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Background
CircRNA is a circular single-stranded RNA molecule. Because circRNA does not have 
a free 5′ terminal cap and 3′ terminal tail, it is biologically stable and has a longer half-
life than linear RNA molecules. It also has evolutionary conservatism and tissue speci-
ficity [1]. Existing studies have shown that circRNAs are enriched in exosomes [2], 
which means that they can be promising biomarkers in diagnosing disease. Identifying 
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potential circRNA-disease associations can help understand the pathogenesis of disease 
at the molecular level and help identify biomarkers for diagnosing and treating disease 
[3].

However, biological experiments to confirm circRNA-disease associations are time-
consuming and wasteful of resources. Therefore, it is urgent to predict the potential cir-
cRNA-disease associations for biological experiments to make them more efficient. In 
recent years, many circRNA-disease interaction databases have been built whose data 
are manually curated from the publications, such as CircR2Disease [4], Circ2Disease [5], 
and circRNADisease [6] databases. The information on these verified circRNA-disease 
interactions provides us with an opportunity to develop computational methods to pre-
dict potential circRNA-disease associations. Until now, much effort has been made to 
combine available data with different methods  to predict potential circRNA-disease 
associations. These methods can be broadly divided into two categories; the first is the 
network-based method, and the second is the machine learning-based method. The net-
work-based method usually uses a network to obtain the final prediction result. In con-
trast, the machine learning method usually starts with a training set of balanced positive 
and negative samples. Then the features and labels of the training set are used to train 
the model and then use the prediction model. For example, Lei et al. [7] proposed a path-
weighted method to predict the circRNA-disease association based on a heterogeneous 
network composed of a circRNA similarity network, a disease similarity network and a 
circRNA-disease association network. Fan et al. [8] introduced a KATZ method for pre-
dicting the potential circRNA-disease association based on the expression profile simi-
larity of circRNAs, the phenotypic similarity of diseases, and known circRNAs-disease 
associations. Wei and Liu [9] proposed an iCircDA-MF method that uses MF to predict 
all unknown associations. Yan et al. [10] designed a DWNN-RLS model for predicting 
circRNA-disease associations by using the Kronecker product kernel, which is based 
on the regularized least-squares method. Li et al. [11] utilized the NCPCDA method to 
identify potential circRNA-disease associations using multi-view similarity data, includ-
ing circRNA functional similarity, disease semantic similarity, and association profile 
similarity. Lei and Fang [12] proposed a gradient boosting decision tree algorithm to 
make the final prediction using multiple biological data on circRNAs and diseases. Wang 
et al. [13] developed a method in which a numerical descriptor was constructed accord-
ing to the similarity of diseases and circRNAs, and a deep learning convolutional neural 
network algorithm was used to extract the deep features of circRNA-disease descriptors. 
Finally, an extreme learning machine was used as the final classifier. Lei and Bian [14] 
proposed an RWRKNN model, where the random walk algorithm with restart is used to 
weight the characteristics of circRNA and the disease, and KNN was used to make the 
final prediction. Wang et al. [15] constructed a model named GCNCDA, which extracts 
features by using the graph convolutional neural network and predicts the potential cir-
cRNA-disease associations by forest penalizing attributes (Forest PA) classifier. Wang 
et al. [16] used a deep generative adversarial network to draw features from multi-source 
fusion information. They employed a logistic model tree classifier to infer the potential 
circRNA-disease association. Xiao et al. [17] exploited graph regularization and mixed-
norm constraint terms to improve their model prediction potential for circRNA-disease 
associations. Li et  al. [18] proposed a method to predict potential circRNA-disease 
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associations by inductive matrix completion based on the sequence similarity of circR-
NAs and semantic similarity of diseases. Zhao et al. [19] developed a method that inte-
grates the KATZ approach and the bipartite network projection algorithm to perform 
the prediction. Xiao et  al. [20] proposed a weighted low-rank approximation optimi-
zation algorithm that combined dual-manifold regularizations to predict the potential 
circRNA-disease association. Ge et al. [21] exploited locality-constrained linear coding 
to reconstruct similarity networks and developed a label propagation method to obtain 
the final score matrices. Moreover, efficient association prediction models for miRNA-
disease, lncRNA-disease, drug-disease, and lncRNA-miRNA are all very helpful in the 
design of our models and the results analysis [22–28].

Because the machine learning-based method requires reliable negative samples to 
train the model while there are no reliable samples, we chose the network-based method 
to build the model. Additionally, a model that can accurately predict is crucial for the 
model itself construction algorithm and essential for the selection of the dataset and 
its characteristics. Therefore, in this paper, we presented a double matrix completion 
for predicting the circRNA-disease association (DMCCDA) method, a network-based 
method for circRNA-disease association prediction. First, we construct a two-layer 
network based on known circRNA-disease associations, so the association matrix was 
established. Additionally, we established a Gaussian similarity matrix for circRNA 
and disease, respectively, according to the association matrix. Second, we construct a 
sequence similarity network of circRNA and a semantic similarity network of diseases, 
and then the corresponding similarity matrix is established. Third, we used matrix 
multiplication to update the association matrix from the circRNA and disease aspects. 
Fourth, we use double matrix completion to update the matrix block, which is composed 
of the updated association matrix and the corresponding Gaussian similarity matrix 
from two aspects. Finally, we integrated the results as the final prediction score. After 
we have the final model, we use leave-one-out cross-validation (LOOCV) and five-fold 
cross-validation (FFCV) to evaluate the performance of the DMCCDA. The value of 
AUC was 0.9597 under LOOCV, the mean AUC was 0.9623, and the standard deviation 
was 0.0029 under 100 FFCV. A case study also demonstrated that DMCCDA could accu-
rately predict potential circRNA-disease associations.

Result
Performance evaluation

In this study, to evaluate the performance of the model, we conducted global LOOCV 
and FFCV. The AUC value of LOOCV reached 0.9494, whereas the average AUC of 100 
FFCV was 0.9623. First, all known circRNA-disease associations were treated as positive 
samples, and the other samples were considered candidate samples. In LOOCV, a known 
circRNA-disease association serves as a test sample. The remaining positive samples are 
used to train the model; then, we integrate the predicted scores of all the candidate sam-
ples with the predicted scores of each test sample. Finally, we drew a receiver-operating 
characteristic (ROC) curve and calculated the area under the ROC curve (AUC) based 
on the labels and the predicted scores. The corresponding ROC curves are shown in 
Fig. 1.
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As for FFCV, we divide all known circRNA-disease samples into five parts; each part 
is considered as a test sample, whereas the other four parts serve as training sets, and 
we can integrate all known circRNA-disease sample prediction scores with all candidate 
samples’ prediction scores and draw a ROC curve and calculate the AUC. To avoid the 
impact of positive sample partitioning on the performance of the evaluation model, we 
performed FFCV 100 times, each time selecting a different partition. Before we draw the 
ROC curve, we first rank the scores in descending order and set one score at a time as a 
threshold. If the score is greater than the threshold, the prediction is positive; if the score 
is less than the threshold, the prediction is negative. The true positive rate (TPR/sensitiv-
ity) and false-positive rate (FPR/1- specificity) were calculated at different thresholds. 
Sensitivity means that the prediction of the sample is positive, and the actual label is 
true. In contrast, specificity means that the prediction of the sample is positive, and the 
actual label is false. The true positive and false-positive rates were formulated as follows:

where TP indicates that the actual label of a sample is positive and the predicted result 
is positive, FP represents that the actual label of a sample is negative and the predicted 
result is positive, TN denotes that the actual label of a sample is positive and the pre-
dicted result is negative, and FN indicates that the actual label of a sample is positive, 
and the predicted result is negative.

Parameter analysis

In the last step of predicting for all samples, we need to integrate two score matrices. To 
further improve the performance of the model, we adjusted the parameter α to integrate 

(1)TPR =
TP

TP + FN

(2)FPR =
FP

FP + TN

Fig. 1  ROC of LOOCV and the value of AUC is 0.9494
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the two score matrices. We look for the most appropriate parameter α in the inter-
val from 0 to 1 by setting the step size to 0.1 and calculating the AUC under LOOCV. 
Finally, we obtained different AUCs under different values of α; when the value of α was 
set to 0.7, the value of AUC under LOOCV reached the highest value of 0.9597. There-
fore, we chose 0.7 as the final value of α. The values of AUC under LOOCV with differ-
ent values of α are shown in the scatter diagram in Fig. 2. From Fig. 2, we can see that 
the values show a trend and get the highest value when α is 0.7, which means that the 
model’s performance is better when we pay more attention to the scoring matrix of the 
circRNA space.

The importance of model components

We conducted the following two experiments to show that matrix multiplication and 
double matrix completion in the model are important for predicting the potential cir-
cRNA-disease associations. On the one hand, we exploit matrix multiplication to obtain 
the updated association matrix from the disease perspective and circRNA perspective 
and integrate the matrices as the final prediction score. The AUC value of this model for 
LOOCV was 0.8914. On the other hand, we use double matrix completion to update the 
matrix block, composed of an association matrix and a Gaussian matrix. We then inte-
grate the two new association matrices as the final prediction score, whereas the matrix 
multiplication operation does not update the association matrix. The corresponding 
AUC was 0.7811 under the LOOCV. As shown in the two experiments above, when only 
part of the model is used to predict the potential correlation, the results are not com-
petitive. Therefore, we conclude that both parts of the DMCCDA model are essential for 
predicting potential associations.

Prediction of a new node

A new node in the association network is a disease node with no known circRNA associ-
ated with the disease or a circRNA node with no known disease associated with this cir-
cRNA. To evaluate the performance of our model for predicting new nodes, we selected 
four diseases: stomach cancer, breast cancer, colorectal cancer, and malignant glioma 

Fig. 2  AUC values of LOOCV for different parameters
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cancer. The total number of circRNAs known to be associated with these three diseases 
was the highest. Additionally, the total number of circRNAs known to be associated with 
them was 76, 43, 38, 31, as shown in Fig. 3. Firstly, we suppose all associations between 
all circRNAs, and stomach cancer are unknown. Thus, we set all values of the column 
corresponding to stomach cancer in the association matrix to 0. Then, we calculated the 
Gaussian similarity matrix according to the new association matrix and exploited the 
DMCCDA model to predict all samples, including associations between all circRNAs 
and stomach cancer. Finally, all circRNAs and stomach cancer prediction scores were 
ranked in descending order. We also calculated the number of associations among the 
top 50 predicted outcomes as known associations. As a result, we find that the top 50 
predicted associations are known. We also used the same method to evaluate the per-
formance of our model for predicting breast cancer, colorectal cancer, and malignant 
glioma. As for breast cancer, 43 of the top 50 predicted associations are known, 35 of 
the top 50 predicted associations are known for colorectal cancer, and 28 of the top 50 
predicted associations are known. We also look at the top 30, and the results are shown 
in Fig. 4.

As shown in Fig. 3, the number of circRNAs related to these four diseases showed a 
decreasing trend. The total number of experimentally validated associations among the 
top 50 predicted results for the four diseases also decreased (Fig. 4). However, the total 
number of experimentally validated associations among the top 30 predicted results for 
the four diseases all reached 30, which means that the DMCCDA model has high effi-
ciency in predicting potential circRNA-disease associations.

The effect of the model on different datasets

We have shown above that our known circRNA-disease associations were collected from 
three databases. We built the association matrix after integrating the data, built the cor-
responding association matrix for the associated data in the three databases, and used 
our model to make predictions for the samples involved in the three association matri-
ces. Data in the database CircR2Disease were processed into 445 known association 

Fig. 3  Number of known related circRNAs of four diseases
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pairs, involving 389 circRNAs and 61 diseases, and data in the database Circ2Disease 
were processed into 240 known associations, involving 215 circRNA and 46 diseases. 
The circRNADisease database was processed into 241 known associations, involving 
223 circRNAs and 34 diseases. The LOOCV was used to evaluate the performance of 
our model on these datasets, and the AUCs were 0.9673, 0.9447, and 0.9568, respec-
tively. From the high value of the AUC, we can conclude that our model can obtain good 
results on different datasets.

Compare with other methods

To prove the effectiveness of our method, we compared it with five state-of-the-art 
methods, that is, NCPCDA [11], PWCDA [7], iCircDA-MF [9], RWRKNN [14], and 
GCNCDA [15]. Among them, three methods (NCPCDA, PWCDA, and iCircDA-MF) 
are network-based approaches, and the rest are machine learning-based methods. We 
compared our DMCCDA method with these five methods in terms of the AUC under 
FFCV. The corresponding AUC values of all these methods are listed in Table 1. We can 
see that the AUC value in our method reached 0.9623, whereas the AUC values of NCP-
CDA, PWCDA, iCircDA-MF, RWRKNN, and GCNCDA were 0.9201, 0.890, 0.9178, 
0.9333, and 0.9090, respectively. Therefore, we can conclude that our method is supe-
rior to other methods, and our method can be used to predict potential circRNA-disease 
associations.

Case study

To further verify the efficiency of our model, we selected the top ten samples from all 
unknown circRNA-disease pairs according to the score produced by our model. We 

Fig. 4  Total number of experimentally validated associations among the top 30 and top 50 of the predicted 
results for the four diseases

Table 1  AUC values of different models under FFCV

Methods NCPCDA PWCDA iCircDA-MF RWRKNN GCNCDA DMCCDA

Auc(FFCV) 0.9201 0.8900 0.9178 0.9333 0.9090 0.9623
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used the published literature to verify the prediction results (Table 2). We can see that 
six of the top 10 prediction samples are verified in the literature. Based on the existing 
literature, we can verify that circRNA hsa_circ_0001649 and circRNA hsa_circ_0001141 
are related to liver cancer [29, 30]. In addition, a recently published paper showed that 
circRNA hsa_circ_0000284 promotes gemcitabine sensitivity in bladder cancer [31] and 
has also been verified to be related to esophageal cancer via microRNA [32]. A published 
study also showed that circRNA hsa_circ_0001141 is associated with esophageal can-
cer [33]. Another study showed that circRNA has_circ_0001141 inhibits stomach cancer 
migration, invasion, and proliferation by regulating the Wnt/β-catenin pathway [34].

Conclusion
Identifying circRNAs associated with the disease can provide a better understanding of 
the pathogenesis of the disease at the molecular level and help identify biomarkers of the 
disease and the design of drugs. In this paper, we propose a novel method, DMCCDA, 
to predict potential circRNA-disease associations for biological experiments to promote 
its efficiency and reduce resource consumption. First, we integrated circRNA-disease 
associations from three databases collected by circRNA-disease associations manually 
from published papers and constructed an association matrix to obtain as many experi-
mentally verified circRNA-disease associations as we can. Second, we calculated the 
circRNA sequence similarity based on the circRNA sequence information and disease 
semantic similarity according to the disease ontology. Additionally, we calculated the 
Gaussian similarity matrices according to the association matrix for circRNA and dis-
ease. Finally, we exploit the matrix multiplication operation to update the association 
matrix from circRNA and disease respect by circRNA sequence similarity and disease 
semantic similarity. Then, we used matrix completion to predict all the unknown sam-
ples. We mainly evaluated the performance of the model using the AUC of LOOCV and 
FFCV. The experimental results and case study demonstrate the high efficiency of the 
model.

Although many models have been developed to predict potential circRNA-disease 
associations, there are still many problems in this field. For instance, we lack reliable 
negative samples to develop machine learning-based methods. Additionally, some mod-
els cannot make predictions for new nodes, such as a new disease that has no known 

Table 2  Top 10 circRNA-disease associations predicted by our model

Rank Diseases circRNAs PMID

1 Liver cancer hsa_circ_0001649 28185365

2 Liver cancer hsa_circ_0001141 29760792

3 Bladder carcinoma hsa_circ_0000284 32194801

4 Hepatoblastoma hsa_circ_0000284 Unconfirmed

5 Esophageal cancer hsa_circ_0000284 32189968

6 Esophageal cancer hsa_circ_0001141 28969099

7 Pharynx squamous cell carcinoma hsa_circ_0000284 Unconfirmed

8 Stomach cancer hsa_circ_0001141 33060778

9 Triple-receptor negative breast cancer hsa_circ_0000284 Unconfirmed

10 Esophageal cancer hsa_circ_0001649 Unconfirmed
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related circRNAs or a circRNA that has no known related diseases. In this study, we 
developed a semi-supervised method to predict potential circRNA-disease associations, 
which means that we do not need negative samples. Additionally, our model can be used 
to predict the new nodes. However, our model had some limitations. First, the method 
used to calculate the similarity between circRNAs and diseases is insufficient. Second, 
matrix completion is often used to complete the missing values. However, in this study, 
matrix completion is used to update the new association matrices that integrate the sim-
ilarity in circRNA and disease spaces, which may introduce some noise. In the future, we 
will consider these problems and design a better method to predict potential circRNA-
disease associations. In addition, as the association prediction, the circRNA-disease 
association prediction has a close relationship with the microRNA-disease association 
prediction, the lncRNA-disease association prediction, and drug reposition. We will pay 
attention to these kinds of association prediction, which belong to association prediction 
and are essential for diagnosing and treating complex human diseases. As for these types 
of association prediction methods, there are many innovative methods based on deep 
learning to learn the feature representation and achieve a good result. In the future, we 
will design a model that considers the characteristics and reduces the impact of unveri-
fied negative samples on the model.

Methods
Human circRNA‑disease associations

To make full use of the information available, we collected experimentally verified asso-
ciations from three databases, including CircR2Disease, Circ2Disease, and circRNADis-
ease. All–RNA the disease associations of these three databases were manually collected 
from published articles. The CircR2Disease database collected 739 circRNA-disease 
associations involving 512 circRNAs and 71 diseases from articles published before 
March 31, 2018. The Circ2Disease database collected 273 circRNA-disease associations 
involving 237 circRNAs and 54 diseases from articles published before November 1, 
2017. The circRNADisease database collected 354 circRNA-disease associations involv-
ing 330 circRNAs and 48 diseases from articles published before November 2017. First, 
we extracted human circRNA-disease associations, integrated circRNA-disease associa-
tions from three databases and removed duplicate associations. Then, we deleted a part 
of these circRNA-disease associations that include the circRNA, which has no circRNA 
sequence information in circBase or contains the disease that has no disease ontology 
identity (DOID) information in the Disease Ontology (DO) database [35]. Finally, we 
obtained 609 circRNA-disease associations involving 512 circRNAs and 71 diseases. 
Additionally, we constructed an adjacency matrix A that has nc rows and nd columns, 
whereas nc represents the total number of circRNAs, and nd denotes the total number 
of diseases that are involved in the known circRNA-disease associations. If a certain cir-
cRNA is experimentally verified to be related to a certain disease, the element in the cor-
responding position in matrix A is 1; otherwise, it is 0.

circRNA sequence similarity

To calculate circRNA sequence similarity, we first downloaded 140,790 circRNA 
sequence information from the database circBase [36] and then extracted the circRNA 
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sequence information from the known associations involved. Next, we utilized the 
Levenshtein distance [18] to measure the similarity between any two circRNAs. The 
Levenshtein distance represents the minimum number of operands required to con-
vert string A sequence to string B, which means that the shorter the distance, the 
greater the similarity between the two circRNAs. Formula (3) was used to calculate 
the sequence similarity between the two circRNAs.

where dis describes the number of operands needed to convert circRNA circi sequence 
to circRNA circj sequence, and len represents the sequence length of some circRNAs.

Disease semantic similarity

As for disease semantic similarity, we first collected disease DOID information from 
the database Disease Ontology. Then we used the DOSim [37] function to calculate 
disease semantic similarity based on Wang’s method [38]. Because there is an R pack-
age DOSE, we can easily obtain the disease semantic similarity by inputting the dis-
ease DOID. Wang’s method was based on the following formula:

where Tdi represents disease di and all ancestor node of disease di in the directed acyclic 
graph of disease, and SDI (t) indicates the contribution from all nodes in the set Tdi to 
disease di. The details are shown in the following formula:

Gauss interaction profile kernel similarity

The Gaussian interaction profile kernel similarity is another algorithm constructed 
to measure disease similarity and circRNA similarity based on the known association 
matrix. As for the association matrix, the ith row IP (i) represents the associations 
between the ith circRNA and all diseases. The jth column IP (j) denotes the associa-
tions between the jth disease and all circRNAs. Based on the assumption that similar 
circRNAs are more likely to be associated with similar diseases and vice versa, we 
calculated the Gaussian interaction profile kernel similarity for circRNA and disease 
as follows:

(3)SimC(circi, circj) = 1−
dis(circi, circj)

len(circi)+ len(circj)

(4)SimD(di, dj) =

∑

t∈Tdi
∩Tdj

(Sdi(t)+ Sdj (t))
∑

t∈Tdi
Sdi(t)+

∑

t∈Tdj
Sdj (t)

(5)
{

Sdi(di) = 1
Sdi(t) = max{we ∗ Sdi(t

′)|t ′ ∈ childrenof (t)}

(6)KD(di,dj) = exp(−βd ||IP(di)− IP(dj)||
2)

(7)KC(ci, cj) = exp(−βc||IP(ci)− IP(cj)||
2)
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where βd and βc are the kernel bandwidths, which can be calculated as follows:

where βd′ and βc′ are the original bandwidths, and according to previous research, we 
assign the value of the initial bandwidth to 1. Finally, we can obtain the Gaussian interac-
tion profile kernel similarity matrix KD, KC for disease, and circRNA, respectively.

Model construction

To make full use of the known information and find the potential associations, we use the 
following steps to predict potential circRNA-disease associations in this paper. First, we 
collected the known circRNA-disease associations, sequence information about circR-
NAs, and semantic information about diseases. Second, we construct association matrix A, 
sequence similarity matrix CC, and semantic similarity matrix DD based on the informa-
tion gathered in the step above.

Additionally, we calculated the Gaussian similarity matrix KC and KD for circRNA 
and disease according to the association matrix. The preparation materials are shown in 
Fig. 5. Third, we exploit the similarity of circRNA and diseases based on the sequence and 

(8)βd = β ′
d/(

1

nd

∑n

i=1
||IP(di)||

2)

(9)βc = β
′

c/

(

1

nc

∑c

i=1
||IP(ci)||

2

)

Fig. 5  Preparation materials mainly include association matrix, semantic similarity matrix of disease, 
sequence similarity matrix of circRNA, and Gaussian similarity between diseases and between circRNAs
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semantic information of circRNAs and diseases to update the association matrix and obtain 
two updated association matrices Ac and Ad. Fourth, we use double matrix completion 
to update the matrix block, which is composed of the updated association matrix and the 
corresponding Gaussian similarity matrix from two aspects. Finally, we extract the associa-
tion matrix parts Ac* and Ad* from the two matrix blocks after using the matrix comple-
tion algorithm and integrated the two matrices as the predicted score of each sample. The 
corresponding flowchart is shown in Fig. 6, in which we introduce the association matrix 
(A), sequence similarity matrix (CC), and Gaussian similarity matrix (KC) of circRNA, and 
introduced the semantic similarity matrix (DD) and Gaussian similarity matrix (KD) of the 
disease. Then, we use matrix multiplication to update the association matrix; thus, even if 
we obtain a new disease with no known circRNA association, we can predict this disease 
based on the semantic similarity between this disease and other diseases. The formulae are 
as follows:

To control the values of Ac and Ad within a specific range, we carried out the following 
processing for Ac and Ad [11].

Then, we can obtain two updated association matrices Ac and Ad, which integrate the 
similarity of circRNAs and diseases, respectively. Next, we splice the updated matrix Ac 

(10)
Ac = CC ∗ A

(11)Ad = A ∗ DD

(12)Ac(i, j) =
Ac(i, j)

A(:, j)

(13)Ad(i, j) =
Ad(i, j)

A(i, :)

Fig. 6  Flowchart of prediction, step 1: matrix multiplication to update the association matrix by similarity 
matrix. step 2: constructing a matrix block. step 3: matrix completion to update the matrix block. Step 4: 
integrating the scoring matrix of disease and circRNA space
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and the Gaussian matrix KC to form the first matrix block M1. Similarly, we splice Ad 
and the Gaussian matrix KD to form the second matrix block M2. To make the best use 
of the circRNA-disease association matrix information and similarity information, we 
used two matrix complements to update the two matrix blocks obtained in the previous 
step in circRNA and disease space, respectively, which was also inspired by Yang et al. 
[39]. First, in the circRNA space, we integrate the bounded nuclear norm regularization 
to the nuclear norm minimization problem [40], as follows:

where ||M1||* represents the nuclear norm of M1, P is the projection operation, and Ω 
is the universal set. Additionally, α is a harmonic parameter, and the initial value of M is 
M1. W is a new matrix that the following formula can represent:

Then, we can get the model’s augmented Lagrangian function as follows,

where Y is the Lagrange multiplier, and β is the penalty coefficient. Then, the closed 
result is obtained as follows:

We can also get the value of M1 and Y by iterating,

Therefore, by iterating to convergence, we obtain the final recovery matrix W. We simi-
larly conduct matrix M2 in the disease space, and we can obtain the updated matrix Ad*. 
Finally, we obtain two scoring matrices and integrate them using the following equation:

where α is the integration parameter. After the relevant experiments, we set the param-
eter value to 0.7. Then, we can obtain all the samples’ scoring matrix Ascore.

(14)
min||M1||∗ +

α

2
||P�(M1)− P�(M)||2F

s.t. 0 ≤ M1 ≤ 1

(15)
min||M1||∗ +

α

2
||P�(W )− P(M)||2F

s.t. M1 = W , 0 ≤ W ≤ 1

(16)
L(W ,M1,Y ,α,β) = ||M1||∗ +

α

2
||P�(W )− P�(M)||2F

+Tr(YT (M1−W ))+
β

2
||M1−W ||2F

(17)Wk+1 =

(

L−
α

α + β
P�

)(

1

β
Yk +

α

β
P�(M)+M1k

)

(18)M1k+1 = arg min
M1

||M1||∗ +
β

2
||M1−

(

Wk+1 −
1

β
Yk

)

||2F

(19)Yk+1 = Yk + β(M1k+1 −Wk+1)

(20)Ascore = αAc∗ + (1− α)Ad∗
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