈ {3, 5, 10} . For each atom subtype we 
thus trained 6 different CVAE architectures, varying f and d. We combined BCE and 
KLE as loss function [42], using RMSProp as optimizer and a learning rate of 0.005. 
We trained each CVAE model for a maximum of 600 epochs with an early stopping 
mechanism after 10 epochs without improvement in the loss. We set HDBSCAN with 
a minimum cluster size of 50, all the other parameters were set to the default values.

Submolecular moiety suggestion for lead optimization

The suggestion of malicious atoms to increase the binding affinity of the molecule 
was made by a comparison of the clustering result of each atom subtype with respect 
to the clusters obtained while considering the whole molecule. In this comparison, 
a clustering that considered the whole molecule was needed as reference. A CVAE 
model that had the contact matrices with all the drug atoms as input might be used 
as reference. Otherwise, in order to avoid possible similarity biases due to the same 
architecture used by the compared clusters, any other traditional clustering method-
ology could be used as reference. In our experiments, we decided to use the default 
RMSD clustering provided by VMD1.9.3. [37]

As described in the previous section, each atom subtype had a number of cluster-
ing results, one for each trained CVAE architecture. The final comparison was made 
with the averaged values of the comparison of each architecture with the whole mol-
ecule. This comparison also provided a standard deviation value that might be used 
as agreement score of the different CVAE models of the same atom subtype. I.e. aver-
aged comparison values with small standard deviation indicated a well grounded 
suggestion.

More specifically, two types of comparison metrics were explored in this study, with 
the first one being the cosine similarity (CosSim):

where t is a time frame that belongs to the trajectory (T), Ct,A is the cluster size of the 
cluster at time t for atom subtype A, calculated with the AI-enhanced clusering, Ct,S 
is the cluster size of the cluster at time t for the whole molecule (S), calculated with 

(2)CosSim =

∑

t∈T

Ct,A · Ct,S

√

∑

t∈T

C2
t,A ·

√

∑

t∈T

C2
t,S
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conventional methods such as RMSD clustering. Note that CosSim has a range of [0, 1], 
with lower values indicating deviation between the two arrays and higher values indicat-
ing similarity.

The second comparison metric examined was average difference (AvgDiff):

where count(T ) is the total number of time frames for the trajectory. The values of Avg-
Diff have a wider range than CosSim, depending on the cluster sizes. Generally speaking, 
a negative AvgDiff indicates that subtype A is less stable than the whole molecule (S), 
while a positive AvgDiff indicates the opposite.

The two comparison metrics were then normalized by the aver-
age values over all subtypes: nCosSim = CosSim− Avg(CosSim)subtypes ; 
nAvgDiff = AvgDiff − Avg(AvgDiff )subtypes . After assigning a normalized comparison 
metric value, each of the atom subtypes was given a final ranking, with the lowest ranked 
subtype as the most “malicious”, and therefore the top suggestion for lead optimization. 
As a follow-up in this study, we used domain knowledge to suggest some modifications 
and tested the modifications with FEP calculations (see results for more details).

Results and discussion
RMSD clustering identified stable binding mode and binding motifs

MD simulations were used to identify stable binding modes of the sweeteners in the 
binding pocket of T1R2 flytrap domain (shortened for T1R2 thereafter) of human sweet-
ness taste receptor [32]. We prepared the initial guesses of the binding structures using 
molecular docking software Autodock Vina  [33]. One to five highest scored docking 
result(s) were taken as the starting structures in molecular dynamics simulations. Upon 
the completion of 50–100 ns of simulations, binding mode clusters were classified using 
RMSD clustering method provided in VMD [37] using 2.0 Å as the cutoff. RMSD values 
were calculated on the sweetener molecules only, while T1R2 structures were aligned. 
The identified clusters (binding modes) were considered as “stable” if the cluster size 
persisted longer than 50 ns, following the practices in previous studies [25, 30]. The per-
sistent time of the clusters for all five sweeteners were plotted in Additional file 1: Fig-
ure S2 (only the trajectories with the largest clusters were shown), indicating that stable 
binding modes were found for each of the sweeteners.

In Fig.  2a, we illustrated the stable binding mode extracted from the T1R2-sucrose 
simulation. The sucrose molecule resided well within the binding pocket (the flytrap 
domain of T1R2). A closer look (Fig. 2b) revealed that the crucial binding residues are 
mostly hydrophilic, including the hydrogen bond receptors D142 D278, E302, among 
other residues such as Y164, S165, P185, Y215, S303, A305, V309, L310, T326, I327, 
R383, V384 and S387. If the two loop domains on the right of the boxed region in Fig. 2a 
were considered as the “lips” of the flytrap, we noticed that sucrose bound deeply in 
the “mouth”. One indication of the sweetener being closer to the “lips” would be lower 
residue numbers among the interacting residues (see Additional file 1: Figure S3A for a 
reference of residue numbering). These findings agreed well with the previous binding 

(3)Avg Diff =

∑

t∈T

(Ct,A − Ct,S)

count(T )
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structure reported by Zhang et al.  [32], where the binding pocket facilitated hydrogen 
bonds between the 8 hydroxyl groups in sucrose and hydrophilic residues in T1R2. Such 
hydroxyl group-facilitated sweetness was suggested more than half a century ago and 
has remained a heavily investigated topic [43–45].

The stable binding structures of the rest of the five sweeteners were illustrated in Addi-
tional file  1: Figure S3. We found that the crucial binding residues for 4R-Cl-sucrose 
included D142, E302, Y103, N143, Y164, S165, A166, T184, Y215, S303, W304, I306, 
V309, L310, I325, T326, I327, R383, and S387, highly similar to those of sucrose. This 
indicated that the binding mechanism mainly remained the same after changing one 
hydroxyl group of the sucrose to the chlorine atom in 4R-Cl-sucrose. In contrast, the 
crucial binding residues for sucralose (D142, E302, L41, I67, L71, S144, Y164, S165, 
A166, I167, T184, H190, S303, A305, V309, and V384) included more residues on the 
slightly more hydrophobic “lips” region of the flytrap. This shift was expected because 3 
relatively more hydrophilic hydroxyl groups of the sucrose were modified to 3 chlorine 
atoms in sucralose. Nevertheless, D142 and E302 remained crucial as hydrogen bond 
receptors for sucralose.

The stable binding structure of dulcin interacted with mostly hydrophilic residues L41, 
Y103, D142, Y164, S165, T184, P185, H190, E302, S303, A305, I306, T326, I327, R383, 
V384, S387, and L448, similar to those of sucrose and 4R-Cl-sucrose. The main hydro-
gen bonds appeared to be between the urea group of dulcin and D142. Finally, the sta-
ble binding structure of isovanillyl interacted with F39, S40, L41, V64, I67, L71, Y103, 
D142, Y164, S165, Y215, E302, S303, V309, V384, V385, S387, V388, indicating a binding 
domain that was more hydrophobic and similar to sucralose. Only occasional (and weak) 
hydrogen bonds were found between isovanillyl and E302, along with backbone carbonyl 
groups of several residues.

Binding free energy of the sweeteners agreed well with experimental relative sweetness

Starting from the stable binding structures of the five sweeteners in this study, we per-
formed FEP calculations for each by constructing “dual topology” between muted ethane 
and the corresponding sweetener (see Methods for more details). The computed binding 
free energy ��F  was therefore the relative binding free energy between the sweetener 
and muted ethane in T1R2 binding pocket. We assumed that muted ethane had a flat 
binding energy surface in the T1R2 binding site due to its chargeless nature. Then the 
calculated binding free energy should be relatively accurate among the five sweeten-
ers. Note that similar approaches have been verified in a number of previous publica-
tions [25, 30, 46–48].

We noticed that the general trend of ��F  values and experimental values of RS 
agreed well with each other (Table 1). The binding mechanisms of the five sweeteners 
were, however, vastly different as suggested by the interacting residues listed above. 
To bridge between our speculations on the structural information and quantitation, 
we reported the electrostatic and VDW contributions in ��F  by performing energy 
decomposition for all five FEP calculations (see Additional file 1: Table S1). We found 
that sucrose, 4R-Cl-sucrose, and dulcin mostly utilized polar interactions. In contrast, 
isovanillyl mostly utilized non-polar interactions, agreeing well with the structural spec-
ulations. Surprisingly, despite being in a similar binding domain to isovanillyl, sucralose 
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still utilized mostly polar interactions. Comparing the binding modes between sucrose, 
4R-Cl-sucrose and sucralose, it was likely that the replacement of hydroxyl groups to 
chlorine lowered the penalty of the remaining hydrophilic hydroxyl groups in hydropho-
bic environment, rather than directly boosting the hydrophobic interactions.

We further computed the relative sweetness (CRS), listed in Table  1. The computed 
results agreed generally well with the experimental RS values. Such agreement show-
cased that FEP method could be used to calculate the RS of artificial sweeteners. In later 
sections, we used FEP calculations to validate that “lead optimization” of the sweetener 
(meaning to increase the RS value) was possible using CASTELO.

AI‑enhanced clustering with all atoms agreed well with the RMSD clustering

We firstly tested the reliability of our AI-enhanced clustering with a direct comparison 
to a reference clustering using RMSD in VMD1.9.3. In order to get a real comparison, 
we trained the CVAE models using all the sweetener atoms, i.e. with the same contact 
matrices used by RMSD as input. To have a 2-dimensional tensor as input of the CVAE, 
we concatenated the contacts and dynamism tensors in the first dimension, form-
ing a 2N ×M input. We noticed that the obtained clustering results agreed well with 
those obtained by RMSD. Figure 4 shows the t-SNE [49] visualization of the latent rep-
resentations by the CVAE models of each sweetener, each data point is a time step of 
the simulation. In the top row we used a color map based on the simulation time. The 
middle and bottom rows used colors to distinguish clusters found respectively by our 
AI-enhanced model and by the RMSD. Firstly, we noted that the HDBSCAN behaved 
well in clustering time steps projected into the latent space by the CVAE model, this was 
noticeable by the agreement of colors mapping in the middle row and actual clusters of 
points. It was also noticeable that, generally, clusters are formed by time frames close 
in the simulation. The average CosSim between traditional RMSD clustering results and 
AI-enhanced clustering results was 0.89 ± 0.08 for 5 stable simulations (see Additional 
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Fig. 4  T-SNE projection of the CVAE latent representations. The top row uses a color map based on the 
simulation time. The middle and bottom rows use colors to distinguish clustering results respectively of our 
AI-enhanced model and of the RMSD. Here we depict the encoded representations generated by the CVAE 
model with f = 32 filters and d = 5 latent dimensions. The calculated cosine similarity values are 0.975, 0.871, 
0.785, 0.960 and 0.882 between AI-enhanced cluster sizes and RMSD cluster sizes for five sweeteners from left 
to right, respectively
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file 1: Table S4), and 0.87 ± 0.08 for all 11 simulations. This proved the reliability of our 
AI-enhance clustering methodology, allowing us to proceed in a fine-grained analysis 
of the drug molecule behavior. Note that it was not our intention to exactly match tra-
ditional RMSD clustering and AI-enhanced clustering. The RMSD clustering method 
treated the entire molecule as a single point at its center of mass, therefore no rotational 
or vibrational motions were captured, in contrast to the contact matrices used by AI-
enhanced clustering.

In contact matrices, atoms adjacent in columns (from proteins in our case) are often 
physically close to each other. We tested the reliability of the convolution models by 
evaluating the clustering results with randomly permuted columns. In Additional file 1: 
Table S4, we showed that fairly similar clustering results were obtained. This might mean 
that the proximity of columns was redundant information, because contact matrices 
should have provided the closeness of atoms already.

AI‑enhanced clustering varies with individual atom subtypes, hinting malicious atom 

subtypes

We further analyzed the behavior of each atom subtype and compared it to the RMSD 
reference. With the first bar as reference from RMSD, Fig. 5 offered a visual compari-
son of the differences in clustering. In particular, each bar was created with a color map 
that showed the cluster size of each time step t of the simulation (with bigger clusters 
in dark red and smaller in dark blue). The second bar showed the clusters obtained by 
CVAE and HDBSCAN when using all the sweetener atoms. The remaining bars show 
the clustering results for each individual subtype. For all the AI-enhanced bars, the aver-
aged cluster size among the clustering results given by the different model trained was 
showed. All trajectories have a stable binding mode according to RMSD clustering, that 
showed big red clusters along almost all the simulations. Only sucralose showed a less 
stable behavior, especially in the final part of the trajectory. As a confirmation of the 

Fig. 5  Clustering results for all atom subtypes in the five sweeteners. The first bar shows the RMSD clustering 
with VMD1.9.3. The second bar is calculated with CVAE and HDBSCAN when all atoms are considered. The 
following bars represent the clustering results for each atom subtype of the corresponding sweetener. Each 
plot depicts the cluster size at time t against simulation time t. For CVAE and HDSCAN results, each cluster 
size t is the average of the sizes given by the 6 trained models. Bigger clusters are colored with dark red while 
small clusters are colored with dark blue
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agreement between RMSD and AI-enhanced clustering, the first two bars of each sweet-
ener agreed well, with an exception of isovanillyl (as was also shown in Fig. 4). The dif-
ferent binding behaviors of the individual subtypes were observable by comparing the 
subtypes cluster sizes with the RMSD ones. Reddish bars identified stable subtypes, for 
instance subtype 11 and 27 showed a stable result for sucrose. Inversely, bars with a dif-
ferent coloring with respect to the reference, hinted less stable subtypes that could be 
marked as “malicious atoms”, because they might weaken the protein-sweetener interac-
tions. In order to quantitatively identify the malicious atoms, we adopted comparison 
metrics, as reported below.

Comparison metrics such as nCosSim pointed out the malicious atoms

If the sweeteners remained stable in T1R2, the atom subtypes that deviated from the 
overall stability should be the “malicious atoms”. CASTELO was designed to process 
MD simulations with stable binding modes to find these malicious atoms that weak-
ened T1R2-sweetener binding affinity. We used Eqs.  2 and  3 to compare the stability 
between the whole molecule (calculated with RMSD clustering) and each of the atom 
subtypes (calculated with AI-enhanced clustering). The resulting CosSim and AvgDiff 
metrics were then normalized by subtracting the average respective metric values (cal-
culated with all atom subtypes). The normalized metric values (nCosSim and nAvgDiff) 
were plotted in Fig. 6a from all simulations. In this way, negative nCosSim and nAvgDiff 
values indicated that the subgroups were less stable than the overall structure. Positive 
nCosSim and nAvgDiff values indicated that the subgroups were more stable than the 
overall structure. It was not surprising that these two metrics were positively correlated 
(R2 = 0.31).

It is important to mention that the deviation between atom subtypes and the whole 
molecule should not be comprehended as a time-averaged measurement such as root 
mean square fluctuation (RMSF). If we consider an atom subtype that only fluctuates 
drastically when the whole molecule is unstable, the RMSF of this atom subtype might 
be high but it does not deviate from the overall behavior of the molecule. Therefore, 
each of the timeframes must be compared separately between the whole molecule and 
its atom subtypes. With this in mind, Eqs. 2 and 3 are used as the comparison metrics. 
Another advantage of AI-enhanced clusters is that they contain rotational and vibra-
tional information, compared to the conventional RMSF calculations that mainly con-
sider translational fluctuations. The additional rotational information from AI-enhanced 
clusters might be particularly useful to monitor atom groups such as –CH3 and –CH2

-that would have been easily ignored otherwise. To clearly show that our metrics differ 
from conventional RMSF calculations, we compared the nCosSim and nAvgDiff to RMSF 
values from all simulations in Fig.  6b, c. Both plots yielded R 2 = 0.0, indicating that 
nCosSim and nAvgDiff contained independent information from RMSF. To further vali-
date the use of these comparison metrics, we calculated “dv scores” [50] that captured 
the consistency between two clustering results. We plotted the correlation between dv 
scores and nCosSim in Additional file 1: Figure S4. Note that higher dv scores indicated 
worse consistency between two clustering methods. Expectedly, there was a negative 
correlation between dv scores and nCosSim (R2 = 0.42).
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To find the malicious atoms, we focused on the trajectories that comprised larg-
est clusters, such as the ones shown in Fig.  5. This is important because only when 
the overall simulation is stable, low comparison metric values would mean that the 

Fig. 6  Comparison metrics are calculated by comparing the clusters with conventional RMSD clustering 
and AI-enhanced clusering with Eqs. 2 and 3. In a we show that the two comparison metrics nCosSim and 
nAvgDiff (normalized metric nmetric is calculated as metric − Avg(metric)subtypes ) are positively correlated. In 
b, c we calculated the RMSF of the atom subtypes for all T1R2-sweetener trajectories. Clearly, nCosSim and 
nAvgDiff are not correlated with RMSF
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corresponding atoms contributed little to the overall binding. In principle, CASTELO 
could be used on unstable simulations to pick out beneficial atoms by selecting atoms 
with high comparison metric values. However, such application is beyond the scope of 
current study. nCosSim and nAvgDiff metrics were plotted in Fig. 7 for these trajectories. 
A ranking system was used to pick out the atom subtype most prone to undermine the 
overall T1R2-sweetener binding stability. For example, in Fig. 7a, subtype 12 of dulcin 
was clearly the malicious atom subtype, because it ranked the lowest in both nCosSim 
and nAvgDiff metrics. In Fig. 7b, subtype 7 and 8 were mostly likely the malicious atom 
subtypes, because of their low values in both nCosSim and nAvgDiff. The selected atom 
subtypes were chosen as the candidate for lead optimization (see results in the next 
section).

In Fig.  7c, d, we compared the comparison metrics of sucrose, 4R-Cl-sucrose and 
sucralose, which could be considered as a lead optimization chain due to their structural 
similarity. We noticed that the added chlorine atoms (subtype 4) in 4R-Cl-sucrose and 
sucralose were increasingly beneficial to the overall structural stability (both nCosSim 
and nAvgDiff metrics were increasingly positive). The suggested malicious atom sub-
types were carbohydrate carbons that connect with hydroxyl groups (–CHOH–, subtype 
10). Upon modifying several of the hydroxyl groups to chlorine atoms, both nCosSim 
and nAvgDiff metrics of subtype 10 were increasingly more positive, indicating that the 
replacement of chlorine atoms affected the stability of its connecting carbons. As a com-
parison, we plotted the relative binding free energy of sucrose, 4R-Cl-sucrose and sucra-
lose in Fig. 7e, which clearly correlated with nCosSim and nAvgDiff metrics for subtype 4 
and subtype 10. Combining this evidence and Table 1, the nCosSim and nAvgDiff metrics 
for subtype 4 and subtype 10 correlate well with experimental RS values. Finally, we pro-
vided a possibility to further improve sucralose by suggesting that the malicious atoms 

Fig. 7  We rank the atom subtypes from the five sweeteners with the calculated comparison metrics: nCosSim 
and nAvgDiff. Negative values mean that the corresponding atoms are “malicious”. Positive values mean that 
the corresponding atoms are “beneficial”. The results for dulcin and isovanillyl are plotted separately in a, b. 
We group sucrose, 4R-Cl-sucrose and sucralose due to their structural similarity. The normalized values of 
comparison metrics of the 8 atom subtypes shared among these three sweeteners are plotted in c and d, 
respectively. The relative binding free energy (e, with ethane as the reference point) is plotted in juxtaposition 
to the comparison metrics
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Fig. 8  Attempted lead optimization for dulcin (a) and isovanillyl (b). The molecules are illustrated with two 
representations: solid stick and ball model for atom identification (cyan for carbon, white for hydrogen, blue 
for nitrogen, red for oxygen and green for chlorine); bubbles for nCosSim values (blue for positive/beneficial, 
green for neutral and red for negative/malicious). Two examples are illustrated, one for optimization and 
one as control, for both dulcin and isovanillyl. The resulting binding free energy changes are listed next to 
the examples, with negative values meaning strengthened binding affinity and positive values meaning 
weakened binding affinity. A complete list of the lead optimization can be found in Additional file 1: Table S2 
and Table S3

Table 1  Free energy

a Relative sweetness
b Binding free energy relative to ethane (kcal/mol)
c Computed relative sweetness is calculated with Eq. 1 in reference to sucrose

Sweetener log(RS)a ��F
b log(CRS)c

Sucrose 0 [26] − 6.9 ± 0.7 0 ± 0

4R-Cl-sucrose 0.70 [27] − 10.2 ± 0.8 2.33 ± 0.76

Sucralose 2.78 [26] − 11.7 ± 0.8 3.38 ± 0.76

Dulcin 2.40 [26] − 10.6 ± 0.4 2.61 ± 0.59

Isovanillyl 2.60 [28] − 11.1 ± 0.8 2.96 ± 0.74
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in sucralose were probably from subtype 27, which were the aliphatic hydrogens in the 
–CH2 OH group.

FEP calculations verified that malicious atom types could be modified to strengthen 

T1R2‑sweetener binding affinity, providing an opportunity for lead optimization

Based on the ranked comparison metric values in Fig. 7a, b, we visualized the malicious 
atoms of dulcin and isovanillyl in Fig. 8a, b, as a way to guide chemists in lead optimiza-
tion. For example, subtype 12 of dulcin could be easily changed to a carbonyl (–CO–) or 
a chloronated carbon (–CHCl–). Subtype 8 of isovanillyl could be easily changed to an 
aliphatic carbon (–CH2–). In addition to these malicious atoms, we also selected some 
neutral atoms as control groups (like subtype 40 of dulcin and subtype 10 of isovanillyl). 
To verify if the identified atoms were indeed “malicious”, FEP calculations were adopted 
to compare the binding free energy of the modified lead molecules to the lead mole-
cules (exemplified in Fig. 8; a full list could be found in Additional file 1: Table S2 and 
Table S3). For example, a dual topology was made between dulcin and modified dulcin 
where group X (also subtype 12, see Additional file 1: Table S2) was changed from CH2 
to CHCl. Two sets of simulations were performed: one in T1R2 and one solvated with 
0.1 M NaCl solution. The calculated binding free energy ( ��F  ) was thus a direct com-
parison between dulcin and the modified dulcin.

We tried 4 combinations for dulcin optimization varying neutral moiety R and mali-
cious moiety X, shown in Additional file 1: Table S2. Modifications on moiety R always 
weakened T1R2-dulcin binding affinity. However, modifications on moiety X resulted 
in one favorable modifications. -2.4 ± 1.0 kcal/mol was obtained when moiety X was 
changed from –CH2 – to –CHCl–. Interestingly, when moiety X was changed to –CO–, 
the binding affinity was weakened, probably because its surroundings was slightly hydro-
phobic (I327, seen in Fig. S3E).

Similarly, we attempted 2 combinations for isovanillyl optimization, varying neutral 
moiety R and malicious moiety X, shown in Additional file 1: Table S3. Modifications 
on moiety R neither strengthened nor weakened T1R2-isovanillyl binding affinity ( ��F  
was not significant compared to its standard deviation). In contrast, modifications on 
moiety X significantly strengthened T1R2-isovanilly binding affinity by -3.8 ± 1.0 kcal/
mol. It was counter-intuitive that changing moiety X to a hydrophobic group would 
significantly benefit the binding affinity, given that its surroundings included D142 and 
Y164 (Additional file 1: Figure S3F). On the other hand, the surroundings of moiety R 
included V388, F39 and L71, which would likely favor a hydrophobic modification. Fur-
ther analysis pointed out that by modifying moiety X, its nearby phenol-hydroxyl group 
was freed from forming intramolecular hydrogen bond and established a hydrogen 
bond with D142. This transition lowered the electrostatic penalty of charged D142 resi-
due around the hydrophobic isovanillyl (evidenced in Additional file 1: Table S1). Our 
findings blindly agreed with a previous experimental isovanillyl sweetener optimization 
which suggested the optimal moiety X to be –CH2–,  [28] reinforcing that CASTELO 
could potentially assist in lead optimization.

Finally, it might be of interest to test the influence of δ (time difference in calculat-
ing the dynamism tensor) on the prediction results. In Additional file 1: Table S5, with 
dulcin simulation as an example, we showed that CosSim between traditional RMSD 
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clustering and AI-enhanced clustering using all atoms remained similar from δ = 0 to 
1000. In Additional file  1: Table  S6, we calculated the correlation coefficient between 
each of the columns in Additional file 1: Table S5 (excluding the first row). We found that 
the overall correlations seemed to point out that δ did not affect the predictions of indi-
vidual atom subtypes much as well. For example, Type12 consistently appeared to have 
low nCosSim values (therefore consistently predicted as a malicious subtype). Differ-
ences still occurred, for example in Type23 and Type24. Note that dynamism representa-
tion provided additional temporal information, regarding the motions of atoms between 
t and t − δ . If the binding state of a sweetener was stable, the temporal dimension of 
dynamism matrix of all atoms would give an average of zero motion in space. This might 
explain why δ had little impact on the CosSim between two clustering methods using all 
atoms. However, dynamism representation might be necessary for atom subtype predic-
tions, because individual atom motions might not be net zero. In the current study, we 
fixed δ as 500 as a working example. More studies are needed to fully understand the 
influence of δ on the subtype predictions.

Conclusions
In this work, we introduced CASTELO, a ML-MD pipeline that processed MD simu-
lation data with drug targets and their known leads and suggested modifiable submo-
lecular moieties for lead optimization. We generated dynamism tensors by including 
temporal information in the conventional contact matrices. CVAE method was adopted 
to compress the dynamism tensors into latent space before the data clustering with 
HDBSCAN. The lead molecule was grouped into atom subtypes to pin down submo-
lecular contributions to the target-lead binding affinity. The resulting cluster information 
was compared to a traditional RMSD-based clustering method for the whole molecule 
with the proposed comparison metrics CosSim and AvgDiff . Finally, we ranked the sub-
molecular moieties to find clues for lead optimization. With T1R2-sweetener as a model 
system, we proved that our pipeline nicely explained the improvement of the sweetness 
from sucrose to 4R-Cl-sucrose and sucralose. Most notably, we suggested two brand 
new molecules based on the CASTELO pipeline using T1R2-dulcin and T1R2-isovanil-
lyl simulations. With free energy calculations, we verified that the newly improved dul-
cin was ∼ 57 times sweeter than dulcin, probably ∼ 14,000 times sweeter than sucrose. 
The newly improved isovanillyl was computed to be ∼ 600 times sweeter than isova-
nillyl, probably ∼ 240,000 times sweeter than sucrose. Unlike most entirely knowledge-
based models, our physics-based model should be transferable to other systems. We 
plan to use more target-lead systems to test CASTELO’s scalability and interpretability. 
For example, a similar approach could be adapted for major histocompatibility complex 
(MHC) and epitope complexes (paper submitted). The identification of any moiety as 
malicious may indicate destabilizing motions of its surrounding atoms rather than moi-
ety itself. Generative models could be developed on top of the malicious atom identi-
fications in this study. Although CASTELO’s dependency on experimental data is low, 
we foresee that our tool could be further enhanced with more use cases, especially with 
more experimental data to reference to. We plan to further investigate the influence of 
the simulation’s dynamism, by studying the choice of the δ parameter and also by intro-
ducing recurrent neural networks in the AI-enhanced clustering.
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Additional file 1: Table S1 provides the binding free energy decomposition on the T1R2-sweetener systems. 
Table S2 is provided for the in silico lead optimization of dulcin. Table S3 is provided for the in silico lead optimiza‑
tion of isovanillyl. Table S4 lists the comparison metric results when all columns of contact matrices are randomly 
permuted. Table S5 lists the prediction results of dulcin with δ as a variable (between 0 to 1000). Table S6 shows the 
correlation between the predictions at different δ values. Figure S1 is attached to show the thermodynamic cycle 
used for FEP calculations. Figure S2 plots the stable clusters identified by RMSD clustering. Figure S3 illustrates 
the stable binding structures for the five sweeteners in the T1R2 flytrap domain. Figure S4 depicts the correlation 
between CosSim and dv scores.
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