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Abstract 

Background:  Microbiome studies have uncovered associations between microbes 
and human, animal, and plant health outcomes. This has led to an interest in develop-
ing microbial interventions for treatment of disease and optimization of crop yields 
which requires identification of microbiome features that impact the outcome in the 
population of interest. That task is challenging because of the high dimensionality of 
microbiome data and the confounding that results from the complex and dynamic 
interactions among host, environment, and microbiome. In the presence of such 
confounding, variable selection and estimation procedures may have unsatisfactory 
performance in identifying microbial features with an effect on the outcome.

Results:  In this manuscript, we aim to estimate population-level effects of individual 
microbiome features while controlling for confounding by a categorical variable. Due 
to the high dimensionality and confounding-induced correlation between features, we 
propose feature screening, selection, and estimation conditional on each stratum of 
the confounder followed by a standardization approach to estimation of population-
level effects of individual features. Comprehensive simulation studies demonstrate 
the advantages of our approach in recovering relevant features. Utilizing a potential-
outcomes framework, we outline assumptions required to ascribe causal, rather than 
associational, interpretations to the identified microbiome effects. We conducted 
an agricultural study of the rhizosphere microbiome of sorghum in which nitrogen 
fertilizer application is a confounding variable. In this study, the proposed approach 
identified microbial taxa that are consistent with biological understanding of potential 
plant-microbe interactions.

Conclusions:  Standardization enables more accurate identification of individual 
microbiome features with an effect on the outcome of interest compared to other vari-
able selection and estimation procedures when there is confounding by a categorical 
variable.

Keywords:  High-dimensional feature selection, Microbiome analysis, Next-generation 
sequencing, Standardization, Causal inference
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Introduction
Advancements in next-generation sequencing (NGS) technologies have recently allowed 
for unprecedented examination of the community of microorganisms in a host or site 
of interest, referred to as a microbiome [29]. Early cultivation-dependent methods only 
allowed for detection of a small fraction of the total microbial species present. In con-
trast, NGS technologies can rapidly detect thousands of microbes in each sample by 
determining the nucleotide sequences of short microbial DNA fragments. These frag-
ments may either correspond to targets of a specific genetic marker, commonly the 16S 
ribosomal RNA gene for taxonomic identification of bacteria as in amplicon sequencing, 
or result from shearing all the DNA in a sample as in shotgun metagenome sequencing 
[40]. For each fragment, the corresponding nucleotide sequence is referred to as a “read,” 
the length of which is dependent on the specific NGS system [33].

Both amplicon-based and shotgun metagenomic approaches can enumerate the rela-
tive abundance of thousands of microbial features per sample. Use of amplicon sequenc-
ing for microbial enumeration is more common than shotgun metagenome sequencing 
due to reduced cost and complexity. For this reason, we focus on amplicon-based micro-
biome data here, and refer the reader to Sharpton [47] for detailed coverage of metagen-
omic sequencing and Knight et al. [28] for a thorough comparison of the two approaches. 
In order to enumerate microbes, amplicon reads are typically clustered into operational 
taxonomic units (OTUs) according to a fixed level of sequence similarity (e.g., 97%) [62], 
or as advocated by Callahan et al. [8], enumerated on the basis of denoised sequences 
termed exact amplicon sequence variants (ASVs). Both OTUs and ASVs may be clas-
sified into known taxa [44]. The resulting microbiome data for each sample are high-
dimensional nonnegative integer counts across potentially thousands of features (taxa, 
OTUs, or ASVs). These counts represent relative, not absolute, numbers for each sample 
due to varying library sizes, a technical limitation of NGS approaches. Consequently, 
microbiome data must be normalized, rarefied, or treated as compositional in order to 
make comparisons across samples and it is unresolved which method is optimal for a 
particular research question and data set [17, 35, 61].

Microbiome studies have uncovered associations between microbes and human, 
animal, and plant health outcomes. Randomized clinical trials have been performed 
to determine the causal effect of fecal microbiota transplantation [9], but these do not 
provide causal inference on the contribution of individual microbiome features. It is 
important to identify individual microbiome features with a causal effect on the out-
come because such discoveries may lead to development of microbial interventions 
for treatment of disease or optimization of crop yields. A recent review highlights the 
importance of identifying individual taxa with biologically relevant roles in microbiome 
studies [3].

Recently, there has been interest in causal inference in microbiome studies [65]. The 
gold standard for causal inference is to randomly assign treatments (here, microbiome 
interventions) and estimate the causal effect. However, this is challenging in microbi-
ome studies since many microorganisms cannot be directly cultured [53], and random 
assignment of microbiomes to units is often not possible. To date, causal inference 
in microbiome studies has been primarily limited to causal mediation analysis that 
determines if a causal effect of treatment is transmitted through the microbiome [52, 
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58, 71]. Software has been developed to apply Granger causality [19] to microbiome 
time series [2], but the performance of such an approach has not been thoroughly 
evaluated using simulation studies.

In this work, we aim to identify individual microbial features with a causal effect 
on an outcome in a population of interest using causal inference. Here, the micro-
biome features are considered to be multivariate exposures, and are often of much 
higher dimension than the sample size. Previous work on high-dimensional causal 
inference is typically limited to settings with high-dimensional confounders rather 
than exposures (e.g., Schneeweiss et  al. [45]) or directed graphical modeling [38]. 
Recently, Nandy et  al. [36] considered directed graphical modeling for estimation 
of joint simultaneous interventions. However, their approach requires linearity and 
Gaussianity assumptions for high-dimensional inference, which are inappropriate for 
microbiome count data. There are proposed approaches for causal inference for mul-
tivariate exposures or treatments using the potential-outcomes framework, and such 
approaches often rely on the generalized propensity score [24]. Siddique et  al. [50] 
compared inverse probability of treatment weighting, propensity score adjustment, 
and targeted maximum likelihood approaches for multivariate exposures. Wilson 
et al. [64] proposed Bayesian model averaging over different sets of confounders when 
the set of true confounding variables is unknown. When the exposures are time-var-
ying, Taubman et al. [54] considered g-estimation and Hernán et al. [21] proposed a 
marginal structural model. However, in all of these studies with multivariate expo-
sures, the exposure dimensionality is smaller than the sample size.

In addition to the high dimensionality, causal inference for microbiome studies is 
complicated by potentially complex interactions among host, environment, and micro-
biome. For example, there could be categorical confounding variables that affect both 
the outcome and some of the microbiome features. To overcome the challenges of the 
high dimensionality and presence of categorical confounding variables in microbiome 
studies, we propose standardization on the confounder and use the potential-outcomes 
framework for causal inference [26]. The potential-outcomes framework [22, 37, 42] 
conceptually frames causal inference as a missing data problem: the outcome can only 
be measured under the exposure actually received, making the outcome unobservable 
under all other possible values of the exposure. We refer the reader to Hernán and Rob-
ins [20] for a more detailed introduction. To deal with high-dimensionality of the micro-
biome exposure and categorical confounding variables, we propose variable screening, 
selection, and estimation of microbiome effects conditional on the confounder (i.e., strat-
ification), followed by standardization to obtain estimates of effects in the population of 
interest. Conditioning on the confounder for microbiome feature screening, selection, 
and estimation avoids complications due to high marginal confounder-induced correla-
tion between features. Further, conditional estimation naturally allows for effect modi-
fication (i.e., interaction between the confounder and microbiome features), affording 
flexibility to capture host-environment-microbiome interactions. Standardization allows 
for estimation and ranking of microbiome feature effects in the target population, which 
has policy and epidemiological relevance. Even if conditions for causal inference do not 
hold, avoiding such marginal correlation allows for superior identification of associa-
tional microbiome effects.
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In this manuscript we begin by defining the estimands of interest and outlining condi-
tions required for causal inference in "Model and assumptions" section. We then propose 
our estimation approach with standardization in "Methods" section. Next, we demon-
strate the feasibility of our approach through simulation studies in "Simulation studies" 
section and present a real data application using an agricultural microbiome study in 
"Real data analysis" section. This paper ends with a discussion and conclusion.

Model and assumptions
Notation, microbiome effects, confounding

Consider a study with n samples (indexed by i = 1, . . . , n ) aimed at identifying the 
population effect β = (β1, . . . ,βp)

′ of p microbiome features (e.g., taxa, ASVs, OTUs) 
Ai = (Ai1, . . . ,Aip)

′ on an outcome Yi ∈ R , such as a health response of interest. For for-
mulating the estimand, we assume that Ai has been appropriately normalized. Impor-
tantly, Yi represents the observed outcome for sample i, which differs from the notion 
of a potential outcome [42]. Define the potential outcome Y a

i  as the value the outcome 
would take under the (possibly counterfactual) microbiome value a = (a1, . . . , ap)

′ . 
Assume that the expected potential outcome is related to the population effect β through 
a linear function of the microbiome features as

where for each j, βj represents the effect of the jth microbiome feature in the population 
and aj is the potential or counterfactual value of the jth microbiome feature. In terms 
of (1), identifying which microbiome features have a causal effect on the response cor-
responds to estimation and inference for βj ( 1 ≤ j ≤ p) . For generality, the formulation 
of   (1) ignores possible microbe-microbe interactions and any constraints of carrying 
capacity.

Note that the model in (1) is defined for the potential outcomes, not the observed data, 
and is thus a marginal structural model [21]. In the presence of a confounding varia-
ble Li that affects both Ai and Yi , this model generally does not hold for the observed 
data because confounding implies E

(
Y a

i

)
 = E (Yi |Ai = a) . Consequently, specific 

assumptions and methodology are required to obtain an estimator β̂ of β that has causal, 
rather than merely associational, interpretation. In the next sub-section, we address the 
assumptions required for such a causal interpretation. We restrict our attention to the 
case where the confounder Li is categorical with a finite number of levels, each repre-
sented sufficiently in the study of n samples.

Assumptions for causal inference

Under the potential-outcomes framework, ascribing a causal interpretation to an estimate 
of β requires three assumptions: positivity, conditional exchangeability, and consistency 
[20]. Positivity requires positive probability for each possible microbiome level, conditional 
on the confounder. To formalize this, let A denote the set of all possible microbiome values 
in the population. The positivity condition holds if Pr (Ai = a | Li = l) > 0 for all a ∈ A 
and all levels l of confounder Li such that Pr (Li = l) �= 0 in the population of interest, 

(1)E
(
Y a

i

)
= β0 +

p∑

j=1

βjaj ,
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henceforth denoted by the set L . Clearly, if a given microbe is either absent or below the 
limit of detection across all samples, its effect on the response cannot be determined. 
Hence, this assumption requires a large enough sequencing depth in order to sufficiently 
enumerate any present microbes with a causal effect. Practical considerations for evaluating 
the positivity assumption are covered by Westreich and Cole [63].

To meet the conditional exchangeability requirement, the data-generating mecha-
nism for each possible microbiome must depend only on the confounder, formalized 
as  for all l ∈ L , where  denotes statistical independence. Conditional 
exchangeability requires no unmeasured confounding. This assumption is most justifi-
able in experiments where the confounder is randomly assigned as in our motivating study 
described later in "Real data analysis" section, where agricultural plots are randomized to 
either low or high nitrogen fertilizer.

The consistency criterion is met if the observed outcome for each unit is the potential 
outcome under the observed microbiome, formally stated as Ai = a =⇒ Y a

i = Yi . For 
microbiome data, this necessitates appropriate normalization. Since NGS-based tech-
nologies enumerate based on genetic material, the resulting counts can arise from both 
viable and non-viable microbes [6]. In order to met the consistency assumption, relevant 
microbes with the same normalized count cannot have disparate effects due to differen-
tial viability. When there is concern that this assumption may be violated, it is possible to 
restrict amplification of RNA target genes to only viable bacterial cells [41]. We note that 
even if these three conditions cannot be verified, our proposed method has utility in esti-
mation of associational, rather than causal, effects.

Methods
Standardization

Our goal is to estimate the population microbiome effects β of (1) and infer which micro-
biome features are relevant to the response, that is, {1 ≤ j ≤ p : βj �= 0} . We propose com-
puting an estimate β̂

l
 for each stratum l ∈ L of the confounder, followed by standardization 

to the confounder distribution, thereby obtaining a population-level estimate β̂ . Under the 
assumptions stated in "Assumptions for causal inference" section, there is no confounding 
within each stratum l of the confounder. Beyond elimination of confounding, conditioning 
on a stratum of the confounder avoids marginal correlation between features induced by 
the relationship with the confounder that can hinder feature selection performance. Fig-
ure S7 in the Additional file 1 shows microbiome data from an agricultural study described 
in "Real data analysis" section where many features are highly correlated when considered 
marginally, but are relatively uncorrelated within each level of a fertilizer confounder. Com-
bining the assumptions of "Assumptions for causal inference" section with the model in (1) 
and allowing for effect modification, we have

where β l = (β l
1, . . . ,β

l
p)

′ is the corresponding stratum-specific effect. There is effect 
modification if β l  = β l′ for some l  = l′ ∈ L.

(2)E (Yi |Ai = a, Li = l) = β l
0 +

p∑

j=1

β l
j aj ,
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Standardizing the stratum-specific mean outcomes to the confounder distribution 
produces the population mean outcome function

By linearity, the effect in the population corresponding to a one-unit increase in the jth 
microbiome feature, controlling for all others, is represented by βj =

∑
l∈L β l

j Pr (Li = l) 
for j = 1, . . . , p . Given a suitable estimator β̂

l
 of β l for all l ∈ L , the resulting population-

standardized estimate of βj is

Essentially, each stratum-specific estimate is weighted by the prevalence of the con-
founder in the target population, represented by Pr (Li = l) . The population-level value 
is obtained through a weighted average of stratum-specific estimates.

Feature selection and estimation

In this section, we propose a feature selection and estimation procedure for stratum-spe-
cific coefficients β l , performed independently for each confounder level l ∈ L . Within 
each stratum, we make a sparsity assumption that few microbiome features have an 
effect on the response and correspondingly most entries of β l are zero, and also assume 
that the outcome is normally distributed with constant variance. Commonly, n ≪ p 
for microbiome features for taxa at the level of species (and perhaps genera), OTUs, or 
ASVs. Consequently, we suggest penalized least squares estimation that induces shrink-
age towards zero via a penalty function p� , where � is a tuning parameter controlling the 
amount of shrinkage. We suggest choosing � using the Bayesian information criterion 
(BIC) [46] due to its consistency property in selecting the true features in certain set-
tings [59] and nonconsistency of prediction accuracy criteria such as cross-validation 
[30]. Possible choices for penalties that perform variable selection through shrinkage-
induced sparsity include the least absolute shrinkage and selection operator (LASSO) 
[55] and smoothly clipped absolute deviation (SCAD) [13], among others [69].

Due to the high dimensionality of microbiome data, variable screening in conjunc-
tion with penalized estimation may improve accuracy and algorithmic stability [14]. The 
sure independence screening (SIS) of Fan and Lv [14] retains features attaining the high-
est marginal correlation with the response, which may lead to poor performance when 
irrelevant features are more highly correlated with the response, marginally, than rel-
evant ones. Since this is likely the case for microbiome data, we instead consider using 
the iterative sure independence screening procedure proposed by Fan and Lv [14] and 
implemented by Saldana and Feng [43] that avoids such a drawback by performing itera-
tive feature recruitment and deletion based on a given penalty p� . Since features that 
are constant across all (or nearly all) samples are collinear with the model intercept, we 
recommend removing features with very low abundances such as those that are zero for 
most samples (e.g., Xiao et al. [67]).

(3)E (Yi |Ai) =
�

l∈L



β l
0 +

p�

j=1

Aijβ
l
j



Pr (Li = l).

(4)β̂j =
∑

l∈L

ˆ
β l
j Pr (Li = l).
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Post‑selection inference and error rate control

Inference on which microbiome features have a population-level effect, conducted by 
testing the null hypothesis H0j : βj = 0 for the jth feature ( 1 ≤ j ≤ p) , is challenging 
using penalized least squares estimation. For example, the asymptotic distribution of the 
LASSO may not be continuous and is difficult to characterize in high-dimensional set-
tings [27]. Many approaches for error rate control post-variable selection using penal-
ized regression make use of data splitting techniques [7, 12] but have low power for the 
small sample sizes common to microbiome studies. Due to these reasons, for inference 
we propose using the debiased, also known as desparsified, LASSO [56, 70] applied to 
the estimate β̂

l
 obtained using the LASSO penalty with the iterative SIS procedure. To 

make the computation tractable, we only apply the debiasing procedure to the features 
not screened out by the iterative SIS procedure and let b̂

l denote the resulting estimate. 
Under regularity assumptions and appropriate penalization, the debiased LASSO esti-
mator has a limiting normal distribution [12].

For the jth feature, the standardized debiased iterative SIS-LASSO estimate b̂j and its 
standard error are given by

respectively, where the standard error formula follows from the independence of 
the strata. To obtain an estimator of the standard error, we plug-in the estimate ŝelj of 
se(b̂lj) given by Dezeure et al. [11] under homoscedastic errors if the jth feature was not 
removed by screening in the lth confounder stratum. We compute a p-value for testing 
H0j : βj = 0 versus H1j : βj �= 0 according to pj = 2[1−�(|b̂j|/ŝej)] if feature j was not 
screened out in all confounder strata for j = 1, . . . , p , where �(·) denotes the standard 
normal cdf. To control the false discovery rate (FDR), we apply the Benjamini–Hoch-
berg (BH) adjustment across all p features [4] to account for multiplicity in all features, 
including those that were removed from all strata.

Simulation studies
Here, we evaluate our proposed standardization method using simulation studies. The 
simulation settings were designed to mimic microbiome studies seen in practice. To 
emulate species-level data, we consider p = 2000 microbiome features. To reflect data 
summarized at the genus level, we also consider p = 50 . We consider sample sizes of 
n = 50 and n = 100 , and assume the confounder is a binary indicator that takes the 
value one for i = 1, . . . , n/2 and zero for i = n/2+ 1, . . . , n.

Data‑generating model for microbiome features

Conditional on the confounder Li = 0 , the count data for the jth microbiome feature 
were drawn independently from a negative binomial distribution with mean γ0j and 
dispersion φj parameterized such that Var (Aij) = γ0j + φj(γ0j)

2 . That is, when Li = 0 , 
the baseline mean for feature j is γ0j . When the confounder is present ( Li = 1 ), the 
microbiome feature counts were drawn independently from a negative binomial 

(5)b̂j =
∑

l∈L

b̂lj Pr(Li = l), se(b̂j) =

√∑

l∈L

[
se(b̂lj)Pr(Li = l)

]2
,
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distribution with mean γ0jγ1j and dispersion φj . Hence, γ1j represents the multiplica-
tive change in the mean relative to when the confounder is absent. If γ1j  = 1 , then 
feature j is affected by the confounder and otherwise γ1j = 1 . The first 30% of features 
were set to be affected by the confounder (differentially abundant between condition 
Li = 0 and condition Li = 1 ). More specifically, we simulated parameters γ0j and γ1j 
from the following distributions for j = 1, . . . , p:

where δ{x} represents a point mass at x. Our rationale for setting the baseline mean to 
five for relevant features (βj  = 0) was to ensure that they were sufficiently abundant for 
feature selection. We set the dispersions φj = 10−1 for all features j = 1, . . . , p and simu-
lated the microbiome count data Ai with negative binomial distributions. In addition, 
we conducted a second set of simulations with φj = 10−6 , which approximates a Poisson 
distribution.

Data‑generating model for response

Given the confounder and microbiome features Ai simulated from the above subsec-
tion, we draw the responses independently from a normal distribution with mean 
µi(Ãi, Li) and variance σ 2 , where Ãi represents Ai after centering and scaling (to mean 
zero and variance one within strata) and

for i = 1, . . . , n . For more intuitive comparison of effect modification size, model (6) 
has an additive effect βℓ for the intercept and multiplicative effect δ for microbiome fea-
ture effects when Li = 1 compared with Li = 0 . In particular, βℓ represents the direct 
confounder effect and δ is an effect modification parameter. Our simulation considers 
the case when there is no effect modification ( δ = 1 ) as well as strong effect modifica-
tion ( δ = −0.9 ) where the relevant microbiome effects are large within each level of 
the confounder but small overall in the population. The response variability was set to 
σ 2 = 1/16 for all scenarios. A total of s = 5 features were set to be relevant, with the 
non-zero elements of β set to (3,−3, 3,−3, 3) . Our motivation for setting 

∣∣βj
∣∣ = 3 for all 

relevant j is to ensure the βmin property for model selection consistency is met within 
all strata for all simulation scenarios [7]. The choice of s = 5 yields sparsity such that 
s < nl/log(p) for most, but not all, simulation scenarios. Three scenarios covering differ-
ing proportions of the relevant features set to be confounded ( βj  = 0 and γ1j  = 1 ) were 
considered: either all (100% confounded), the first three (60% confounded), or none (0% 
confounded).

To summarize our simulation settings, we have considered two dimensions of micro-
biome features: p = 2000 and p = 50 ; two sample sizes: n = 50 and n = 100 ; two 

γ0j
ind
∼

{
logN (1/2, 9/4) if βj = 0
δ{5} if βj �= 0

γ1j
ind
∼

{
logN (±1/4, 9/4) if feature j is affected by Li
δ{1} otherwise

(6)µi(Ãi, Li) =

{
β0 +

∑p
j=1 Ãijβj if Li = 0

β0 + βℓ +
∑p

j=1 Ãijδβj if Li = 1
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distributions of microbiome count data: negative binomial and Poisson; inclusion of 
effect modifier: none or strong effect modifier; and three different proportions of con-
founded relevant features: 100%, 60%, and 0%. Hence, in total, we examined 48 different 
simulation settings. For each simulation setting, a total of 100 data sets were simulated.

Screening, penalization, and comparison models

We denote our proposed approach of estimation conditional on each stratum followed 
by standardization as “Conditional Std”. We investigate the performance of variable sec-
tion using the LASSO and SCAD penalties for p� both with and without screening, as 
well as the proposed inference procedure using the debiased LASSO with iterative SIS 
described in "Post-selection inference and error rate control" section.

We compare our approach with existing penalized regression models applied to the 
pooled data set, as opposed to conditionally on each stratum. A total of six comparison 
models are constructed based on three inclusion strategies for the confounder effect βℓ 
of Eq. (6) and two possibilities for modeling effect modification. The confounder effect 
is either subject to screening and variable selection (“Select L”), forced to be included 
without penalization (“Require L”), or removed from the model entirely (“Ignore L”). We 
either model each microbiome feature effect as common across all confounder strata 
(corresponding to models with the aforementioned names) or allow for effect modifica-
tion through stratum-specific microbiome feature effects denoted with the suffix “Eff-
Mod.” For each of the six models under comparison, we also investigate the performance 
of variable section using the LASSO and SCAD penalties for p� both with and without 
screening, as well as the proposed inference procedure using the debiased LASSO with 
iterative SIS.

Table 1 presents the objective function for our proposed “Conditional Std“ approach 
and the other six models under comparison. For the proposed approach “Conditional 
Std,” screening is based on iterative SIS recommended defaults applied to each stratum, 
whereas for all other approaches it is applied to the entire data set to correspond with 
the assumed model, resulting in different maximum model sizes shown in Table 2. The 
variables considered in the iterative SIS procedure for each model detailed in Table  2 
correspond to those penalized in the objective function in Table 1. For “Conditional Std” 
and models allowing effect modification (suffix “EffMod”), the population estimates are 
computed according to Eq. (4). These models center and scale each microbiome feature 
within each stratum, denoted by Ãij . For models that do not allow for effect modifica-
tion, the microbiome features are centered and scaled to have mean zero and variance 
one across all observations, regardless of stratum, denoted by Ȧij.

Results

Simulation performance was summarized across all 100 simulated data sets for each 
scenario, model, and variable selection method considered using the true positive rate 
(TPR) and false positive rate (FPR). Given the selected variables, TPR measures the pro-
portion of relevant features detected, while FPR measures the proportion of irrelevant 
features declared to be relevant, and these are computed here at the population-level by
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for all methods except the debiased LASSO inference procedure where I(β̂j �= 0) is 
replaced with the decision rule induced by the corresponding hypothesis test with FDR 
control at 0.05. An ideal method would take (TPR, FPR) values (1, 0). Additional file 1: 
Table S1 shows the average TPR and FPR across the 100 simulated data sets for the 12 
simulation settings with Poisson distributed features and n = 100 . The table lists the 
results for our proposed approach “Conditional Std” model and the other six models 
under comparison across different variable selection methods. Generally, the proposed 
“Conditional Std” model performed better than other models applied to the entire data 
set across different variable selection methods considered. When effect modification is 
present, the proposed approach has the highest mean TPR and lowest mean FPR for 
both the LASSO and SCAD penalties, both with and without screening, often achiev-
ing perfect rates on average. For the debiased LASSO applied after iterative SIS with the 
BH procedure and FDR control set to 0.05 (denoted by “iterSIS-dbLASSO-BH”), the 
proposed approach has the highest TPR and among the lowest FPR under strong effect 
modification across variable selection methods. This is not the case only when no effect 
modification is present, under high dimensionality ( p = 2000 ), and not all relevant fea-
tures are not confounded.

For post-selection inference based on the debiased LASSO following screening with 
iterative SIS, we evaluated the area under the receiver operating characteristic curve 
(AUC) using the p-values for testing H0j : βj = 0 as the classifiers. AUC aggregates clas-
sification performance of TPR versus FPR across different classification thresholds, tak-
ing the value 1 for perfect prediction, 0.5 for random guessing, and 0 for always wrong 
prediction. Box plots of the AUC across 100 data sets for each model are shown in Fig. 1 
for 12 simulation settings with n = 100 and Poisson features (results for n = 50 and 
negative binomial features are presented in Additional file 1: Figs. S1–S3). The proposed 
approach has near perfect ranking under low dimensionality ( p = 50 ) for all settings and 
under high dimensionality ( p = 2000 ) when all relevant features are impacted by the 
confounder. Similar to the results in Additional file 1: Table S1, the proposed approach 
performs best out of all models considered except when effect modification is not pre-
sent and at least some relevant features are not confounded. Among the models that 
do not use a standardization approach, those that allow for effect modification (labeled 
with “EffMod”) perform better when there is an effect modifier in the data generation, 
whereas those that do not allow for effect modification perform better when there is 
no effect modifier in the data generation. For both cases, the proposed standardization 
approach is superior or competitive.

To evaluate false discovery rate (FDR) control for varying thresholds 
α = (0.01, 0.02, . . . , 0.10) commonly used in practice, we computed the false discovery 
proportion (FDP) at a given α value for debiased LASSO inference according to

(7)TPR =

∑p
j=1 I(β̂j �= 0)I(βj �= 0)
∑p

j=1 I(βj �= 0)
,

(8)FPR =

∑p
j=1 I(β̂j �= 0)I(βj = 0)
∑p

j=1 I(βj = 0)
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Fig. 1  Simulation results Box plots of the area under the curve (AUC) from 100 simulation replications for 
n = 100 and Poisson features using p-values based on the debiased LASSO estimate following iterative sure 
independence screening
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Fig. 2  Simulation results Mean estimated false discovery proportion (FDP) for n = 100 and Poisson features 
at varying nominal false discovery rate (FDR) values using Benjamini–Hotchberg adjusted p-values based on 
the debiased LASSO estimate following iterative sure independence screening (iterative SIS). The y = x line is 
shown in black; any values above this line indicate lack of FDR control
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where qj is the BH-adjusted p-value (or q-value) for feature j. A well performing model 
will have FDP(α) ≤ α . For n = 100 and Poisson features, Fig. 2 shows that the proposed 
“Conditional Std” model appropriately controls FDR under low dimensionality ( p = 50 ). 
For high dimensionality ( p = 2000 ), the proposed approach does not control FDR when 
at least some relevant features are not confounded, though the observed mean FDP does 
not exceed the nominal level greatly when compared to other competing models applied 
to the pooled data. The FDR control for the other six models under comparison is either 
very conservative or highly liberal. Similar results were seen for n = 50 and negative 
binomial features, though lack of FDR control was more common for the n = 50 case 
(Additional file 1: Figs. S4–S6).

(9)FDP(α) =

∑p
j=1 I(qj < α)I(βj = 0)
∑p

j=1 I(qj < α)
,

Table 1  Models considered in simulation studies using penalized regression (with penalty p� ) for a 
binary confounder Li ∈ {0, 1}

Ãij denotes microbiome feature j centered and scaled within each stratum; Ȧij denotes microbiome feature j centered and 
scaled across all observations, regardless of stratum

Model Objective function

Conditional Std ∑
l

1
2nl

∑
i I(Li = l)

(
yi − β l

0 −
∑

j Ãijβ
l
j

)2
+

∑
l,j p�l (β

l
j )

Select L 1
2n

∑
i

(
yi − β0 − Liβℓ −

∑
j Ȧijβj

)2
+

∑
j p�(βj)+ p�(βℓ)

Select L EffMod 1
2n

∑
i

(
yi − β0 − Liβℓ −

∑
l,j I(Li = l)Ãijβ

l
j

)2
+

∑
l

∑
j p�(β

l
j )+ p�(βℓ)

Require L 1
2n

∑
i

(
yi − β0 − Liβℓ −

∑
j Ȧijβj

)2
+

∑
j p�(βj)

Require L EffMod 1
2n

∑
i

(
yi − β0 − Liβℓ −

∑
l,j I(Li = l)Ãijβ

l
j

)2
+

∑
l

∑
j p�(β

l
j )

Ignore L 1
2n

∑
i

(
yi − β0 −

∑
j Ȧijβj

)2
+

∑
j p�(βj)

Ignore L EffMod 1
2n

∑
i

(
yi − β0 −

∑
l,j I(Li = l)Ãijβ

l
j

)2
+

∑
l

∑
j p�(β

l
j )

Table 2  Variable screening and selection for models considered in simulation studies for a binary 
confounder Li ∈ {0, 1}

Model Variables screened Maximum model size

Conditional Std {β l
1, . . . ,β

l
p} (independently ∀l) dl = ⌊nl/ log(nl)⌋ ∀l

Select L {β1, . . . ,βp , L} d = ⌊n/ log(n)⌋

Select L EffMod {β l=0
1 , . . . ,β l=0

p ,β l=1
1 , . . . ,β l=1

p , L} d = ⌊n/ log(n)⌋

Require L {β1, . . . ,βp} (given L) d = ⌊n/ log(n)⌋

Require L EffMod {β l=0
1 , . . . ,β l=0

p ,β l=1
1 , . . . ,β l=1

p } (given L) d = ⌊n/ log(n)⌋

Ignore L {β1, . . . ,βp} d = ⌊n/ log(n)⌋

Ignore L EffMod {β l=0
1 , . . . ,β l=0

p ,β l=1
1 , . . . ,β l=1

p } d = ⌊n/ log(n)⌋
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Real data analysis
We conducted a microbiome study to investigate the effect of the rhizosphere micro-
biome of the cereal crop sorghum (Sorghum bicolor) on the phenotype 12-oxo phy-
todienoic acid (OPDA) production in the root. Sorghum root production of OPDA 
is of primary interest due to OPDA having both independent plant defense functions 
and being an important precursor to Jasmonic acid, which functions in plant immune 
responses that are induced by beneficial bacteria [57, 60]. The study analyzed here is part 
of an experiment described by Sheflin et al. [48]; we subset on n = 34 samples collected 
in September across high and low nitrogen fertilizer. Rhizosphere microbiome data were 
collected using 16S amplicon sequencing and clustered at 97% sequence identity. The 
resulting 5584 OTUs were rarefied to 20,000 reads per observation and low abundance 
OTUs (less than 4 non-zero observations out of 34) were excluded [67], leaving a total of 
4244 OTUs.

Pairwise Spearman’s correlations for the feature counts are shown in Figure S7 in the 
Additional file 1 for the 150 largest marginal correlations (pooling samples over nitrogen 
fertilizer levels), which contrast to the small correlations within nitrogen stratum. Using 
our proposed procedure of testing the standardized feature effect using the debiased 
LASSO following iterative SIS applied to each nitrogen level, a total of four microbiome 
features with an effect on root ODPA production were identified while FDR was con-
trolled at 0.05 with BH adjustment (Table 3). Nitrogen stratum-specific residuals did not 
indicate any violation of the assumptions of constant variance or normality (Figs. S8–S9 
of the Additional file 1).

Each microbiome feature effect identified at the study population-level was only iden-
tified in one nitrogen condition, though abundance did not differ greatly between the 
two nitrogen strata (Table  3). Specifically, only one feature was estimated to be more 
abundant under low nitrogen, and this feature was classified as belonging to the Rho-
dospirillaceae family (nonsulfur photosynthetic bacteria), of which nearly all members 
have the capacity to fix molecular nitrogen [34]. Various strains of Rhodospirillaceae 
have shown potential to promote plant growth in the grass species Brachiaria brizantha 
[51]. Consequently, the increased levels of root OPDA content may have been the result 
of bacterial synthesis [15]. While less is known about the three additional significant 

Table 3  Sorghum study analysis results: features with a significant effect on sorghum root 
ODPA production in the study population with FDR control at the 0.05 level using the Benjamini–
Hochberg (BH) procedure on the debiased LASSO estimate following sure independence screening 
(iterative SIS)

Standardized Conditional: high N Conditional: low N

Feature Estimate q-value Estimate q-value Mean (SD) Estimate q-value Mean (SD)

Order 3.18 < 0.001 6.36 < 0.001 56.8 (10.6) 0.00 1.000 52.5 (10.2)

Rhodocyclales

Family 4.68 < 0.001 0.00 1.000 13.4 (4.0) 9.37 < 0.001 5.1 (2.2)

Rhodospirillaceae

Genus 3.72 < 0.001 7.45 < 0.001 6.9 (6.5) 0.00 1.000 1.6 (1.5)

Massilia

Unnamed order 1.53 0.001 3.06 0.001 6.7 (3.5) 0.00 1.000 10.9 (5.8)

Sva0725
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features, the overall findings are in alignment with biological understanding of potential 
plant-microbe interactions.

Discussion
We have proposed and evaluated methodology for causal inference for individual fea-
tures in high-dimensional microbiome data using standardization. These techniques 
are typically employed in epidemiology and use the potential-outcomes framework, in 
contrast to graphical models, which are a more common approach for high-dimensional 
causal inference but usually require Gaussian assumptions for inference that are often 
violated by microbiome data [38]. Instead, our approach conditions on the confounder 
and shows favorable results for Poisson and negative binomial microbiome features. 
Compared to estimation methods applied to the entire data set, the proposed stand-
ardization approach typically demonstrated superior recovery of relevant microbiome 
effects accross multiple variable screening and selection procedures.

Association and causation are not equivalent even for a one-dimensional treatment 
or exposure, and the challenges of causal analysis are exacerbated for high-dimensional 
exposures. Caution must be taken in interpreting causal effects when the assumptions 
needed for causal inference, such as no unmeasured confounding or consistency, cannot 
be verified. Consequently, any microbiome features identified should be either validated 
in experimental studies if possible, or more closely scrutinized according to guidelines 
for evidence of causation. However, even if conditions for causal inference do not hold, 
our method may provide better recovery of associational microbiome effects as com-
pared to models applied to the pooled data, when there are features impacted by the 
confounder.

Some have advocated that microbiome data must be treated as compositional [17]. 
Due to the sum to library size constraint, which is not removed by rarefying but rather 
made constant across all samples, microbiome data technically lie in a simplex space [1]. 
One goal of our funded project is to identify microbial features that can be intervened 
upon to produce a favorable outcome. Hence we analyze count data, not compositional 
data where it is impossible to alter a feature without changing at least one other so as to 
retain the same total sum across features. When microbiome features are high dimen-
sional, and in particular there is no dominating feature, the impact of this issue may be 
minimal. Moreover, microbiome data often exhibit many zeros and the popular centered 
log-ratio approach for compositional data applies log transformation after adding an 
arbitrary pseudocount, the choice of which may impact the analysis [10]. In cases when 
compositional analysis is preferred, such as when taxa are summarized at the level of 
genus or higher typically leading to p < n with a lower prevalence of zeros, our strategy 
of standardization could be altered in a straightforward way by replacing penalized least 
squares with a regularized method for compositional covariates [31, 49].

Depending on the underlying biology, the taxonomic structure or phylogeny may be 
important in the relationship between the microbiome and outcome. If so, higher power 
may be achieved by using a different penalty that leverages such information. The group 
LASSO selects groups of features [68] and modifications have been developed for micro-
biome applications incorporating multiple levels of taxonomic hierarchy [16]. Other 
options include a phylogeny-based penalty that penalizes coefficients along a supplied 
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phylogenetic tree [66] or a kernel-based penalty incorporating a desired ecological dis-
tance [39]. To increase power and address the challenge of FDR control, the hierarchi-
cal taxonomic structure could be utilized in a multi-stage FDR controlling approach 
[23]. Applications of these methods require the taxa assignments and phylogenetic tree, 
which may be incompletely elucidated for novel microbial species, or measured with 
error [18, 32].

While simulation studies showed our proposed approach had higher power and bet-
ter control of FDR at the nominal level compared to other approaches for most sce-
narios considered, use of the BH procedure with the debiased LASSO and the iterative 
SIS procedure failed to control FDR for some cases under high dimensionality. Recently, 
Javanmard and Javadi [25] showed that the BH procedure may fail to control FDR using 
the debiased LASSO due to correlation between estimates, but we found little indica-
tion of highly correlated estimates in our simulation studies. Correspondingly, applying 
the Benjamini–Yekutieli adjustment [5] did not result in better FDR control. Instead, it 
appears our sample sizes were too small to achieve a high enough probability of the sure 
screening property, leading to relevant features being screened out by the iterative SIS 
procedure. While additional methodological advancement is needed for valid inference 
following both variable screening and selection when sample sizes are small, our method 
performed competitively in recovering relevant features.

Conclusion
We have addressed the problem of selecting microbiome features relevant to an out-
come of interest under confounding by a categorical variable. Our results indicate that 
standardization enables more accurate identification of individual microbiome features 
with an effect on the outcome of interest compared to other variable selection and esti-
mation procedures.
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