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Background
More than 430,000 new cases of bladder cancer are diagnosed worldwide, accounting 
for approximately 165,000 deaths each year [1]. The earlier this cancer is diagnosed and 
treated, the better the outcome. But early detection of bladder cancer is still challeng-
ing. The current diagnosis of bladder cancer is primarily detected by urine cytology and 
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cystoscopy [2]. Urine cytology is a non-invasive test to identify abnormal cells in urine 
using a microscope. It is a low-cost approach with high sensitivity for high-grade tumors 
but low sensitivity for low-grade tumors [3–5]. Cystoscopy is an invasive test that uses an 
endoscope to check for diseases of the bladder. The sensitivity and specificity of cystos-
copy vary depending on the stage and grading of the tumor [6]. Although a combination 
of urine cytology and cystoscopy provides the best current effectiveness for identifying 
bladder cancer, they are usually not included in regular health exams, which are the pri-
mary way to detect early-stage cancer. Patients with early-stage bladder cancer are often 
asymptomatic, so they have no incentive to take urine cytology and cystoscopy.

Urinary biomarkers provide a promising alternative for the detection of early-stage 
bladder cancer. Urine samples can be easily obtained by non-invasive urine tests, which 
are usually a part of routine health checks. Besides, urine is a valuable resource of blad-
der cancer detection because it is in direct contact with bladder epithelial cells and 
therefore contains as many compounds or molecules released by tumor cells as possi-
ble. Several proteins were detected in urine and reported as biomarkers to the bladder 
cancer (FDA-approved or non-FDA approved), such as NMP22, Complement factor 
H-related protein, BLCA-4, and apolipoproteins [7]. The overall sensitivity and specific-
ity of these protein markers are in between urine cytology and cystoscopy. When we use 
these markers to detect early-stage bladder cancer, however, their sensitivity significantly 
decreases. A possible reason for the sensitivity drop is that the concentration of these 
markers is usually at a low level at the early stage of bladder cancer, which makes them 
difficult to be detected in urine samples and consequently lower the chance to identify 
cancer patients. Thus, we need better biomarkers, especially those up-regulated in blad-
der cancer, to increase the concentration of markers in the urine sample of patients with 
early-stage bladder cancer.

In addition to genetic or protein markers, metabolites are also useful marker candi-
dates due to their essential role in various pathways. Comparative urine metabolomics 
has been used to identify metabolite markers for bladder cancer and has found some, 
such as lactate, phosphocholine, and adenosine [7]. Metabolomics is a systematic study 
to profile metabolites of biological samples; comparative metabolomics mainly aims at 
performing differential analysis on different metabolic statuses to capture the changes 
affected by factors such as environmental, physiological, pharmaceutical, or diseases 
[8]. Identifying and quantifying metabolites is an essential step in metabolomics. Ana-
lytical chemists have developed high-throughput techniques to identify and quan-
tify compounds or molecules in omics research, such as liquid chromatography-mass 
spectrometry (LC–MS), gas chromatography-mass spectrometry (GC–MS), or nuclear 
magnetic resonance (NMR) [9]. Among these techniques, GC–MS is suitable for metab-
olomics due to its high sensitivity, peak resolution, and reproducibility [10]. GC–MS 
have been used to find metabolite markers for pancreatic cancer [11], lung cancer [12], 
and influenza A [13], etc. There have been several settings proposed for GC–MS, in 
which two-dimensional gas chromatography-mass spectrometry (GC × GC–MS) pro-
vides the best chromatographic peak capacity, selectivity, and sensitivity for the analysis 
of small molecules [14]. Among all configurations of GC × GC–MS, two-dimensional 
gas chromatography coupled to a time-of-flight mass spectrometer (GC × GC–TOFMS) 
receives the best analytic results [15, 16]. There were studies comparing urine metabolic 
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profiles from patients with bladder cancer and healthy subjects by GC × GC–TOFMS 
and reporting several metabolite markers such as taurine, citrate, and succinate [17–19]. 
Considering all the above mentioned, we here performed a GC × GC–TOFMS-based 
comparative metabolomics analysis on urine samples to find metabolite marker candi-
dates for the detection of early-stage bladder cancer, and hopefully, these putative mark-
ers may help us gain insight into the metabolism of early-stage bladder cancer.

The inguinal hernia was frequently seen in the urologic ward. The protruding inguinal 
lump was surgically corrected to reduce and restore the bowel content with the support 
of the anatomic structure. It was essentially a procedure of surgical correction of the 
weakened facial structure. Most of the inguinal hernia patient in the urological ward was 
in age comparable to bladder cancer patients which provide a good cohort as the control 
group. In the present study, we recruited 63 patients diagnosed with early-stage bladder 
cancer as our cases and 61 patients diagnosed with hernia as our controls. All eligible 
hernia patient was recruited with the criteria of no history and no sign of any cancer. We 
used GC × GC–TOFMS to analyze the urine samples of these 124 patients and identi-
fied 922 compounds. The metabolic profiles of the 922 compounds of 100 patients were 
subjected to computational procedures to select marker candidates; we further used 
the metabolic profiles of the remaining 24 patients to evaluate the performance of the 
selected markers. We selected eight putative markers, one of which cannot be identi-
fied as any metabolite and annotated as ‘unknown;’ the others were identified and anno-
tated as the following seven metabolites: desaminotyrosine, erythritol, d-ribose, ribitol, 
d-fructose, d-mannose, and d-galactose. Intriguingly, the abundance of all the eight 
markers was high in our bladder cancer samples but extremely low in hernia samples. 
The up-regulation of these putative markers in cancer samples suggested hypothetical 
relations between early-stage bladder cancer and sugars and polyols metabolism.

Results
Data preprocessing

Our GC–MS analysis identified 922 compounds from our samples (Additional file  1: 
Table S1). Metabolomic data are sensitive to a variety of factors, such as the changes in 
the patient’s food intake or lifestyle. So, in our data, there were significant differences 
among different patients’ metabolic profiles; not all the 922 compounds were detected in 
every sample, leading to many missing values in our profiles. We dealt with the missing-
value problem by assigning zero as the abundance of undetected compounds.

Different metabolic profiles between bladder cancer and hernia

Based on the profile of the identified 922 compounds, we transformed our samples into 
high-dimensional data points. We first performed a PCA to examine if the data points 
were intrinsically distributed into two groups, and its score plot was presented by two 
principal components (Fig. 1). Though the data points were not perfectly clustered into 
two separate groups, they showed a bipartite trend in the plot (R2X = 0.491). We fol-
lowed performing an OPLS-DA analysis to see if our data points could be classified into 
bladder cancer and hernia, and its score plot was presented by one predictive compo-
nent and one orthogonal component (Fig. 2). The bladder cancer and hernia points were 
better separated by OPLS-DA than PCA (R2Y = 0.836, Q2 = 0.663).
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Metabolite marker discovery

The computational workflow of our marker discovery was depicted in Fig. 3. There were 
three main steps in the workflow. First, we prepared two cohorts; one was for marker 

Fig. 1  Score plot of PCA. Each point represents a profile of 922 compounds. The value of the first principal 
component of the PCA goes on the horizontal axis, and the value of the second principal component 
goes on the vertical axis. This unsupervised analysis captures 0.491 variation between metabolic profiles 
(R2X = 0.491)

Fig. 2  Score plot of OPLS-DA. Each point represents a profile of 922 compounds. The value of the predictive 
component goes on the horizontal axis, and the value of the orthogonal component goes on the vertical 
axis. This supervised analysis captures 0.836 variation between metabolic profiles (R2Y = 0.836) and exhibits 
0.663 predictive power (Q2 = 0.663)
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selection (100 samples) and the other for independent marker validation (24 samples). 
Second, we applied LOOCV on the marker discovery cohort to iteratively select dis-
criminating compounds and test their performance. Finally, we used the independent 
test cohort to perform an independent evaluation to see if the selected compounds could 
distinguish bladder cancer from hernia samples.

In the first step, all our 124 samples (63 bladder cancer and 61 hernia samples) were 
randomly divided into two cohorts by sampling probability proportional to size [20]. 
Marker discovery cohort contained 51 bladder cancer and 49 hernia samples, which was 
used for marker selection. The independent test cohort contained 12 bladder cancer and 
12 hernia samples, which was used for independent marker evaluation. The members of 
the two cohorts were listed in Additional file 2: Table S2.

In the second step, we applied LOOCV and a marker screening procedure for the 
marker discovery cohort to select discriminating compounds. Our marker screening 
procedure was a two-phase pipeline as follows.

1.	 Screening by the statistical test The results of the Shapiro–Wilk normality test told 
us our data did not fit a normal distribution. We accordingly applied the Wilcoxon 
rank-sum test with Bonferroni correction to choose compounds whose mean ranks 
of abundance had significant differences in bladder cancer and hernia groups. We 
accommodated a rigorous confidence level, p < 5.42e − 5, to make sure that we 
selected an appropriate number of candidates for further screening.

2.	 Screening by the number of times detected A compound cannot be a useful marker if 
it cannot be detected in most samples [19]. In the current study, only the compounds 
that had a non-zero abundance in more than 60% of bladder cancer samples in the 
marker discovery cohort were chosen as marker candidates.

Fig. 3  Computational workflow for marker discovery. All samples were partitioned into two cohorts. Marker 
discovery cohort of size n was used for marker selection by a two-phase screening procedure with LOOCV. 
In LOOCV, (A) markers selection was done using n-1 samples and (B) validation using the remaining one test 
sample. Furthermore, repeating this for n times for each sample as the test sample. The independent test 
cohort was used for independent marker evaluation
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Since our screening pipeline was subjected to LOOCV, we obtained 100 lists of can-
didate markers and 100 prediction results of these lists. Please refer to the Additional 
file 3: Table S3 for the 100 complete listings of candidate markers and their correspond-
ing prediction results. Each list contained 15 or 16 compounds; we selected compounds 
that appeared to all the 100 lists and removed those that originated from background 
contamination of GC–MS. We finally obtained eight putative markers, one of which 
cannot be identified as any metabolite and therefore annotated as ‘unknown.’ The attrib-
utes of the eight markers, along with their prediction accuracy, sensitivity, and specificity 
reported by the LOOCV were listed in Table 1. Please note that to best predict the test 
samples, a marker might apply different classifying thresholds in the different rounds 
of the LOOCV. The abundance distribution of the eight markers in bladder cancer and 
hernia groups were shown in Fig. 4. The small p values reported by the Wilcoxon rank-
sum test revealed that the eight markers were differential in the two groups; the eight 
markers were nearly not detected in the hernia samples of the marker discovery cohort. 
We also depicted the ROCs of the eight markers in Fig. 5. The AUCs of the eight mark-
ers (> 0.850 except d-Ribose = 0.720) showed their discriminating power to distinguish 
bladder cancer samples from hernia ones. We further determined the classifying thresh-
old of each candidate based on the best combination of the sensitivity and specificity 
reported by the ROCs.

In the third step, we evaluated whether or not the eight putative markers were useful 
for unseen samples by the independent test cohort. We first used the classifying thresh-
olds determined in the marker discovery step to discriminate between bladder cancer 
and hernia. The test results were listed in Table 2. Overall, the eight markers obtained 
better specificities than sensitivities in this independent test; all the discriminating spe-
cificities were above 0.7, but some sensitivities were below 0.7.

To see if we could better discriminate bladder cancer from hernia by combining the 
eight putative markers, we built logistic regression models using the eight markers. 
The ROCs in Fig. 6 revealed the performance of the regression models on the marker 

Table 1  Selected putative markers

Performance was reported by LOOCV on the marker discovery cohort. The third compound cannot be identified as any 
metabolite and accordingly annotated as ‘unknown’

Compound name Mass Metabolite Accuracy Sensitivity Specificity

Benzenepropanoic acid, 4-dihydroxy-, methyl 
ester(CAS)

107 Desaminotyrosine 0.68 0.61 0.76

3,8,Dioxa2,9,disiladecane,2,2,9,9,tetramethyl,5,
6,bis-trimethylsilyl-oxy,R,S,CAS,3

217 Erythritol 0.94 0.92 0.96

Pentitol-1,1-D2,2-desoxy-tetrakis-
O(trimethylsilyl)

231 unknown 0.81 0.75 0.88

d-Ribose,2,3,4,5,tetrakis-O-trimethylsilyl-o-
methyloxime,CAS

103 d-Ribose 0.74 0.55 0.94

Ribitol,1,2,3,4,5,pentatms,7 217 Ribitol 0.84 0.75 0.94

d,Fructose,1,3,4,5,6,pentakis-O-trimethylsilyl-
O-methyloxime-CAS,3

217 d-Fructose 0.84 0.75 0.94

d-Mannose,2,3,4,5,6,pentakis-O-trimethylsilyl-
o-methyloxyme-1Z,3

160 d-Mannose 0.86 0.80 0.92

d-Galactose,2,3,4,5,6,pentakis-O-trimethylsilyl-
o-methyloxyme,1Z,5

103 d-Galactose 0.80 0.65 0.96
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Fig. 4  Abundance distribution of putative markers in different groups. The p values were reported by the 
Wilcoxon rank-sum test performed on the marker discovery cohort

Fig. 5  ROC curves of the eight putative markers. All the ROCs and their AUCs were obtained from the marker 
discovery cohort

Table 2  Discrimination performance of putative markers

These markers were evaluated using the independent test cohort. The classifying thresholds, however, were determined 
based on the marker discovery cohort

Metabolite Accuracy Sensitivity Specificity Classifying 
threshold

Desaminotyrosine 0.88 0.83 0.92 6633.20

Erythritol 0.83 0.83 0.83 6713.05

unknown 0.75 0.67 0.83 5616.04

d-Ribose 0.83 0.67 1.00 65,947.18

Ribitol 0.71 0.67 0.75 35,510.49

d-Fructose 0.83 0.83 0.83 37,952.03

d-Mannose 0.96 0.92 1.00 62,727.26

d-Galactose 0.79 0.67 0.92 13,823.33



Page 8 of 16Lin et al. BMC Bioinformatics          (2021) 22:305 

discovery cohort and independent test cohort. The AUC of the regression model on the 
marker discovery cohort is 0.976, which reveals that our logistic regression successfully 
learned from the training data how to discriminate between early-stage bladder cancer 
and hernia; this model almost perfectly discriminated between the two groups in our 
training cohort. The AUC of the regression model on the independent test cohort is 
0.906. The minor AUC loss, from 0.976 to 0.906, revealed that the learning procedure of 
our logistic regression model did not overfit, and the model performed well on unseen 
data.

Discussion
Among the eight putative markers, ribitol and erythritol are two metabolites of particu-
lar interest to us. Both are sugar alcohols whose content increases in urine and plasma of 
patients with inborn enzymatic deficiency of transaldolase (TALDO) [21]. Patients with 
TALDO deficiency have several clinical phenotypes, such as liver dysfunction, hepato-
splenomegaly, dysmorphism, anemia, and thrombocytopenia [22]. TALDO is the rate-
limiting enzyme of the non-oxidative reactions of the pentose phosphate pathway (PPP). 
There are two primary functions of the non-oxidative reactions of the PPP; one is to 
synthesize ribose-5-phosphate required for nucleotide synthesis, the other is to recycle 
and convert pentose-5-phosphate into intermediates of glycolysis. Coincidentally, ribi-
tol and erythritol also have extraordinarily high levels in patients’ urine with transketo-
lase (TKT) mutation and ribose-5-phosphate isomerase (RPI) deficiency [23, 24]. Both 
TKT and RPI are also enzymes involved in the non-oxidative steps of the PPP. Thus, we 

Fig. 6  ROC curves of logistic regression. The dotted line represented the ROC curve of the logistic regression 
model evaluated by the marker discovery cohort and obtained an AUC of 0.976. The solid line represented 
the ROC curve of the logistic regression model evaluated by the independent test cohort and obtained an 
AUC of 0.906
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conjecture that the development of early-stage bladder cancer might be in correlation 
with the mutation and downregulation of enzymes of non-oxidative PPP in bladder cells.

Similar to our conjecture, Uribarri et  al. detected the downregulation of TALDO in 
lung cancer tissues [25], and Hanczko et  al. found that mice with TALDO deficiency 
are more susceptible to acetaminophen-induced liver failure, cirrhosis, and hepatocel-
lular carcinoma (HCC) [26]. Besides, early-onset HCC was also reported to be a novel 
phenotype of patients with homozygous TALDO1 mutation [27]. The observations pos-
sibly can be explained by that the disrupted recycling of the PPP products would lead 
to a decrease in the reduced form of nicotinamide-adenine dinucleotide phosphate 
(NADPH) and, in turn, causes the oxidative damage-induced pro-tumorigenic inflam-
mation in the liver [28].

The overexpression of aldose reductase (AR) is another possible reason for the high-
level of ribitol. AR was proposed to link with PPP because it converts accumulated C5 
sugars to polyols under the absence of TALDO [29]; this process would further deplete 
NADPH and glutathione. AR is frequently overexpressed in several types of tumor tis-
sues and closely associated with oxidative stress and inflammatory carcinogenesis [30]. 
Inhibition of AR was shown to suppress tumor cell proliferation, invasion, angiogenesis, 
and the NF-κB/AP1-dependent inflammatory signaling pathway [30]. Therefore, dysreg-
ulation of AR is another possible factor inducing the development of early-stage bladder 
cancer.

The other four putative markers, d-ribose, d-fructose, d-mannose, and d-galactose are 
pentoses and hexoses rarely found in the urine of healthy people. The high abundance 
of the four metabolites in the urine of the patients with bladder cancer may suggest a 
correlation between sugar metabolism and carcinogenesis of bladder cancer. Though a 
high level of sugars in the blood may not directly imply diabetes mellitus, some studies 
revealed the relationship between diabetes mellitus and risk of bladder cancer [31–33]. 
Hyperglycemia and hypergalactosemia would trigger the AR-mediated oxidative stress 
and inflammation, and under this stress condition, more than 30% of glucose would be 
reduced and enter the polyol pathway [34]. The accumulation of polyols in cardiomyo-
cytes was reported to induce expression and activation of AR and activate the JNK/c-jun 
signaling pathway that is frequently associated with tumor progression [35]. In sum-
mary, most of our putative markers seem closely related to the interplay between sugars 
and polyols metabolism.

As for the remaining two putative markers, one cannot be identified and the other is 
desaminotyrosine. The literature report about desaminotyrosine is scarce only suggest-
ing a metabolite of the gut microbes related to the immune system [36]. The findings 
shown in our study suggesting desaminotyrosine as a potential biomarker of bladder 
cancer await further validation.

Notably, half of our bladder cancer patients have hematuria (30 out of 63), and none of 
our hernia patients have hematuria. Hematuria is the most common presenting symp-
tom of bladder cancer, especially painless gross (visible) hematuria. The incidence of 
bladder cancer among those with gross hematuria is 10% to 20%, while only approxi-
mately 2% to 5% among patients with microscopic hematuria. However, hematuria may 
be caused by many disease entities such as urinary tract infections. In this sense, hema-
turia may be a cancer-related sign instead of a confounding factor. Based on our findings, 
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the 8 putative biomarkers could differentiate hematuria (ROC: 0.781, data not shown), 
which implied that these markers contain information to identify a common symptom 
related to early-stage bladder cancer to a certain degree. Moreover, as shown in Fig. 6, 
the 8 markers differentiated early-stage bladder cancer in a ROC of 0.976, which means 
that the 8 markers contain extra cancer-specific information to not only identify cancer 
samples with hematuria but also those without hematuria.

Conclusions
In summary, we identified 922 compounds and further selected eight putative mark-
ers using comparative urine metabolomics. The eight markers also suggested relations 
between early-stage bladder cancer and sugars and polyols metabolism. The result of 
this study may create opportunities for improving the detection of bladder cancer.

Though the eight putative markers perform well in our validation, their discriminat-
ing power requires further validation since our validation cohort is relatively small. Even 
if these putative markers exhibit discriminating power from the computational point 
of view, we need carefully examine their true endogenous origins of substances to see 
whether they are qualified markers. An important example is the disqualification of the 
putative in vivo origin of isoprene, which is repeatedly reported as a metabolic marker of 
cancer, cardio-pulmonary diseases, and rare genetic disorders in human [37].

Please note that there has never been a biomarker so powerful to diagnose a disease; 
disease diagnosis was made base on clinical presentation and evidence to support and 
confirm the diagnosis. But a strong correlation of a biomarker and a disease makes the 
diagnostic “potential” of this marker possible. In this study, we presented data working 
on a very important clinical scenario and the clues of these possible markers. The eight 
putative markers will be subjected to further investigation to see if they can be used for 
diagnosis or used to perform non-invasive monitoring of metabolic effects under certain 
pathological conditions and any response to administered therapy.

Methods
Urine samples from patients with bladder cancer or hernia

All urine samples were collected at Chang Gung Memorial Hospital, Taoyuan, Taiwan. 
The study protocol was approved and conducted in accordance with the guidelines 
and regulations of the Medical Ethics and Human Clinical Trial Committee at Chang 
Gung Memorial Hospital (IRB approval number 107-0960D). Informed consents were 
obtained from all individual participants involved in the study. The methodology of 
urine collection has been previously reported [38]. Briefly, first morning urine samples 
were routinely collected from bladder cancer patients and control patients without a his-
tory of urological disease. Urine samples were collected in the presence of a protease 
inhibitor cocktail tablet (one tablet/50 mL of urine; Roche, Mannheim, Germany) and 
sodium azide (1 mM). The collected samples were centrifuged at 5000 × g for 30 min at 
4 °C within 5 h to remove cells and debris, and the clarified supernatants were stored at 
-20 °C for further processing.

Urothelial carcinoma is the most common cancer of the urinary bladder. According 
to the American Joint Committee on Cancer (AJCC) staging system, 8th edition, blad-
der cancers in stage Ta or T1 are non-muscle-invasive diseases [39]. In this study, we 
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recruited 63 early-stage bladder cancer patients diagnosed with non-muscle-invasive 
diseases. The diagnosis of bladder cancer was all pathologically proven of urothelial car-
cinoma after transurethral biopsy or resection of the tumor. The urine was discarded and 
excluded for further analysis if the diagnosis was not confirmed. All the bladder cancer 
samples were from primary tumors. We also recruited 61 patients diagnosed with her-
nia and without past cancer histories as our control cohort. All the 124 patients are of 
comparable age and underwent exactly the same procedures of urine sample collection 
on the first morning after admission before surgical intervention. Patient demographics 
of this study were summarized in Table 3. We compared numerical and categorical vari-
ables using the Wilcoxon signed-rank test and chi-square test, respectively; the statisti-
cal analyses were conducted by SAS 9.4. To eliminate possible bias from batch effect, the 
sample was processed and analyzed randomly. The metabolomic analysis was performed 
in triplicate, and the operator was not aware of the status of the samples.

Chemicals

Protease inhibitor cocktail tablet was purchased from Roche (Mannheim, Germany). 
Sodium azide, urease, methoxyamine, pyridine, N,O-Bis(trimethylsilyl)trifluoroaceta-
mide with 1% trimethylchlorosilane (BSTFA + 1% TMCS), and methanol were pur-
chased from Sigma-Aldrich (St. Louis, MO). Methoxyamine was prepared in pyridine at 
a concentration of 15 mg/ml.

Urine sample derivatization

We used the protocol common to urine metabolomics research to perform urine sam-
ple derivation [40, 41]. The urine samples were collected in the presence of a protease 
inhibitor cocktail tablet (one tablet per 50 mL urine) and sodium azide (1 mM in urine). 
Cells and debris were removed by centrifugation (5000 g for 30 min at 4 °C). This was 
done within one hour after the sample collection. The sample was then kept at −80 °C 
for long-term storage. Before GC–MS analysis, the sample was thawed at 4  °C. Freez-
ing-point depression was measured to determine the osmolality of samples using the 
model 3320 osmometer of the Advanced Instruments (Norwood, MA). All the samples 
were normalized by diluting their osmolalities to 250  mOsm/kg. 100 μL of urine was 

Table 3  Patient demographics

P values were reported by the Wilcoxon signed-rank test and chi-square test for numerical and categorical variables, 
respectively

Bladder cancer Hernia p value

Number of subjects 63 61

Age 67.4 ± 13.5 65.0 ± 12.0 0.1834

Gender 0.0005

Male 45 58

Female 18 3

Risk factor

Hypertension 35 23 0.0504

Diabetes Mellitus 11 5 0.1802

Smoke 19 11 0.1434

Hematuria 30 0  < 0.001
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centrifuged at 12,000 g, 5 °C for 10 min, 50 μL of supernatant was added with 30 units of 
urease and incubated at 37 °C for 15 min to decompose and remove excess urea present 
in it. 170 μl of methanol was then added to it. The solution was vigorously vortexed for 
30 s and was centrifuged at 12,000 g, 5  °C for 5 min. 200 μl of supernatant was trans-
ferred to a GC vial and evaporated to dryness under nitrogen at room temperature. 80 
μL of methoxyamine in pyridine (15 mg/ml) was added to each GC vial. The solution 
was then vigorously vortexed for 30 s. Methoximation reaction was performed at 30 °C 
for 30 min. Silylation was performed by adding 80 μL of BSTFA (1% TMCS) under 70 °C 
for 1 h. The sample was used for GC–MS analysis.

GC–MS analysis

We applied the procedure used by Hua et  al. to perform GC–MS analysis [42]. GC–
MS was performed using the Pegasus® 4D GC × GC-TOFMS from LECO (St. Joseph, 
MI). The separation conditions on an Rtx-5MS column (30 m × 0.25 mm × 0.25 μm) for 
GC–MS analysis was set as follows: column flow, 1 mL/min helium; injector tempera-
ture, 250 °C; GC temperature program: 40 °C for 1 min, increase to 300 °C in 10 °C/min 
changes, 300 °C for 8 min; solvent delay, 440 s; transfer line temperature, 300 °C; pegasus 
acquisition rate, 10 spectra/sec; mass range saved: m/z 50–800; ion source temperature: 
200 °C.

The data were analyzed using the program ChromaTOF® Software from LECO (St. 
Joseph, MI), by setting the threshold for up to 650 hits on m/z similarity and compared 
with the metabolites present in libraries of the software. Compounds with peak-areas 
below 700 were undetectable and compounds with less than 650 hits for m/z identifica-
tion were removed. The annotated synthetic compounds were removed.

Computational and statistical tools

Test of clustering

The visualization of some dimensionality reduction or regression algorithms, such as 
principal components analysis (PCA), partial least squares projection to latent struc-
tures (PLS), partial least squares discriminant analysis (PLS-DA) and orthogonal partial 
least squares discriminant analysis (OPLS-DA), has been used to intuitively inspect the 
possible separation of metabolomics data [43]. In the current study, we were also won-
dering if our bladder cancer samples could be discriminated from hernia samples based 
on metabolic profiles. We subjected our metabolic profiles to both PCA and OPLS-DA 
analysis. PCA is an unsupervised multivariate analysis that we used to verify if metabolic 
profiles were intrinsically distributed into two groups. The PCA reported the R2X value 
that represented the explained variation between metabolic profiles. On the other hand, 
OPLS-DA is a supervised multivariate analysis that we used to capture the separation of 
our bladder cancer and hernia samples. The OPLS-DA reported the R2Y and Q2 values. 
R2Y represented the explained variation between metabolic profiles; Q2 represented the 
predictive power of the model. The PCA and OPLS-DA analyses were carried out by R 
4.0.0 with the package ropls 1.20.0, and its visualization was produced by the package 
ggplot2 3.3.1.
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Statistical test

We performed the Shapiro–Wilk normality test [44] to make sure if our data are nor-
mally distributed. The result of the normality test showed that our datasets were not 
characterized by any parameter (p < 1.17e-7). We therefore used the Wilcoxon rank-
sum test [45] to verify if the median ranks of bladder cancer and hernia groups were 
statistically different. All the tests in this study were carried out with Bonferroni cor-
rection [46] to avoid type I errors, i.e., false positives, to a maximum extent; we only 
wish to identify a few markers with high statistical significance. All the statistical tests 
were carried out by R 4.0.0 with the package stats 4.0.0.

Prediction model

Since the discrimination between bladder cancer and hernia is a dichotomous prob-
lem, we used logistic regression [47] to build prediction models for the detection of 
early-stage bladder cancer. We used the generalized linear function with logit link 
function to implement our logistic regression in R 4.0.0.

Performance measures

We used accuracy, sensitivity, specificity, and the area under the receiver operating 
characteristic curve (AUC) as our performance measures. Accuracy is the probabil-
ity that a sample is correctly predicted; sensitivity is the probability that a positive 
sample (bladder cancer in the present study) is correctly predicted; specificity is the 
probability that a negative sample (hernia in the present study) is correctly predicted. 
The receiver operating characteristic (ROC) curve plots sensitivity versus (1 − speci-
ficity) at different classifying thresholds. The AUC represents the area beneath the 
ROC curve, which is widely used to evaluate the performance of a binary classifier. 
The AUC ranges from 0 to 1; 0 represents 100% wrong prediction, 1 represents 100% 
correct prediction, and 0.5 represents random guess. Our AUC analysis was carried 
out by R 4.0.0 with the package pROC 1.16.2.

We used leave-one-out cross-validation (LOOCV) to assess the stability of our 
marker performance. In LOOCV, we used one sample for marker evaluation and the 
remaining samples for marker selection. The procedure will repeat n times if there are 
n samples, to exam all possible n combinations of one sample and n – 1 samples. The 
LOOCV was carried out by R 4.0.0.

Abbreviations
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