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Background
Microbial communities serve important functional roles in systems ranging from the 
human body [1], to rhizospheres [2], up to entire ecosystems [3]. Common goals of 
microbiome research are to determine factors shaping microbial community assembly, 

Abstract 

Background:  Even when microbial communities vary wildly in their taxonomic com-
position, their functional composition is often surprisingly stable. This suggests that a 
functional perspective could provide much deeper insight into the principles govern-
ing microbiome assembly. Much work to date analyzing the functional composition 
of microbial communities, however, relies heavily on inference from genomic features. 
Unfortunately, output from these methods can be hard to interpret and often suffers 
from relatively high error rates.

Results:  We built and analyzed a domain-specific microbial trait database from known 
microbe-trait pairs recorded in the literature to better understand the functional com-
position of the human microbiome. Using a combination of phylogentically conscious 
machine learning tools and a network science approach, we were able to link particular 
traits to areas of the human body, discover traits that determine the range of body 
areas a microbe can inhabit, and uncover drivers of metabolic breadth.

Conclusions:  Domain-specific trait databases are an effective compromise between 
noisy methods to infer complex traits from genomic data and exhaustive, expensive 
attempts at database curation from the literature that do not focus on any one subset 
of taxa. They provide an accurate account of microbial traits and, by limiting the num-
ber of taxa considered, are feasible to build within a reasonable time-frame. We present 
a database specific for the human microbiome, in the hopes that this will prove 
useful for research into the functional composition of human-associated microbial 
communities.
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and also how changes in the makeup of a community lead to changes in its overall 
behavior. Often, it is safe to assume that organisms with similar traits may fill similar 
roles, even if they are only distantly related. Thus, if we want to measure the relation-
ship between composition and behavior, it makes sense to prioritize functional over 
taxonomic composition [4]. In fact, a number of studies have shown that, across nearly 
identical environments, taxonomic composition can be highly variable, while functional 
composition is largely constant. This suggests that most habitats are dominated by a sta-
ble, core functional community [5, 6].

Typically, functional analysis of microbial communities relies on genetic inference 
of microbial traits, specifically metabolic traits (e.g. [7]). Often, these inference meth-
ods suffer from high error rates [8, 9]. Additionally, for even moderately complex traits 
such as aerobicity, it is extremely difficult to make inferences from genomic data [10]. 
Obviously, hand-curated databases such as ours have the disadvantage of being labor-
intensive to construct [11]. Others have attempted to get around this problem by using 
automated text-mining approaches that assign confidence levels to particular traits in 
specific microbes [12]. At least for type strains, however, functional information avail-
able in the literature is much better defined than automated text-mining databases imply 
[13]. Consequently, it is possible to assign traits to microbes with a quite high degree of 
confidence if one is willing to put in the time to curate the trait database. We take this 
laborious but precise approach and curate a domain-specific database for human associ-
ated microbes (Additional file 1). By limiting the scope of our database, we reduce the 
number of microbial species that we need to consider, allowing us to compile a reason-
ably large number of traits for an entire system of imminent importance.

We demonstrate the utility of our trait database with a number of analyses drawing 
on tools from machine learning and network science. As a first step we characterize the 
functional traits associated with different sites across the human body (e.g., stool, poste-
rior fornix, buccal mucosa) and identify suites of traits that frequently co-occur across 
communities in those sites. We then build predictive models to associate specific traits 
with the number of body areas (e.g., gut, vagina, mouth) across which a species is found. 
Finally, we explore how metabolic diversity varies across sites, and predict the metabolic 
breadth of a species from its other traits. In all cases we adopt a phylogenetically con-
scious framework in which we correct model performance measures to account for non-
independence due to shared evolutionary history [14].

Results
Revealing body‑site versus trait associations

We used three complementary approaches to reveal associations of specific traits with 
specific body sites: (1) pairwise comparisons of mean trait values between body sites, (2) 
predictive modeling of sample source sites with random forests, and (3) network-based 
clustering of traits.

Pairwise comparisons between body sites

As seen in Figs.  1 and 2, many traits differed between body sites, even given our 
restriction that differences must appear across multiple phyla (see Additional file 2: 
S2 Fig and S3 Fig for traits with differences shown individually across all phyla, and 
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Additional file 2: S4 Fig and S5 Fig for results on all phyla together). This is not sur-
prising, given that different body sites provide very different environments (nutrients, 
temperature, oxygen, etc.) and are home to communities with very different taxo-
nomic compositions. In keeping with pairwise results, samples clustered functionally 
according to body site (see Additional file 2: S1 Fig). This is similar to the results seen 
for taxonomic composition [15].

Some of the trends that emerged from pairwise comparisons were as expected 
based on knowledge of site characteristics. For example, the prevalence of anaerobes 
was higher in the gut (stool), a low oxygen environment, relative to other body sites. 
Other trends, however, reveal novel biology. Ammonia production, for instance, is 
under-represented in stool, while production of hydrogen sulfide gas is under-rep-
resented across the mouth (buccal mucosa, supragingival plaque and the tongue 

a b

Fig. 1  Pairwise differences in trait values between body sites (difference in means weighted by taxon 
abundance). Interactions that were not significant in at least two phyla are left blank. Traits separated into 
categories for readability: a qualitative with categorical values (split into dummy variables for multi-level 
traits) and b quantitative with continous values. For carbon substrate use traits see Fig. 2

Fig. 2  Pairwise differences in carbon substrate use frequency between body sites (difference in means 
weighted by taxon abundance). Interactions that were not significant in at least two phyla are left blank. 
Shown here are binary traits indicating the ability to grow on specific carbon sources. For other traits see 
Fig. 1
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dorsum). Although there were no clear trends in carbon substrate metabolism across 
compound classes (e.g., alcohols, sugars), what did emerge from our carbon substrate 
analysis was the relative uniqueness of the different body sites in terms of resource 
use (see Fig.  2). This led us to build predictive models to identify those traits that 
most uniquely define the different locations on the human body.

Predictive modeling of sample source

We were able to build separate models to predict, with reasonable accuracy, if a sample 
came from the stool, posterior fornix, or anterior nares (Cohen’s κ from phylogeneti-
cally-blocked cross validation: 0.436, 0.416, and 0.379 respectively; Table 1). By contrast, 
similar models for the mouth performed poorly ( κ = 0.170 ), and we were entirely una-
ble to predict whether a sample came from the skin (Table 1). Difficulties with oral and 
skin microbiomes are likely due to the fact that trait values vary more across phyla in 
the mouth than at other body sites (Additional file 2: S6 Fig), and because we had very 
few skin samples with which to train our model (17). In fact, by restricting our analysis 
to only those traits that vary relatively little between phyla, we were able to increase our 
overall predictive ability in samples from the mouth (0.373; Additional file 2: S1 Table). 
To some extent, the high degree of variation in traits across phyla from the mouth prob-
ably stems from the variability in site types across the oral microbiome (tongue, plaque, 
etc.). However, even when we considered habitats separately, we were unable to predict 
whether a sample was from a specific site (tongue, plaque, or buccal mucosa), suggesting 
that, at least for the functions considered in our database, the functional compositions of 
the different oral microbial communities are similar.

In all models, predictive ability varied across phyla. For example, while we were able 
to predict whether a sample came from stool based on resident Firmicutes, we were 
not able to do so based on resident Proteobacteria (Table 1). This may not come as a 
surprise, because while Proteobacteria do appear in the human gut microbiome, their 
abundance is typically low and their presence unreliable across individuals [16, 17]. This 
makes them sub-optimal predictors of sample source site.

Table 1  Cohen’s κ for predicting sample source site

Briefly, the trait values associated with a set of three phyla in a sample were used to train a model to predict whether a 
sample was from a given site on the basis of a fourth “test” phylum. Values above zero indicate predictive ability in excess of 
a null model accounting for the number of samples from each site

Test Mean

Actinobacteria Bacteroidetes Firmicutes Proteobacteria

Stool 0.350 0.468 0.948 − 0.021 0.436

Posterior Fornix 0.340 0.351 0.560 0.413 0.416

Anterior Nares 0.430 0.579 0.268 0.240 0.379

Retroauricular Crease 0.165 0 0.033 0.038 0.059

Tongue Dorsum 0 0 0.019 0 0.005

Supragingival Plaque 0 0 0.157 0 0.039

Buccal Mucosa 0 0 0 0 0

Mouth (All) 0 0 0.677 0.004 0.170
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A number of variables were important for predicting the source site of a body sample, 
regardless of the set of phyla used (Additional file 2: S7 Fig, S8 Fig, S9 Fig, and S10 Fig). 
In Fig. 3, S11 Fig, S12 Fig, and S13 Fig we show plots of a selection of the strongest pre-
dictors across phyla for our high-performing models (stool, fornix, nares, and mouth, 
respectively). For example, in keeping with our pairwise analysis, the strongest predictor 
of a sample being from stool was a highly anaerobic resident community. Not unexpect-
edly, optimal temperature was also highest in stool and lowest in the mouth. Meanwhile, 
optimal pH was lowest in stool and highest in the mouth. Further, in keeping with the 
hypothesis that the gut is a complex environment, genome size was generally larger in 
stool and, accordingly, cell volume was also larger in this habitat. Importantly, our ran-
dom forest identified traits associated with particular sites whose effects may be non-
linear or context dependent (e.g., pH in the stool, formate in the anterior nares; Fig. 3, 
Additional file 2: S11 Fig, S12 Fig, S13 Fig). Mirroring the result in S6 Fig, the top predic-
tors from the mouth models varied more across taxa than the top predictors for other 
sites (Additional file 2: S14 Fig).
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Fig. 3  Top predictors for stool with rank shown in upper left corner. Top predictors across phyla of sample 
source site, for which importance scores are above the average variable importance across all predictors for 
all four training sets (7). Shown are mean trait values across all samples in the dataset, split up by body site. 
See 11, 12, and 13 for top predictors of posterior fornix, anterior nares, and mouth respectively
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Networks linking body sites to suites of traits

We inferred a network of trait associations based on the abundance of traits across sam-
ples (Additional file  2: S15 Fig). We then performed neighborhood detection to find 
clusters of traits that tend to covary across samples (Table 2). These clusters represent 
suites of traits that can be associated with a particular environment (Fig. 4, Additional 
file 2: S16 Fig). The combined use of butyrate and caprate, for example, are strongly neg-
atively associated with the tongue and, to a lesser extent, the posterior fornix. Instead, 
the tongue is strongly associated with the combined use of adonitol and alanine. Mean-
while, the posterior fornix is associated with a complex set of traits including use of ara-
binose, propionate, rhamnose, succinate, and xylose, as well as production of indole and 
hydrogen sulfide. Interestingly, this suite of traits is positively associated with many body 
sites, including the nares, the tongue and stool.

Generalism versus trait associations

Some human-associated microbes are found in a single body area, while others are 
broadly distributed across the entire human body. One hypothesis for why this might be 
is that there are certain traits that allow generalist species to live everywhere. To explore 
this possibility, we attempted to predict whether species were habitat specialists or gen-
eralists using trait data. For simplicity, we defined specialists as species that appeared in 
samples from only a single body area and generalists as species that appeared in samples 
from at least two body areas (see Methods). Specifically, we built random forest models 
and used blocked cross validation to obtain a phylogenetically corrected estimate of our 
prediction accuracy (Fig. 5). When using phylogenetically-blocked cross validation, folds 
correspond to clusters of related taxa (e.g., phyla, classes) rather than being chosen at 
random. Some phyla were more predictable than others. We predicted reasonably well 
whether members of Actinobacteria were generalists using the other phyla as a train-
ing set. For other phyla (Bacteroidetes, Firmicutes, and Proteobacteria), we were less 

MucosaFornix NaresSkinStool Plaque Tongue

34 5 121416 1711 15 2 7 10 18

Fig. 4  Bipartite site-cluster network, where clusters are groups of traits that frequently co-occur. Clusters 
are shown at the top as blue, numbered nodes. Each cluster corresponds to a group of co-occuring traits as 
listed in Table 2. Body sites are shown at the bottom as labeled, yellow nodes. Positive interactions (cluster 
common in body site) are represented by solid green lines and negative interactions (cluster uncommon in 
body site) are represented by dotted red lines. The strength of an interaction is represented by the with of an 
edge. See 16 for the same figure with positive and negative interactions separated out for ease of viewing
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successful. However, even for most of these phyla (Firmicutes and Proteobacteria), we 
were able to predict across Classes (see values for Cohen’s κ ). Ironically, due to the rela-
tively small number of taxa in our dataset from Actinobacteria our models performed 
worse when predicting within this phylum as opposed to across phyla (which requires 
further subdivision via cross-validation and lowers training set size).

The most important predictors varied between phyla, with little overlap (Additional 
file  2: S17 Fig). The exception was cell aggregation which took categorical values of 
chain, clump, and single, and which showed up as one of the top 5 most important pre-
dictors for three out of four phyla. Overall, however, it appears that the traits important 
for predicting generalism vary across phyla as a rule.

We followed up our predictive approach with individual parametric tests for phy-
logenetically significant trait versus generalism associations in each phylum using 
phylogenetic logistic regression (see Methods). Given the steep dropoff in importance 

Table 2  Inferred trait clusters with positive associations between body sites

Bold and starred ( ⋆ ) site names signify that a given cluster-site interaction is the strongest positive interaction observed for 
that site

Cluster Traits Positive associations

2 Use of: alaninamide, histidine, leucine, pyruvic acid methyl ester

 3 OptimalpH, Facultative, Cocci, Use of:fructose, galactose, glucose, Buccal mucosa, Tongue

lactose, mannose, methyl beta D glucoside, N acetylglucosa-
mine, sucrose

Anterior nares, Supragingival plaque

 4 LengthMajorAxis, Enzyme Assays: esculin aesculin hydrolysis, Posterior fornix

Use of: cellobiose, glycogen, maltose, raffinose, salicin, starch, 
yeast extract

5 Max. Temp., Optimal NaCl, Min. NaCl, Max. NaCl, Genome Length, 
Anaerobe, Single, Clump, Rod,

Stool,

Enzyme Assays: urease, acid phosphatase, alkaline phosphatase, 
alpha galactosidase,

Posterior fornix,

beta galactosidase, acetoin, phosphatase, DNA degradation, Gas 
Production: indole, hydrogen sulfide,

Retroauricular crease,

Use of: arabinose, propionate, rhamnose, succinate, Tween 80, 
xylose

Anterior nares, Tongue

 7 Use of: phenylacetate, putrescine, quinic acid Supragingival plaque
10 Use of: arginine, glycine, phenylalanine, serine, threonine Tongue

11  Min. pH, Max. pH Posterior fornix

12 Enzyme Assays: tellurite reductase, Use of: citrate

14 Optimal Temp., Enzyme Assays: gelatinase, trypsin, Anterior nares,

Use of: acetate, galacturonate, glycerol, lactate, Retroauricular crease,

mannitol, melibiose, ornithine, ribose, sorbitol, trehalose Supragingival plaque, Tongue

15 Use of: butanol, caprate

16 GC Content, Min. Temp., Motile, Aerobe, Chain, Gas Production: 
ammonia, isovaleric acid,

Retroauricular crease,

Enzyme Assays: catalase, oxidase, arylsulfatase, phosphohydro-
lase,

Supragingival plaque,

Use of: aspartate, dextrin, formate, glutamate, malate, proline, 
pyruvate, suberate, urea, sugars

Tongue

17 Use of: adonitol, alanine Tongue
18 Use of: valerate, 2 aminethanol, 2 ketogluconate, 2 3 butanediol, Tongue

3 hydroxybenzoate, 3 hydroxybutyrate, 4 hydroxybenzoate, 5 
ketogluconate
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after the top few predictors in Additional file 2: S17 Fig, we tested the top five most 
important traits for predicting whether members of each phylum were specialists, 
and corrected for multiple testing (Benjamini-Hochberg control of FDR, α = 0.05 , 
p-cutoff = 0.021). For the Actinobacteria, the trait found to be a significant predic-
tor of generalism was being an facultative anaerobe ( p = 0.0005 , Coefficient = 1.3), 
whereas being an obligate anaerobe ( p = 0.0002 , Coefficient = −  1.5) was associ-
ated with body site restriction. This makes sense, since facultative anaerobes are 
more flexible overall, and since a large number of human body sites are exposed to 
oxygen. For Bacteroidetes, the significant traits associated with generalism were 
the abilities to use yeast extract ( p = 0.0023 , Coefficient = −  0.72) and aspartate 
( p = 0.0069 , Coefficient = −0.55 ), as well as β-galactosidase ( p = 0.0101 , Coefficient 
= 0.73), and alkaline phosphatase ( p = 0.0014 , Coefficient = 0.83) activity. Like Act-
inobacteria, generalist Firmcutes were also more likely to be facultative anaerobes 
( p = 0.0102, Coefficient = 0.72 ), while specialists were more likely to be obligate 
anaerobes ( p = 0.0094, Coefficient = −0.75 ) Other traits predictive of generalism 
for Firmicutes were having a small genome length ( p = 0.0003, Coefficient = −1.4 ), 
and a low GC content ( p = 0.0191, Coefficient = −0.78 ). For Proteobacteria the 
only significant trait associated with generalism was minimum growth temperature 
( p = 0.0197, Coefficient = 0.84).

Metabolism

Metabolic breadth - the number of substrates used by a particular microbiome - is a 
measure of the diversity of functions and the flexibility of the microbial community. As 
such, it reflects microbiome complexity, which may, itself, be a reflection of the com-
plexity of environmental conditions and/or resource inputs into the system. Below, we 
consider metabolic breadth, first across body sites, and then across microbial taxa.
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Fig. 5  Performance of random forest models predicting generalism (binary classification, present at more 
than one area or not). “All” means a blocked cross-validation with each phylum as a fold (Actinobacteria: red 
squares, Bacteroidetes: green triangles, Firmicutes: blue diamonds, Proteobacteria: purple circles). Within each 
phylum we performed blocked cross-validation using classes as folds, except in the case of Bacteroidetes 
where all species in the dataset were in the same class and order, so that families were used as the folds. 
Shown are two measures of performance ( κ and area under the precision-recall curve), as well as the 
prevalence of specialist species in a fold ( P(Specialist) for “probability is a specialist”)
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Metabolic breadth across sites

Different body sites differ in the overall number of carbon substrates used by their 
resident microbes, with a high coverage of carbon sources in stool and the majority of 
oral sites and a much lower coverage of carbon sources in skin, nares and vaginal sites 
(Fig. 6). There are three proximate reasons why metabolic breadth could be increased in 
some body sites: (1) species associated with those sites may use more carbon sources on 
average (increased metabolic flexibility), (2) species associated with those sites may vary 
more among themselves in terms of which substrates they can use (increased niche dif-
ferentiation), or (3) some sites may simply have a higher taxonomic diversity (increased 
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Fig. 6  Diversity of carbon sources in a body site is largely mediated by taxonomic diversity. a Diversity of 
carbon sources used within samples. b Taxonomic diversity within a sample. c Values from (a, b) for each 
sample plotted against each other. Entropy (Shannon’s entropy) is a common diversity metric that integrates 
both the eveness and richness of items considered (carbon sources and species in panels (a, b) respectively)
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number of niches). Although not mutually exclusive, the first mechanism suggests that 
carbon source availability is less predictable in time, the second mechanism suggests 
that strong competitive interactions structure the community, and the third suggests 
that there is generally a higher diversity of carbon sources available (at all times). Inter-
estingly, we found that the high metabolic breadth observed along the alimentary tract 
(oral and gut sites) could be attributed almost entirely to (3) an increase in taxonomic 
diversity (Fig. 6) at these locations. By contrast, species from different body sites did not 
vary significantly in their overall metabolic capacity (Additional file 2: S18 Fig, panel a), 
although there were significant differences when restricting the analysis to site special-
ists (Additional file 2: S18 Fig, panel c). Even accounting for specialists, however, these 
differences did not explain overall trends in carbon source usage among sites. Like-
wise, while there were significant differences in the number of carbon substrates shared 
among species across sites, this variation did not explain overall trends in metabolic 
breadth (Additional file 2: S19 Fig). Indeed, in some cases, it demonstrated the opposite 
pattern. For example, species from skin and nares sites actually showed less overlap in 
substrate usage as compared to species from saliva, even though metabolic diversity in 
saliva was higher.

Although differences in niche differentiation did not explain body sites differences in 
metabolic diversity, we still found evidence of niche partitioning. In particular, diverse 
kinds of carbon metabolism were more evenly represented across samples than were 
species abundances (Fig. 6). This suggests some community-level selection to use car-
bon sources in a balanced way, even if the taxonomic community composition is highly 
skewed.

Metabolic breadth across taxa

Despite the fact that variation in taxon-specific metabolic flexibility did not explain 
trends across body sites, we still observed significant differences in the number of 
carbon sources used by different human-associated microorganisms. This led us to 
attempt to predict the number of carbon sources a species uses with moderate suc-
cess. While our root mean square errors (RMSE) indicated that our models have 
limited predictive ability, our predicted values correlated with the actual values, sug-
gesting that our models captured some portion of the overall trend of how substrate 
use varies with traits (Table 3). The only trait that was important for predicting the 
number of carbon substrates across all phyla was genome length (Additional file  2: 

Table 3  Performance of random forest models of the number of carbon substrates a species can 
use

Test RMSE ρ R2 Adjusted

Actinobacteria 6.20 0.327 0.089

Bacteroidetes 6.07 0.354 0.108

Firmicutes 5.08 0.467 0.213

GeneralismSingletons Proteobacteria 8.67 0.582 0.332

Mean 6.51 0.433 0.186



Page 11 of 21Weissman et al. BMC Bioinformatics  2021, 22(1):306	

S20 Fig). This is in keeping with previous findings from soil bacteria that suggest 
larger genome sizes are strongly correlated with more metabolic capabilities [18]. 
Growth temperature and pH range were important across 3/4 phyla; however, in var-
ying forms (min., max., optimal). This may be because pH can impact the availability 
of carbon substrates, influencing selective pressures on utilization patterns [19]. DNA 
GC content was also important for 3/4 phyla (Actinobacteria, Proteobacteria and Fir-
micultes), which is not surprising given its relationship to genome size [20]. Finally, 
the presence of alpha-galactosidase activity was correlated with metabolic breadth 
in 3/4 (Actinobacteria, Firmicutes, and Bacteroidetes) phyla. This, too, makes sense, 
because alpha-galactosidases are important for breaking down and making available 
certain types of carbon substrates, and thus may be selected for by the same pressures 
that select for metabolic breadth in general.

Discussion
Traits associated with particular sites

We used three complementary approaches to demonstrate how the functional com-
position of the local microbial community changes across regions of the human body. 
First we looked at the magnitude of the difference in trait values across sites, which 
has the clear benefit of interpretability (Figs. 1, 2). Second, our random forest models 
allowed us to determine which traits were most important for predicting the body 
site of a sample, thus indicating which traits best discriminated between body sites 
(Fig.  3). Finally, our network-based approach allowed us to cluster traits into suites 
that frequently co-occured across samples. Clustering yielded a more comprehensive 
and intuitive view of the groups of traits associated with specific body sites (Fig.  4, 
Table 2).

Some sites are more reliably associated with traits than others. We could predict 
the source of a sample from the stool, posterior fornix, and anterior nares quite well 
based on its trait composition. On the other hand, trait values vary more across phyla 
in the mouth than in other body sites (Additional file 2: S6 Fig), making it difficult to 
predict across phyla in this body area. While a large number of candidate traits were 
found to be associated across sites using our three methods (see Results), several such 
associations were identified by multiple methods. Stool microbes prefer warmer tem-
peratures, are anaerobic, and have large cells with large genomes. These observations 
are in line with our expectations based on their environment. These traits are also 
part of a larger suite of traits (see cluster 5 in Table 2), including the ability to use sim-
ple plant sugars (e.g. arabinose, xylose) and the production of α - and β-galactosidase 
that are important for breaking down more complex galactosides into simple mono-
saccharides. Notably, plant and other complex carbon sources are most likely in the 
gut, where they are inputted as a result of host diet.

Interestingly, the strongest predictors for a sample coming from the nares and the for-
nix typically involved negative associations (the inability to metabolize formate or glyc-
erol respectively, for example). This is perhaps unsurprising, since these sites are unlikely 
to have the rich diversity of carbon sources available in the mouth or gut. An exception 
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is that many microbes in the nares can metabolize mannose, which is interesting given 
the role of mannose in the airway immune response [21, 22].

Generalism and metabolic breadth

Generalism, it seems, is a difficult trait to predict. This may be a product of the scale at 
which we define generalism. First, each body site likely comprises a diversity of microen-
vironments (e.g. [23]), meaning that a species may move into a new site by exploiting any 
number of distinct niches. Second, despite the profoundly different environments pro-
vided by different body sites, they are all, nonetheless, similar by virtue of being human 
host-associated. Prediction of generalism across more distinct niches, for example soil 
versus human versus marine environments may show a broader range of generalizable 
traits. Despite this, for all phyla, our models had some ability to predict generalism. For 
the Actinobacteria we were able to predict generalism relatively well by building a model 
based on the other phyla. For Bacteroidetes, Firmicutes, and Proteobacteria it was dif-
ficult to generalize across phyla, but we had some predictive ability within phyla. The 
limited overlap in the determinants of generalism across phyla surprised us. It seems 
that different traits determine habitat breadth for each phylum. This is likely due to the 
fact that certain behaviors are more/less variable across different phyla, and thus are 
more/less likely to be identified as determinants of generalism overall. As an example, 
in phyla with a mix of aerobic, facultative and anaerobic members, oxygen use may pre-
dict generalism; however, oxygen use is unlikely to be an important predictor amongst 
Proteobacteria, whose members are almost never anaerobic. Lack of generality across 
phyla may also stem from interactions with the many microbial traits omitted from the 
database, which may vary systematically across phyla.

For traits identified as being associated with generalism, we confirmed links within 
each phylum using phylogenetic logistic regression, which assumes a parametric model 
of trait evolution. Aerobicity was a significant predictor of generalism in Actinobacteria 
and Firmicutes, with facultative organisms more likely to be generalists than anaerobes. 
For Firmicutes, both genome length and GC content (which are somewhat correlated 
[24]) were negatively associated with generalism. This is surprising, because genome 
length is generally positively correlated with metabolic breadth (as seen here and by oth-
ers; [25]), which, in turn, is usually associated with habitat generalism. In contrast with 
our result, other groups have observed a positive relationship between genome length 
and the number of habitats in which a microbe is found in soils [18, 26]. In fact, genome 
size varies greatly across body sites (Fig. 1, Additional file 2: S21 Fig), with microbes in 
the gut having especially large genomes and those in the vagina having comparatively 
small ones. This suggests that the story of genome length and ubiquity is not as simple 
as large-genomed organisms being able to occupy more niches. Rather, different body 
areas appear to select for different genome sizes, likely due to the relative diversity of 
carbon sources available in each (Fig. 6). Being a generalist on the human body therefore 
appears to be more about using the handful of carbon sources that are prevalent and 
shared across all sites, versus using a wide range of carbon sources. This speaks to the 
selection pressures associated with living in host- associated niches.

As noted above, we found that metabolic breadth was related to genome length, and 
this relationship applied for all phyla. This is in line with the observation that the number 
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of metabolic genes an organism has scales with its genome size [25]. We found that the 
overall diversity of metabolisms in a sample, though, was primarily determined by the 
taxonomic diversity within that sample, rather than any special feature of those species 
(e.g., increased metabolic breadth).

The database approach

As with any method, our database approach suffers from several drawbacks. In exchange 
for the higher level of accuracy in our trait assignments, we lack the resolution of meth-
ods that predict traits based on genomic data. While our trait determinations were 
generally made for type strains of each species, for many traits there is a good deal of 
variability across strains in a species due to heterogeneous gene content [27–29]. This 
variability essentially adds noise to the data, meaning our analyses are somewhat less 
powerful than they could be with more complete information. Inference based on 
genomic content would not solve this problem, because these methods are, themselves, 
noisy [8, 9], and cannot be used to infer highly complex traits with great confidence (e.g 
[10]). The clearest solution, then, is to assay a large number of strains in each species for 
a large number of traits, though time and money of course limit pursuit of this solution.

A second drawback to our approach is that functional characterization requires 
a microbe to be in culture, and many species have proven resistant to culturing tech-
niques. Historically this has been true of the many anaerobic species in the gut, but 
more recently high-throughput methods have been rapidly closing the gap of uncultura-
ble microbes [30, 31]. While inference methods might help temporarily fill in the gap on 
unculturable microbes, there is no reason to think that their state of unculturability will 
persist for long, suggesting that curated database approaches will be even more appeal-
ing in the future.

Third, compiling information manually is laborious and, unavoidably, leads to the 
introduction of occasional errors. In a previous paper [13], we used comparison to the 
ProTrait database [12] to determine that the error rate for our trait compilation method 
was ∼ 0.5% . This is relatively low, and comparable to the ProTrait database itself [13]. 
However, to improve accuracy, we encourage feedback (https://​bewic​klab.​weebly.​
com/​datab​ases--​packa​ges.​html). This allows for a living database that can be cor-
rected as errors are identified and new information becomes available through culture 
experiments.

Finally, in most cases the largest drawback to the database approach is the absence 
of any universal, regularly updated trait database for microbes, though much of the 
required information does exist in the literature at large and some attempts have been 
made to capitalize on this [11, 12, 32]. Thus compilation becomes a necessary, and time-
consuming step. It is our hope that our domain-specific trait database can help to allevi-
ate this problem, at least in human microbiome research.

Conclusions

We built and analyzed a domain-specific microbial trait database to better understand 
the functional composition of the human microbiome. Using a combination of phylo-
gentically concious machine learning tools and a network science approach, we were 

https://bewicklab.weebly.com/databases--packages.html
https://bewicklab.weebly.com/databases--packages.html
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able to link particular traits to areas of the human body, discover traits that determine 
the range of body areas a microbe can inhabit, and uncover drivers of metabolic breadth.

Methods
Input data

Taxon lists and taxon prevalence profiles

The HMP.ab.txt.bz2 file containing microbial compositions of human gut, vaginal, 
mouth, skin and oral/airway samples was downloaded from from the NIH Human 
Microbiome Project website (https://​www.​hmpda​cc.​org/​HMSMC​P/#​data). From this 
data file, we obtained lists of microbial taxa, along with their relative abundances for 
each of the 690 samples from the Human Microbiome Project whole metagenome shot-
gun sequencing project that passed quality control [33, 34]. Using the taxa lists for each 
of the 690 samples, we then compiled a master list of all microbes recorded in at least 
one sample. This list was used to develop our trait database.

Following the convention of the Human Microbiome Project we refer broadly to body 
areas (gut, vagina, mouth, skin, airways) and more specifically to body sites (e.g. stool, 
posterior forxin, buccal mucosa, retroauricular crease, anterior nares). Each sample can 
be categorized as being from a specific body site within a larger body area.

Trait database

Using the lists of taxa generated above, we compiled a database of microbial traits. For 
this, we relied on Bergey’s Manual of Systematic Bacteriology [35–38] and the original 
journal articles describing each species. We only considered validly described species 
and did not include Candidatus taxa, where little information was available. In addition 
we ignored taxa lacking valid species descriptions. Our database contains trait informa-
tion for 2260 species.

We also added entries for genus-level traits (some taxa in the analysis below could only 
be identified down to the genus level). For each genus, we took the value for each trait 
to be the consensus value across entries for species in that genus. If there was not 100% 
agreement among species in a genus for a particular trait, that trait value was coded as 
missing. Our database includes entries for 1111 genera.

In total, our database includes 155 traits. Of these 13 take on continuous values (e.g., 
optimal growth temperature; coded as NA when not reported), 45 are categorical (e.g., 
aerobe, anaerobe, faculative, etc.; coded as NA when not reported), and 97 are binary 
variables indicating the presence or absence of a certain activity (e.g., growth on glucose, 
production of hydrogen sulfide; coded as 0 when not reported or if explicitly reported as 
being absent).

Four phyla in particular (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacte-
ria) had at least 50 representative taxa found in both the trait database and HMP sam-
ples. For many downstream analyses we focus on these four phyla, as they have sufficient 
data available to train and test phylum-specific models.

https://www.hmpdacc.org/HMSMCP/#data
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Mean trait value profiles

For each individual trait, we took a weighted mean of that trait’s value in a given sam-
ple using species relative abundances as weights (this amounts to averaging trait values 
over individuals, and the result would be identical using absolute abundances). In cases 
where trait values were missing for a given species, abundances were renormalized in 
the absence of that species, so that the weighted mean was only taken among known 
trait values. This yielded a matrix with traits as rows and individual samples as columns, 
where entries represented the mean value of a trait across microbes in a sample.

Phylogeny

For each taxon identified to the species level that was represented in both the trait data-
base and HMP dataset, we downloaded a single genome from NCBI’s RefSeq database 
[39], with a preference for reference and representative genomes as well as completely 
assembled genomes. Using PhyloSift v1.0.1 [39] we identified and aligned core genes 
that were shared between all genomes in a phylum (phylosift search and phylosift align 
commands using the –besthit option). We then concatenated these alignments for phy-
logenetic analysis (45 genes in Actinobacteria, 48 in Bacteroidetes, 44 in Firmicutes, and 
49 in Proteobacteria). Finally, we inferred a phylogeny for each phylum using RaxML 
v7.2.8 (options: -m GTR​CAT​ -f a -p 456 -N autoMRE; [40]; Actinobacteria, Additional 
file 2: S22 Fig; Bacteroidetes, S23 Fig; Firmicutes, S24 Fig; Proteobacteria, S25 Fig).

Generalism

For each of the taxa represented in both the trait database and HMP dataset, we quan-
tified the generalism of each species across the human microbiome. We calculated 
the number of body areas (gut, vagina, airways, skin, mouth) each taxon appeared in, 
requiring at least two appearances in samples from an area to be counted (331 taxa after 
excluding those found in only a single sample). This requirement for two appearances is 
intended to reduce the possibility of false-positives, where singletons are more likely to 
be the result of noise rather than the actual association of a taxon with a given body area. 
Indeed, our predictive models performed poorly when trained/tested without first filter-
ing out singletons (Additional file 2: S26 Fig).

Body‑site versus trait associations

Pairwise differences in trait composition between body sites

For each trait we performed all pairwise comparisons between body sites. Statistically 
different mean trait values between sites were determined using a permutation test. First 
the mean value of each trait in each sample across individuals was calculated (see above). 
Then, for each trait and each pair of body sites we compared the difference in the mean 
trait value as our test statistic. For each pair of body sites, body site identifiers were then 
permuted and the mean difference in trait values was re-calculated to generate a null 
distribution for comparison (10,000 permutations). In order to account for multiple test-
ing, we controlled the false discovery rate using the Benjamini-Hochberg correction, a 
popular method in exploratory studies ( α = 0.05 ; [41]).
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In order to control for the possibly confounding effects of phylogeny, we repeated this 
analysis for each phylum with a large number of species in the dataset (Actinobacte-
ria, Bacteroidetes, Firmicutes, and Proteobacteria). Trait-comparison pairs that were 
found to be significant in more than one phylum were considered to be ecologically 
informative.

For both analyses we randomly sampled only one sample per body site for each study 
subject, as repeated samples from the same subject cannot be considered to be statisti-
cally independent.

Predicting body site from trait composition using random forests

In order to identify traits strongly associated with a particular body site we took a pre-
dictive approach that incorporated random forests for prediction with blocked cross 
validation [14, 42] to correct our error estimates for phylogeny. We split each sample 
into four individual communities for each of its constituent phyla (Actinobacteria, Bac-
teroidetes, Firmicutes, Proteobacteria) and calculated the mean trait values individually 
for each of these phyla-samples (i.e., the set of species in a sample from a given phylum). 
Then, leaving out the phyla-samples from one of these phyla (e.g. Actinobacteria) we 
fit a random forest (randomForest R package, 5000 trees, stratified sampling for uneven 
classes; [43, 44]) to perform binary classification on whether a phyla-sample was from 
a given body site (e.g. stool/not-stool) using the remaining three sets of phyla-samples. 
This was repeated leaving each phylum out in turn, with predictive ability calculated 
on the left-out phylum each time (i.e., blocked cross validation [14]). We did this for all 
body sites with samples from ≥ 10 individuals available (stool, fornix, nares, retroauricu-
lar crease, plaque, buccal mucosa, tongue).

Trait network

Using the trait prevalence profiles we found above, we constructed trait co-occurence 
networks. We used the graphical Lasso method [45] to find conditionally dependent 
interactions between traits (tuning parameter selected using Extended Bayesian Infor-
mation Criterion, EBICglasso() function in the qgraph R package; [46]).

In order to identify suites of associated traits, we then performed community detec-
tion on the resulting network using the spin-glass method (igraph R package; [47]). This 
approach comes from statistical physics and is based on a model used to describe par-
ticle spin states [48, 49]. There are many different graph-clustering algorithms availa-
ble (and many are implemented in popular network science packages like igraph [47]), 
each based on different criteria and with a different tendency to either “lump” or “split” 
groups. The spin-glass method has the advantage of being able to account for both posi-
tive and negative interactions in the network when performing community detection, 
whereas most other methods ignore negative interactions. Nevertheless, a comparison 
with several other clustering methods (information theoretic, Additional file 2: S27 Fig; 
heirarchical, S28 Fig; centrality-based, S29 Fig) revealed that the methods tended to 
agree on group membership (with the exception of the method based on betweeness 
centrality S29 Fig).

We then built a bipartite network associating the trait clusters we found above with 
specific body sites. We performed Lasso regressions with each site as a binary outcome 
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variable (glmnet package in R, 10-fold cross validation on mis-classification error to 
choose � ; [50]) and the trait values associated with that site as predictors. We then took 
the weight of an edge connecting each site with each cluster as the mean regression coef-
ficient for a site with all traits in a given cluster that were retained in the model.

Predicting generalism using random forests

We constructed random forest models to predict generalism within each phylum (ran-
domForest R package, 5000 trees, stratified sampling for uneven classes). For simplicity, 
we coded specialism/generalism as binary trait, where a species was considered a spe-
cialist if it appeared in one body area only, and a generalist if it appeared in more than 
one body area. Any missing trait values for a given taxon were imputed using the mean 
trait value in the database. The out-of-bag error estimate produced during the fitting of 
a random forest will give a biased estimate of model performance when observations 
are not independent of one another. This is potentially the case for our phylogenetically 
structured dataset. To get an accurate estimate of our prediction error we used blocked 
cross validation [14], in which, instead of choosing folds at random from the data, we 
choose monophyletic clades on the phylogeny. By estimating our error on groups that 
can be considered to have evolved independently of the data on which the model was 
trained, we prevented confounding the effects of phylogenetic structure from influenc-
ing our model accuracy estimates.

In practice this meant building a series of random forest models for a given phylogeny, 
each leaving out a single class (blocked cross validation with classes as the folds). We 
then estimated our error by predicting each of the excluded folds in turn and calculating 
metrics of model performance. We repeated this process for each phylum.

To assess how well we could predict generalism when extrapolating across phyla (as 
opposed to within phyla, as above), we took a similar approach, this time considering all 
phyla together in a blocked cross validation framework, and using each phylum as a fold. 
We then assessed cross-phylum performance by predicting the generalism of species in 
one phylum using a model trained on the three other phyla, repeating for each phylum 
in turn.

Phylogenetic logistic regression to test for significant associations

We followed up our random forest analysis of generalism with a formal correction for 
phylogeny. We obtained the most important traits that predicted generalism by build-
ing a random forest on each phylum individually, and then selecting the top five ranked 
traits for each model based on mean decrease in the accuracy of the model when that 
variable’s values are permuted. We then performed phylogenetic logistic regression to 
predict generalism based on each of these traits for each of the relevant phyla (20 tests, 
phylolm R package; [51]). Following the recommendation of Ives and Garland based on 
our small sample size [52], we report bootstrapped p values (10,000 bootstraps).

Metabolic breadth versus trait associations

We predicted metabolic breadth of taxa using a similar approach to that used for 
prediction of generalism. Specifically, we defined metabolic breadth of a taxon as the 
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number of carbon substrates on which a microbe can grow as recorded in our data-
base. We then attempted to predict this number using all other traits (excluding sub-
strate use traits). We used a blocked-cross validation approach with phyla as folds, 
and built random forests for regression (randomForest R package, 5000 trees).

Model assessment

We used Cohen’s κ [53] as our index of model performance. Briefly, this index meas-
ures the increase in predictive performance over a null model that has information 
only about class prevalence. If classes are highly unbalanced, it is easy to acheive 
high accuracy with little discriminative ability by always guessing the prevalent class. 
Cohen’s κ essentially corrects for this problem. Values greater than zero indicate dis-
criminative ability greater than this null model, whereas negative values indicate the 
opposite (e.g., randomly guessing “yes” 50% of the time when the actual prevalence is 
“yes” 90% of the time). As noted above, in order to get an unbiased/phylogenetically 
corrected estimate of model performance we used blocked-cross validation, predict-
ing the quantity of interest (source site, generalism, metabolic breadth, etc.) for each 
phylum in turn on the basis of the others and taking the mean κ across these models.
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