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Abstract 

Background:  Accurate prognosis and identification of cancer subtypes at molecu-
lar level are important steps towards effective and personalised treatments of breast 
cancer. To this end, many computational methods have been developed to use gene 
(mRNA) expression data for breast cancer subtyping and prognosis. Meanwhile, micro-
RNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been extensively studied 
in the last 2 decades and their associations with breast cancer subtypes and prognosis 
have been evidenced. However, it is not clear whether using miRNA and/or lncRNA 
expression data helps improve the performance of gene expression based subtyping 
and prognosis methods, and this raises challenges as to how and when to use these 
data and methods in practice.

Results:  In this paper, we conduct a comparative study of 35 methods, including 
12 breast cancer subtyping methods and 23 breast cancer prognosis methods, on a 
collection of 19 independent breast cancer datasets. We aim to uncover the roles of 
miRNAs and lncRNAs in breast cancer subtyping and prognosis from the systematic 
comparison. In addition, we created an R package, CancerSubtypesPrognosis, including 
all the 35 methods to facilitate the reproducibility of the methods and streamline the 
evaluation.

Conclusions:  The experimental results show that integrating miRNA expression 
data helps improve the performance of the mRNA-based cancer subtyping methods. 
However, miRNA signatures are not as good as mRNA signatures for breast cancer 
prognosis. In general, lncRNA expression data does not help improve the mRNA-based 
methods in both cancer subtyping and cancer prognosis. These results suggest that 
the prognostic roles of miRNA/lncRNA signatures in the improvement of breast cancer 
prognosis needs to be further verified.
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Background
Breast cancer accounted for 24.2% of all new cancer cases in women in 185 countries in 
2018, being the leading cause of cancer death for women at the same time [1]. In order to 
improve the survival outcome of patients with breast cancer, it is urgent to develop and 
use accurate diagnostic and prognostic tools to assist clinicians and patients in therapeu-
tic decision-making.

Breast cancer is an extremely complex disease with different subtypes and heterogene-
ous treatment responses. Traditional breast cancer diagnosis and prognosis are based on 
clinicopathological variables, such as histologic tumour grade, lymph node status, and 
tumour size [2–4]. However, these methods alone are not sufficient to guide the choice 
of effective treatment because breast cancer is a disease that is not only pathologically 
and clinically diverse, but also biologically different [5]. With the advent of new sequenc-
ing technologies, researchers have extensively used genomic data to identify molecular 
subtypes of breast cancer [6–15] and gene signatures for prognosis [15–23]. These meth-
ods have been successful in stratifying patients into several subtypes, each of them with 
distinct biological and clinical characteristics. The molecular-based subtypes and the 
gene signatures for prognosis are being translated into clinical practice in recent years 
[15–17, 23].

There have been some works on reviewing breast cancer subtyping or prognosis 
methods and some software packages have been developed for breast cancer subtyp-
ing or prognosis. Russnes et al. [24] reviewed breast cancer classification and stratifica-
tion methods and compared two specific methods, PAM50 [15] and IntClust [9], which 
result in so-called intrinsic subtypes and integrative clusters, respectively. The compari-
son results showed that the integrative clusters captured the intrinsic subtypes and some 
novel breast cancer subtypes that had distinct copy number variation patterns. The Can-
cerSubtypes package [25] provided a framework for identifying cancer subtypes using 
multi-omic data from the TCGA project. The genefu package [26] provided computa-
tional methods for breast cancer subtyping and prognosis that were based on gene sig-
natures. Yu et al. [27] summarized current multi-gene signatures into three categories: 
(1) biological pathway-based prognosis signatures, (2) the first generation prognosis sig-
natures and (3) the second generation prognosis signatures. Similarly, several works [28–
34] reviewed the relative literature, without conducting comparative studies. However, 
there are two major limitations to these reviews. First, previous reviews covered either 
breast cancer subtyping methods or prognosis methods, but not both (with the excep-
tion of genefu which covers few gene-based methods). Although breast cancer subtyping 
and prognosis are in different sub-areas, both of them could lead to advance personal-
ized treatment of breast cancer patients and to improve their survival outcomes. Moreo-
ver, breast cancer subtyping can help with prognosis by providing signatures or other 
prognostic information. An example can be found in [27], where the author confirmed 
subtype-specific signatures outperformed other gene signatures in the risk stratification 
of the corresponding cohorts. Second, there is no work that systematically analyzed the 
breast cancer subtyping and prognosis based on multiple levels of transcriptomic data, 
specifically, mRNA, miRNA and lncRNA expression data.

However, research into miRNAs/lncRNAs and their roles in cancers have been exten-
sive in the last couple of decades and substantial works have shown the significant roles 
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of miRNAs/lncRNAs in cancer development and progression [35–37]. Recent works 
have also utilised miRNA expression data for breast cancer subtyping and prognosis [11, 
38]. An increasing number of breast cancer prognosis methods have been developed to 
select prognostic signatures from human lncRNAs and trained survival models based on 
the selected signatures [39–41]. However, it is not clear whether miRNA/lncRNA data is 
more effective than other omic data for subtyping and prognosis and whether it is useful 
to incorporate miRNA/lncRNA data with other omic data.

To address this question, in this paper we evaluate 35 breast cancer subtyping and 
prognosis methods through empirical study. Nineteen breast cancer datasets were col-
lected, five of them have matched miRNA-mRNA expression data, seven of them have 
matched lncRNA-mRNA expression data and one of the datasets contains matched 
mRNA-miRNA-lncRNA expression data. For each of the multi-omic cancer subtyp-
ing methods, we evaluate its performance in different scenarios, when using single 
omic data and combinations of multiple omics data. By doing this, we can compare and 
observe the cases with and without miRNAs/lncRNAs on the same cohorts of breast 
cancer patients. The 23 breast cancer prognosis methods vary from gene based meth-
ods, miRNA based methods, and lncRNA based methods. We evaluate the breast cancer 
prognosis methods based on their applicable data in the 19 datasets.

All these comparisons and analyses allow uncovering the roles of miRNAs/lncRNAs 
in characterising breast cancer subtyping and prognosis. Besides, through such a com-
parative study, we present a set of practical recommendations on the use of the existing 
methods and the development of new computational methods for breast cancer subtyp-
ing and prognosis. We make all the processed data and codes (as an R package) available 
to facilitate the study and the development of breast cancer subtyping and prognosis 
methods.

Materials and methods
Datasets

For a systematic analysis of breast cancer subtyping and prognosis on mRNA, miRNA, 
and lncRNA data, we use 19 genome-wide expression datasets containing 5134 breast 
cancer patients from different repositories (details in Table 1). The mRNA and miRNA 
expression data from TCGA breast cancer datasets (TCGA753 and TCGA500) were 
downloaded from FireBrowse1 (data version 2016_01_28). The METABRIC breast can-
cer dataset was a combination of the mRNA expression data (EGAS00000000083) and 
the miRNA expression data (EGAS00000000122) from the European Genome-phenome 
Archive.2 The MAINZ, TRANSBIG, UPP, UNT, and NKI datasets were from publicly 
experimental data packages in Bioconductor.3 The remaining datasets were all down-
loaded from the Gene Expression Omnibus (GEO) database.4 The UK dataset was from 
GSE22216 for miRNA expression data and GSE22219 for gene expression data. The 
HEL dataset contains miRNA expression profiles from GSE43040 and gene expression 

1  http://​fireb​rowse.​org/.
2  https://​www.​ebi.​ac.​uk/​ega/.
3  https://​bioco​nduct​or.​org/.
4  https://​www.​ncbi.​nlm.​nih.​gov/​geo/.

http://firebrowse.org/
https://www.ebi.ac.uk/ega/
https://bioconductor.org/
https://www.ncbi.nlm.nih.gov/geo/
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profiles from GSE24450. All the datasets contain clinical outcomes, including relapse-
free survival time (UPP, GSE6532, TCGA753, TCGA500, METABRIC, UK, GSE12276, 
GSE19615, GSE20711, GSE21653, GSE42568, and GSE9195), distant metastasis free sur-
vival time (TRANSBIG, UNT, MAINZ, NKI, and GSE20685), breast cancer death or dis-
tant metastasis free survival time (HEL) and disease-free survival time (GSE19783).

The lncRNA expression profiles of the TCGA500 cohort were acquired from The Atlas 
of Noncoding RNAs in Cancer (TANRIC) [57]. For the sake of comparative evaluation 
of breast cancer subtyping and prognostic methods using lncRNA, we applied the pipe-
line as previously described by Zhou et  al. [39] to re-annotate GEO gene expression 
datasets generated by Affymetrix HG-U133 Plus 2.0 arrays. The raw microarray data 
of GSE12276, GSE19615, GSE20685, GSE20711, GSE21653, GSE42568, and GSE9195 
were normalised using the Robust Multichip Average (RMA) algorithm [58] in the affy 
R package [59]. The probe set IDs of Affymetrix HG-U133 Plus 2.0 array were mapped 
to genomic locations and Ensemble IDs (Release 82, November 11, 2015) [60] based on 
the latest version of the NetAffx Annotation File (Release 36, Match 15, 2016). Specific 
probe set IDs and Ensemble IDs of lncRNAs were obtained by matching the genomic 

Table 1  A summary of the datasets

#Features number of features in the cohort, #Patients number of patients in the cohort

Datasets #Features #Patients Data types Platforms Source

TCGA753 18104 753 miRNA, mRNA Illumina Genome Analyzer miRNA 
Sequencing, Illumina HiSeq 2000 RNA 
Sequencing V2

[42]

METABRIC 25191 1283 miRNA, mRNA Agilent ncRNA 60k, Illumina HT 12 [9]

UK 22172 207 miRNA, mRNA Illumina Human v1 MicroRNA expres-
sion beadchip, Illumina humanRef-8 v1 
expression beadchip

[43]

HEL 25946 115 miRNA, mRNA Illumina Human v2 MicroRNA expression 
beadchip, Illumina HumanHT-12 V3 
expression beadchip

[44, 45]

GSE19783 20085 99 miRNA, mRNA Agilent-019118 Human miRNA Microar-
ray 2 G4470B, Agilent-014850 Whole 
Human Genome Microarray 4x44K 
G4112F

[46]

TCGA500 31729 500 lncRNA, miRNA, mRNA Illumina Genome Analyzer miRNA 
Sequencing, Illumina HiSeq 2000 RNA 
Sequencing V2

[42]

GSE12276 54675 204 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [47]

GSE19615 54675 115 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [48]

GSE20685 54675 88 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [49]

GSE20711 54675 252 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [50]

GSE21653 54675 77 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [51]

GSE42568 54675 327 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [52]

GSE9195 54675 77 lncRNA, mRNA Affymetrix Human Genome U133 Plus 2 [22]

TRANSBIG 22283 198 mRNA Affymetrix Human Genome U133A [53]

UNT 44928 137 mRNA Affymetrix Human Genome U133A/B [18]

UPP 44928 251 mRNA Affymetrix Human Genome U133A/B [54]

MAINZ 22283 200 mRNA Affymetrix Human Genome U133A [55]

NKI 24481 337 mRNA Agilent Human oligo microarrays [16, 56]

GSE6532 44928 414 mRNA Affymetrix Human Genome U133A/B/
Plus 2

[22]
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locations of probes to the chromosomal locations of lncRNAs in the GENCODE data-
base (Release 23, March 2015).5 Using this pipeline, we annotated 1,938 lncRNAs from 
the above mentioned datasets.

Breast cancer subtyping and prognosis methods

PAM50  [15] and IntClust [9] are two well-known gene-based breast cancer subtyping 
methods. PAM50 pre-defines five intrinsic cancer subtypes and eventually maps patients 
to one of the subtypes. IntClust stratifies patients into ten integrative breast cancer sub-
types that show substantial variation in their molecular and clinical characteristics. At 
present, there are numerous computational methods used to identify cancer subtypes 
based on omics data [25, 61]. These methods can be used for both single-omic data and 
multi-omic data. Integrating multi-omic data has the potential to characterize human 
cancer at system level and further be used in treatment decisions. These methods can be 
classified into three categories: concatenation based methods, similarity based methods, 
and model based methods. The concatenation based methods concatenate multi-omic 
data to a single data matrix, and then utilise existing clustering methods on the inte-
grative data. This concatenation based integration increases the dimensionality of the 
data and the time complexity of methods. Similarity based methods transform original 
multi-omic matrices into a similarity matrix. This matrix can be used by similarity-based 
clustering algorithms, including spectral clustering  [62], PAM  [63] and Dynamic Tree 
Cut [64]. Model based methods like iCluster family (iCluster/Plus/Bayes) [8, 65, 66] use 
joint statistical modelling to determine the distribution of the observed data and make 
effort to reduce the dimension of the data. From each category, we pick the most promi-
nent methods on the basis of citations and publication impact (CC [6], CNMF [7], iClus-
ter  [8], and SNF  [10]) and some recently developed tools (WSNF  [11], SNF-CC  [25], 
CIMLR [12], NEMO [14], PINS [13]), and intNMF [67]. These methods are not specific 
to breast cancer, but they are applicable to breast cancer datasets.

Since most breast cancer prognosis methods have trained linear survival models 
based on a similar methodology, the significant difference between these methods 
lies in the selection of signatures. According to the selected cancer signatures, com-
putational methods for breast cancer prognosis can be categorised into three groups, 
gene-based methods [15–19, 21–23], miRNA-based methods [38, 43] and lncRNA-
based methods  [39–41]. Gene-based methods conduct gene marker collection and 
gene expression data analysis to study the relationship between gene expression 
profiles and clinical outcomes such as subtypes  [15, 21], survival outcomes  [16, 
17, 19, 23], treatment responses  [68], and tumour histologic grades  [18]. miRNA-
based methods aim to understand the role of miRNAs in either tumour-suppressive 
or oncogenic mechanisms in breast cancer  [43]. The study in  [38] investigates the 
matched miRNA-mRNA profiles to infer novel mixture miRNA-mRNA markers for 
breast cancer prognosis. Recently, it has been found that the functional dysregula-
tion of lncRNAs contributes to cancer development. LncRNA-based methods iden-
tify lncRNA signatures involved in breast cancer metastasis-related pathways and 

5  https://​www.​genco​degen​es.​org/.

https://www.gencodegenes.org/
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been independent of clinical variables and subtypes [39–41]. To uncover the roles of 
miRNAs and lncRNAs in breast cancer prognosis, we selected 23 breast cancer prog-
nosis methods, including 12 gene-based methods, 1 miRNA-mRNA based method, 
4 miRNA-based methods, and 6 lncRNA-based methods. These methods are either 
widely used in breast cancer prognosis or more recently developed methods.

A detailed introduction to these breast cancer subtyping and prognosis methods is 
provided in Additional file 1. A summary of these methods is listed in Table 2.

Table 2  The computational methods included in this study

Abbreviations for prognostic methods are defined in Additional file 1. # RNA, number of RNA signatures used in methods; 1 , 
the method maps breast cancer patients to predefined subtypes; mRNA, messenger RNA; miRNA, microRNA; lncRNA, long 
non-coding RNA; BC, breast cancer; ER+, estrogen receptor-positive breast cancer

Abbreviation # RNA Cohort Applicable data Purpose References

CC – BC Multi-omics Subtyping [6]

CNMF – BC Multi-omics Subtyping [7]

iCluster – BC Multi-omics Subtyping [8]

IntClust — BC mRNAs Subtyping1 [9]

SNF – BC Multi-omics Subtyping [10]

SNF-CC – BC Multi-omics subtyping [25]

WSNF – BC mRNAs, miRNAs Subtyping [11]

CIMLR – BC Multi-omics Subtyping [12]

PINS – BC Multi-omics Subtyping [13]

NEMO – BC Multi-omics Subtyping [14]

intNMF – BC Multi-omics Subtyping [67]

PAM50 50 BC mRNAs Subtyping1 [15]

rorS 50 BC mRNAs Prognosis [15]

GENE70 70 ER+ mRNAs Prognosis [16]

OncotypeDX 21 ER+ mRNAs Prognosis [17]

GGI 97 ER+ mRNAs Prognosis [18]

Tamr13 181 ER+ mRNAs Prognosis [19]

AURKA 1 BC mRNA Prognosis [20]

ESR1 1 BC mRNA Prognosis [20]

ERBB2 1 BC mRNA Prognosis [20]

GENIUS 314 BC mRNAs Prognosis [21]

PIK3CAGS 278 ER+ mRNAs Prognosis [22]

EndoPredict 11 ER+ mRNAs Prognosis [23]

Ensemble 238 BC mRNAs Prognosis Additional file 1

miR-21 1 BC miRNA Prognosis [69–71]

miR-155 1 BC miRNA Prognosis [72]

miR-210 1 BC miRNA Prognosis [73, 74]

RNAmodel 37 BC mRNAs, miRNAs Prognosis [38]

miRNA10 10 BC miRNAs Prognosis [43]

HOTAIR 1 BC lncRNA Prognosis [75]

MALAT1 1 BC lncRNA Prognosis [76]

DSCAM-AS1 1 BC lncRNA Prognosis [77]

lncRNA12 12 BC lncRNAs Prognosis [39]

LncRNA6 6 ER+ lncRNAs Prognosis [40]

LncRNA5 5 BC lncRNAs Prognosis [41]
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Evaluation

We use the Silhouette score [78] to evaluate the internal validity of subtypes obtained by 
a cancer subtyping method. The Silhouette score ranges from − 1 to 1 (the higher the 
Silhouette score, the better the method). The Silhouette score is the average of Silhouette 
widths over all samples. A Silhouette width is calculated based on the Euclidean distance 
or similarity and indicates how similar a sample is to its own subtype compared to other 
subtypes. A high value of Silhouette width indicates that the sample is well matched to 
its own subtype and poorly matched to other subtypes.

We use the concordance index (C-index) [79] to estimate the accuracy of a breast 
cancer prognosis method. C-index is defined as the proportion of all pairs of randomly 
chosen comparable patients in which the predictions and outcomes are concordant. 
For a pair of comparable patients, the concordance between predictions and outcomes 
means that the patient with the higher risk prediction experienced an event (e.g. death) 
before the one with the lower risk prediction. C-index ranges from 0 to 1. If the C-index 
of a method is equal to 0.5, that means this method is no better than a random guess 
method. C-index=1 means that the predictions and outcomes are perfectly concordant.

The Log-rank test  [80] is used to assess the performance of both breast cancer sub-
typing and prognosis methods. The Log-rank test estimates whether the survival curves 
(estimated by the Kaplan–Meier (KM) survival method [81]) from two or more groups 
are identical or not. If the p value of the Log-rank test for a method on a given dataset is 
less than 0.05, we consider that the method can stratify patients in the dataset into sev-
eral groups that have significantly different survival patterns. The groups correspond to 
subtypes in breast cancer subtyping methods or risk groups in breast cancer prognosis 
methods. The p value is an external validation measurement for breast cancer subtyping 
methods.

Besides these three evaluation metrics, we use two statistic tests to compare breast 
cancer prognosis methods. The Z-test [82] is used to assess whether a prognosis method 
significantly outperforms a random guess method. We also use the Cohen’s kappa coef-
ficient to assess the concordance of the predictions between two breast cancer prognosis 
methods. Additional file 1 contains definitions of all the evaluation metrics and statistic 
tests.

The CancerSubtypesPrognosis package

To streamline the evaluation, we develop a package (named CancerSubtypesPrognosis) 
that provides a pipeline of data pre-processing, feature selection, cancer subtyping, can-
cer prognosis, evaluation, and visualization. Data pre-processing includes distribution 
check, imputation, and normalization. Feature selection, including principal component 
analysis (PCA) [83], Variance, Cox model [84], and median absolute deviation (MAD), 
is used for removing irrelevant features. The CancerSubtypesPrognosis package offers 
35 computational methods that are well-known in breast cancer subtyping or prognosis. 
There are 12 cancer subtyping methods and 23 computational methods for cancer prog-
nosis in the package. To evaluate the results, CancerSubtypesPrognosis provides three 
statistical methods, the Silhouette score, Log-rank test, and C-index. Meta-analysis can 
be conducted by using Cohen’s kappa statistic in the package. The visualization tools 
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in the package include the Kaplan–Meier (KM) survival curve, Silhouette plot, colour 
coded heat map [6], and the forest plot [85].

Results
Performance of the breast cancer subtyping methods based on multiple levels 

of transcriptomic data

We applied the cancer subtyping methods to different types of expression data, e.g. 
miRNA, lncRNA and mRNA, and combinations of them to explore whether miRNA/
lncRNA data helps improve the performance of the methods. We used the p value 
derived from the Log-rank test and the Silhouette score to evaluate the performance of 
the subtyping methods.

Using miRNA expression data improves the performance of the breast cancer subtyping 

methods

Our experimental results show that the majority of methods perform better when using 
miRNA expression data alone or matched miRNA and mRNA (miRNA-mRNA) expres-
sion data in comparison with using mRNA expression data alone. For the sake of sim-
plicity, we term “using miRNA expression data alone or miRNA-mRNA expression data” 
as “using miRNA expression data” in this paper. The experiments were conducted on the 
miRNA-mRNA expression data which are available in the TCGA753, METABRIC, UK, 
HEL and GSE19783 datasets (please refer to Table 1). We conclude that using miRNA 
expression data improves performance for breast cancer subtyping based on the follow-
ing evidence.

Firstly, using miRNA data can improve a method’s performance in detecting breast 
cancer subtypes with distinct survival patterns. We examine this by checking the p value 
of the Log-rank test of the cancer subtyping methods on each data type (i.e. mRNA 
data alone, miRNA data alone, and miRNA-mRNA data). Figure  1 shows the perfor-
mance of ten methods using each of the five datasets. In each diagram in Fig. 1, the left 
panel shows the negative of log-transformed p value of each method on the three dif-
ferent types of data from the dataset. The right panel shows the data type with which 
the method achieves the best performance. PAM50 and IntClust are not applicable to 
miRNA data, so these two methods are not listed in Fig. 1. From the figure, it is clear that 
on the METABRIC, TCGA and HEL datasets, most methods achieve better performance 
when using miRNA-mRNA data than using mRNA data alone. For the UK dataset, four 
out of ten methods achieve significant results (p value < 0.05) using miRNA data alone. 
Meanwhile, only three out of ten mRNA-based methods achieve significant results. In 
three statistically significant results on GSE19783, two of them are obtained based on 
miRNA data alone, and one of them is from miRNA-mRNA data. Furthermore, we can 
see that in general the methods CC, CNMF, SNF, WSNF and PINS have benefited from 
miRNA-mRNA data, achieving more significant results than using mRNA data alone.

Secondly, most methods achieve higher Silhouette scores when using miRNA data 
alone on UK and HEL or using miRNA-mRNA data on METABRIC and TCGA than 
using mRNA data alone on the corresponding datasets (as shown in Additional file 1: 
Figure S1). When averaging the Silhouette scores of all the methods on mRNA data, 
miRNA data, and miRNA-mRNA data, respectively, the results show that using 
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miRNA data alone has the largest average Silhouette score (0.579), followed by using 
miRNA-mRNA data (0.544) and using mRNA data alone (0.543). We see that CIMLR 
achieves the highest Silhouette scores on all the datasets and has been rarely affected 
by data types. The reason might be that CIMLR uses multiple Gaussian kernels to 

Fig. 1  Performance of the methods when using mRNAs, miRNAs and both, respectively. a METABRIC 
(1283). b TCGA (753). c UK (207). d HEL (115). e GSE19783 (99). The x-axis of each diagram is the value of 
− log10(p-value) , and the y-axis is the method. For better visibility, the scales of the x-axis of the diagrams are 
different. Black circles, red triangles, and blue diamonds denote the results of the methods when using mRNA 
data, miRNA data, and matched miRNA-mRNA data, respectively. Red vertical lines indicate the threshold 
for significantly different survival i.e. the results on the right of a red line are statistically significant, while the 
results on the left of the line are not
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estimate similarity matrix instead of computing affinity matrix based on the Euclid-
ean distances.

Thirdly, the cancer subtyping methods using miRNA data alone or miRNA-mRNA 
data perform better than the state-of-the-art mRNA-based methods PAM50 and 
IntClust in most cases. PAM50 and IntClust are two well-known breast cancer sub-
typing methods and therefore, it is important to know whether the other methods can 
achieve better results when using miRNA data alone or miRNA-mRNA data. Here, we 
focus on the clinical meaning of the results, so we compare the performance based on 
p values. From the results in Additional file 1: Figure S2, we can see that most methods 
outperform PAM50 on TCGA753, HEL, and GSE19783, and outperform IntClust on all 
the five datasets.

Additionally, the efficiency of the cancer subtyping methods can be improved by fea-
ture selection methods. There is a concern that including more data types could increase 
the time complexity of a method as it increases the dimensionality of the data. There-
fore, in this study, we apply feature selection to the datasets to select the top 2000 
mRNAs based on their median absolute deviation (MAD) values and the miRNAs/lncR-
NAs whose MAD values are bigger than 0.001. We have recorded the running time of all 
the cancer subtyping methods on the miRNA-mRNA data, as shown in Additional file 1: 
Table S1. We also show the computational time of PAM50 and IntClust on the mRNA 
data alone in this table. All the methods were run on a laptop with an i7-6600U CPU 
(2.8 GHz), and 16 GB of RAM. Most methods take (on average) less than 10 min on pro-
cessing a dataset, except for CNMF, SNF-CC and intNMF (Additional file 1: Table S1). 
CNMF and intNMF are slower since they run (by default) the NMF method 150 times 
in order to compute consensus matrices. The SNF-CC method runs both SNF and CC 
methods, requiring extra time to compute the affinity matrix from a generic distance 
matrix.

Using lncRNA expression data alone achieves comparable performance with using mRNA 

expression data alone

Similar to the above subsection, we compare the performance of the cancer subtyping 
methods based on lncRNA expression data alone, lncRNA-mRNA expression data and 
mRNA-data alone. GSE12276, GSE19615, GSE20685, GSE20711, GSE21653, GSE42568, 
and GSE9195 are first used for the comparison. We only consider the results which 
are statistically significant (the corresponding marks are on the right hand side of red 
lines in Fig. 2) here. We observe that using lncRNA expression data alone achieves the 
most significant results on GSE19615 (by 5 methods), GSE20711 (4) and GSE9195 (4). 
Using mRNA expression data alone achieves better results on GSE12276 (by 6 meth-
ods), GSE20685 (4) and GSE21653 (2) than using lncRNA data. In the remaining dataset 
(GSE42568), using the three data types can obtain similar performance. Besides, using 
lncRNA or lncRNA-mRNA expression data marginally outperforms gene-based meth-
ods PAM50 and IntClust according to the Log-rank tests (as shown in Additional file 1: 
Figure S4).

According to the internal validation measurement (Silhouette score), we observe that 
using lncRNA data alone can improve breast cancer subtyping methods on GSE20711 
and GSE42568 (Additional file  1: Figure S3). Using lncRNA-mRNA data can lead to 
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Fig. 2  Performance of the methods when using mRNAs, lncRNAs and both, respectively. a GSE12276. b 
GSE19615. c GSE20685. d GSE20711. e GSE21653. f GSE42568. g GSE9195. The x-axis of each diagram is the 
value of − log10(p-value) , and the y-axis is the method. Black circles, purple triangles, and blue diamonds 
denote the results of the methods on mRNA data, lncRNA data, and lncRNA-mRNA data, respectively
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better results on GSE21653 than using mRNA data alone. On GSE12276, using three 
data types have similar performance. Unfortunately, using lncRNA data cannot improve 
the performance of most cancer subtyping methods on the remaining three datasets.

TCGA500 is the only dataset that contains matched lncRNA-miRNA-mRNA expres-
sion data. It is interesting to investigate the performance of cancer subtyping methods 
using miRNA and lncRNA expression data. Therefore, we compare the performance of 
the cancer subtyping methods based on individual omic data and different combinations 
of multi-omic data. From Additional file 1: Table S2, we observe that including miRNA 
data can improve breast cancer subtyping (p value: 0.0001) while including lncRNA data 
does not improve the performance of the cancer subtyping methods (p value: 0.045) on 
TCGA500. However, including lncRNA data achieve higher average Silhouette score 
(0.507) than using mRNA data alone (0.434) on TCGA500 (Additional file 1: Table S3).

Performance of the breast cancer prognosis methods based on mRNA, miRNA, and lncRNA 

signatures

Different from the breast cancer subtyping methods, each breast cancer prognosis 
method is pre-trained on a fixed set of signatures, e.g. miRNAs. We use the trained 
model of each breast cancer prognosis method to predict the relative hazards (called 
risk scores) for patients in the applicable independent testing datasets. For instance, 
HOTAIR is applied to datasets with the lncRNA expression data of the HOTAIR signa-
ture. Additional file 1: Table S2 shows the applied datasets for each method. The running 
time for testing a breast cancer prognosis method on a dataset is shorter than 1 min. 
In this section, we use the C-index and the p value of the Log-rank test to measure the 
performance of these breast cancer prognosis methods on each dataset. By comparing 
the performance of the breast cancer prognosis methods, we can obtain the prognostic 

Fig. 2  continued
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power of the different types of signatures, miRNAs, lncRNAs, and mRNAs. Finally, we 
assess the concordance between prognosis methods using the Cohen’s kappa statistic.

Multi‑gene based prognosis methods perform better than single‑gene based methods, 

miRNA‑based methods, and lncRNA‑based methods

We use the forest plot to visualize the mean and standard deviation of C-indices6 of 
each breast cancer prognosis method (Fig.  3a). Most multi-gene based methods have 
a C-index over 0.6, which is better than the mean C-indices of single-based methods 
ESR1 and ERBB2 (also shown in Additional file  1: Figure S5). The AURKA method 
achieves comparable performance (mean C-index 0.61) with the multi-gene based meth-
ods, which is consistent with the results in [20], but it is still inferior to most multi-gene 
based methods. The two miRNA-based methods, miR-210 and miRNA10 get mean 
C-indices of 0.58 and 0.60 respectively, but they have higher standard deviations com-
pared to other methods. Most multi-gene based methods perform better than most 
lncRNA-based methods (Their mean C-indices are less than 0.6). Furthermore, the 
OncotypeDX method has the highest mean C-index (0.65) and lowest standard devia-
tion (0.008), which implies that OncotypeDX can produce more accurate and robust 
results than other methods in our experiments.

Fig. 3  The meta-analysis of different breast cancer prognosis methods. a The forest plot of mean C-indices. 
The names and p values of methods are listed on the left, mean C-indices and the standard deviations are 
shown on the right. The names of gene-based methods, miRNA-based methods, miRNA-mRNA-based 
method, and lncRNA-based methods are colored in black, red, blue, and purple respectively. b The X-axis is 
methods and the Y-axis is the number of datasets on which a method achieved the highest C-index. c The 
X-axis is methods and the Y-axis is the number of datasets on which a method obtained good performance 
(C-index > 0.7)

6  The mean C-index is the average C-index of a method on its applicable datasets.
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We use the Z-test to test whether a method is significantly better or worse than a ran-
dom guess. The null hypothesis is that there is no difference between the performance 
(mean C-index) of the method and the performance of the random guess (whose mean 
C-index is 0.5). The one-sided p values of methods are listed in Fig. 3a. The multi-gene 
based methods are significantly better than the random guess and they are also supe-
rior to miRNA-based methods and lncRNA-based methods. However, the p values of 
the ERBB2, miR-155, miR-21, and lncRNA6 methods are higher than 0.05 which indi-
cates that these methods do not outperform the random guess. ESR1, PIK3CAGS and 
MALAT1 are inferior to the random guess on the testing datasets.

As mean C-index can be biased by outliers in the C-indices, we also investigate the 
C-index of a method on each dataset. The results are shown in Additional file  1: Fig-
ure S5. We count the number of datasets on which a method has the highest C-index 
among all the methods and the number of datasets on which a method obtains good 
performance (C-index > 0.7). The results are shown in Fig.  3b, c respectively. To pro-
vide a fair comparison, we exclude the results of the methods on their training datasets 
(including selecting signatures and estimating the coefficients in the models). For exam-
ple, miRNA10 and RNAmodel were trained on UK and a subset of TCGA data, respec-
tively. For this reason, these methods may have good performances on UK, TCGA753, 
or TCGA500. The top methods which obtained the highest C-index are RNAmodel (on 
4 datasets), GENIUS (3), EndoPredict (3), OncotypeDX (3), rorS (1), Ensemble (1) and 
GGI (1). The top three performers with C-index > 0.7 are EndoPredict (on 4 datasets), 
GENIUS (2), OncotypeDX (2), RNAmodel (2), GENE70 (1), rorS (1), Ensemble (1), 
AURKA (1), GGI (1) and TAMR13 (1). The results based on individual C-index are con-
sistent with the conclusion drawn based on the mean C-indices.

Fig. 4  Results of the Log-rank test and the Cohen’s kappa statistic. a The p values by the Log-rank test. The 
x-axis is methods and the y-axis is datasets. A steel blue point means that the p value of the method is less 
than 0.05, which indicates that the method can successfully stratify patients in the dataset into two risk 
groups with significantly different survival patterns. A (small) grey point means the two risk groups are not 
significantly different between each other by the method on the dataset. b The histogram of concordance 
values estimated using the Cohen’s kappa statistic. There are six levels of concordance values between 
methods (More information can be found at Additional file 1)
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Most methods can successfully stratify patients into two risk groups with significantly different 

survival patterns, but the concordance between the methods on individual patient risk group 

prediction is low

Based on the predicted risk scores from a breast cancer prognosis method, patients can 
be stratified into a high-risk group or low-risk group. If a patient’s risk score is bigger 
than the median risk score of the cohort, the patient is put into the high-risk group, oth-
erwise, the patient is put into the low-risk group. We use the Log-rank test to assess 
the difference in survival pattern between the high-risk group and the low-risk group. 
Figure  4a shows that Ensemble (on 15 datasets), GGI (14), OncotypeDX (13), Endo-
Predict (13), GENE70 (13), GENIUS (12), rorS (12), RNAmodel(12), TAMR13 (11), 
and AURKA(10) can successfully stratify the patients in most datasets into two risk 
groups with significantly different survival patterns. On the contrary, miR-155, miR-
21, DSCAM-AS1, and lncRNA6 cannot stratify patients in the 19 datasets into two risk 
groups with distinct survival patterns. It is important to note that we apply the mRNA 
signatures in RNAmodel on the datasets that don’t contain miRNA expression data. 
The good performance of RNAmodel in our results indicates the mRNA signatures in 
RNAmodel are effective for predicting breast cancer risk groups. There is not enough 
evidence that miRNA/mRNA mixture signatures in RNAmodel outperform other multi-
gene signatures based on the results on the six datasets with miRNA-mRNA expression 
data (Fig. 4a).

It is expected that these prognosis methods would have a good percentage of agree-
ment with each other on the prediction of an individual patient’s risk group for deter-
mining the treatment strategy to be applied to the patient. To verify this, we estimate the 
concordance (i.e. the percentage of agreement) between two prognosis methods for risk 
group prediction for individual patients. The concordance between a pair of methods is 
estimated by using the Cohen’s kappa statistic, and the results are shown in Fig. 4b and 
Additional file 1: Figure S7. Based on the result of the Cohen’s kappa test, we divide the 
degree of agreement between methods into six levels. Surprisingly, 38.3% of the method 
pairs are tested to have no effective agreement (kappa value less than 0) with each other 
on individual patients’ risk group predictions, and 30.4% of the method pairs slightly 
agree (kappa value is between 0 and 0.2) with each other. There are 16.6% of the method 
pairs which fairly agree (kappa value is between 0.2 and 0.4) with each other, 5.9% or 15 
method pairs moderately agree (kappa value is between 0.4 and 0.6) with each other, 
8.6% or 22 method pairs substantially agree (kappa value is between 0.6 and 0.8) with 
each other. None method pairs almost perfectly agree (kappa value is between 0.8 and 1) 
with each other. The results show that most of the analysed computational methods for 
breast cancer prognosis do not have a good percentage of agreement for the risk group 
prediction. As a result, it can be difficult for clinicians to define a personalised treatment 
schedule based on the patient’s risk group prediction made by these methods.

The roles of miRNA/lncRNA signatures in the improvement of breast cancer prognosis needs 

to be further verified

We further evaluate the average performance of all the methods on three different data 
types (mRNA data, miRNA data, and lncRNA data), respectively. The forest plots of the 
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mean C-indices of the methods on the three data types are shown in Additional file 1: 
Figure S6. Figure S6 shows that using miRNA or lncRNA data alone results in worse per-
formance in comparison to use mRNA data alone. We can safely infer that breast cancer 
prognosis methods based on miRNA/lncRNA data do not outperform methods using 
gene expression data.

The prognostic roles of some miRNA/lncRNA signatures in breast cancer are not clear. 
Although studies have shown that miR-21 and miR-155 function as oncogenes in breast 
cancer [72, 86], their expression level is not significantly negatively correlated with sur-
vival outcomes based on our results. Similarly, MALAT1 and DSCAM–AS1 are found to 
over-expressed in breast cancer patients with poor outcomes [76, 87], unfortunately, we 
cannot observe this information from our results.

However, some miRNA and lncRNA signatures do have prognostic value for breast 
cancer. For example, the C-indices of miRNA10 are higher than 0.5 in its independent 
testing datasets (Additional file  1: Figure S5), which means the predicted hazard risk 
scores are consistently negatively correlated with survival outcomes. lncRNA12 and 
lncRNA5 perform well on the datasets produced by Affymetrix Human Genome U133 
Plus 2.0 arrays. From the results (Additional file  1: Figure S5), it can be seen that the 
up-regulated expression of miR–210 is related to poor prognosis (c-index is higher than 
0.5) within most breast cancer cohorts, which has evidenced by a quantitative real-time 
PCR (qRT-PCR) experiment recently [88]. Similarly, the expression level of HOTAIR is 
positively correlated with hazard risk, which implies HOTAIR could be an oncogenic 
lncRNA in breast cancer [89].

Discussion
We have evaluated the usefulness of non-coding RNAs (miRNAs and lncRNAs) expres-
sion data for improving the performance of breast cancer subtyping and prognosis by 
benchmarking the state-of-the-art methods on multiple levels of transcriptomic data. 
In contrast to previous comparisons [25, 26, 61, 90], we focused on the evaluation of 
the breast cancer subtyping and prognosis results based on different data types. Existing 
comparisons for cancer subtyping methods mainly used datasets from different cancer 
types and aimed to find out the best method(s) [25, 61, 90], however, in our work, we 
have tried to explore the best expression data types for the methods. Existing compar-
ison for cancer prognosis methods was limited to gene-based methods [26], while we 
here further considered different independent testing datasets, as well as miRNA-based 
and lncRNAs-based methods.

The experimental results showed that the cancer subtyping methods using miRNA-
mRNA data outperformed the mRNA-based methods, including PAM50 and IntClust, 
for breast cancer subtyping. However, the cancer subtyping methods using lncRNA data 
did not display better performance than these methods using mRNA data alone. Hence, 
mRNA/miRNA expression data rather than lncRNA expression data should be prior-
itized by researchers on the present RNA expression microarray datasets.

Interestingly, we also observed that current cancer subtyping methods cannot guar-
antee that the identified subtypes have distinct survival patterns. For example, most 
methods showed good Silhouette scores but were not be able to group patients into sub-
types with distinct survival patterns (as shown in Fig. 1d–e and Additional file 1: Figure 
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S1d–e). This can be due to the fact that most computational methods are designed to 
cluster the samples with similar features (instead of similar survival pattern) into the 
same group. In other words, from the computational point of view, a positive Silhouette 
score indicates that a method is effective to cluster samples into groups with distinct 
feature patterns. However, biomedical researchers more focus on whether the cancer 
subtypes have prognostic significance. Therefore, a novel method is required to take the 
prognostic significance of subtypes into account when training the model in the future.

When the clinical data is available, we suggest using the external validity (p value) of 
clusters to evaluate the prognostic performance of a cancer subtype method. To discover 
distinct breast cancer subtypes from miRNA-mRNA expression data, the recommended 
methods are SNF and CNMF, whose results had the best external validity in our evalua-
tion. As shown in Fig. 1, SNF and CNMF successfully stratified patients in METABRIC, 
TCGA753, UK and HEL into subtypes with distinct survival patterns, while other meth-
ods only succeeded in three datasets or less.

Since many of the current data does not include long term follow-up clinical data for 
patients, another metric to evaluate the cluster results is required. To this end, we can 
use the Silhouette score to assess the internal validity of clustering results. Based on the 
internal validity, the preferred method is CIMLR, which achieved the highest consist-
ency within clusters of gene expression data. Please let us highlight this paper aims to 
uncover the roles of miRNAs/lncRNAs in characterising breast cancer subtypes and 
prognosis. Complementary information about the theory and other benchmarking of 
multi-omic cancer subtyping methods can be found in [25, 61, 90].

In addition to the evaluation metrics discussed here, downstream analysis can also 
assist method and data type selection via interpreting the biological meaning of the can-
cer subtyping results. For example, differential gene expression analysis can be used to 
obtain differentially expressed genes and miRNAs in different clusters. Thus, we have 
included differential gene expression analysis methods in the CancerSubtypesPrognosis 
package.

For breast cancer prognosis, we suggest using multi-gene based methods includ-
ing EndoPredict, RNAmodel, OncotypeDX, GENIUS, GGI, and rorS for breast can-
cer prognosis, since these six methods appeared in both the top performer and the 
good performer list. If all the signatures in the five methods (GENIUS, EndoPredict, 
OncotypeDX, GENE70, and rorS) are available, we also suggest using the Ensem-
ble method in our package as the ensemble method outperformed all the other meth-
ods for stratifying patients into two distinct risk groups. We noted that ESR1, ERBB2, 
PIK3CAGS might not work on the whole breast cancer cohort even though they have 
been found to be effective in specific breast cancer cohorts. It is interesting to investigate 
why some methods work well on some datasets while not well on others. Although we 
do not have evidence to support our arguments, we think that the genes in the signa-
tures may not be the causal genes, i.e. genes causing the disease, and therefore the per-
formance of methods using those signatures are not robust across different datasets [91].

We also observed that current breast cancer prognosis methods (even multi-gene 
based methods) do not have high concordance on patient risk group prediction. The 
reason might be current methods are not good enough for breast cancer prognosis 
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yet. Improving the performance of methods for breast cancer prognosis will ultimately 
improve the concordance between them.

In this regard, we suggest considering the following two points of view to improve 
the performance of breast cancer prognosis methods. From the computational per-
spective, advanced machine learning and artificial intelligence algorithms can be used 
to catch non-linear relationships between gene expression profiles and survival out-
comes [92]. From the biological perspective, combining gene, miRNA and lncRNA 
signatures has the potential to improve breast cancer prognosis and help research-
ers understand the biological mechanisms involved. This is based on the fact that the 
heterogeneity of breast cancer is caused by diverse molecular mechanisms, includ-
ing gene mutation [93], miRNA regulation [94], lncRNA regulation [95] or competing 
endogenous RNAs (lncRNAs-associated) [96]. Even though some miRNAs/lncRNAs 
were not significantly associated with survival outcomes, the prognostic value of 
some miRNAs/lncRNAs was evidenced in our study and previous studies.

Unfortunately, it is difficult and costly to obtain multiple omics data for the same 
patients. Affymetrix HG-U133 Plus 2.0 arrays included a small part but not all of the 
possible lncRNAs in the human genome. Limited datasets and incomplete lncRNA 
expression data may not allow us to comprehensively elucidate the roles of lncR-
NAs in breast cancer prognosis. However, RNA sequencing technology is becoming 
mature and cheap, which will be allowed to significantly increase omics data access 
in the future. We will be able to evaluate a more comprehensive number of miRNA/
lncRNA signatures for breast cancer prognosis based on these data.

Conclusion
We have evaluated the usefulness of using miRNA/lncRNA data for breast cancer 
subtyping and prognosis by conducting a comprehensive comparison of 35 computa-
tional methods on 19 breast cancer datasets. The comparison study showed that using 
miRNA data improves the performance of the current cancer subtyping methods, 
while using lncRNA data have similar performance to using mRNA data alone. Cur-
rent miRNA/lncRNA signatures do not outperform multi-gene based breast cancer 
prognosis methods. We acknowledge that our conclusions are limited by the num-
ber of methods and datasets used in the evaluation, but we believe that the results 
can provide valuable clues about the roles of miRNA/lncRNA in characterising breast 
cancer subtypes and prognosis.

For the convenience of researchers to apply these methods to new datasets, we have 
released an R package named CancerSubtypesPrognosis. CancerSubtypesPrognosis is 
flexible and can easily be extended to different data types such as genomic, transcrip-
tomic and epigenomic data. We hope the package can help the application and evalu-
ation of existing methods and the development of new breast cancer subtyping and 
prognosis methods.
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