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Abstract 

Background:  Automated segmentation of nuclei in microscopic images has been 
conducted to enhance throughput in pathological diagnostics and biological research. 
Segmentation accuracy and speed has been significantly enhanced with the advent 
of convolutional neural networks. A barrier in the broad application of neural networks 
to nuclei segmentation is the necessity to train the network using a set of application 
specific images and image labels. Previous works have attempted to create broadly 
trained networks for universal nuclei segmentation; however, such networks do not 
work on all imaging modalities, and best results are still commonly found when the 
network is retrained on user specific data. Stochastic optical reconstruction microscopy 
(STORM) based super-resolution fluorescence microscopy has opened a new avenue to 
image nuclear architecture at nanoscale resolutions. Due to the large size and discon-
tinuous features typical of super-resolution images, automatic nuclei segmentation can 
be difficult. In this study, we apply commonly used networks (Mask R-CNN and UNet 
architectures) towards the task of segmenting super-resolution images of nuclei. First, 
we assess whether networks broadly trained on conventional fluorescence micros-
copy datasets can accurately segment super-resolution images. Then, we compare 
the resultant segmentations with results obtained using networks trained directly on 
our super-resolution data. We next attempt to optimize and compare segmentation 
accuracy using three different neural network architectures.

Results:  Results indicate that super-resolution images are not broadly compatible 
with neural networks trained on conventional bright-field or fluorescence microscopy 
images.  When the networks were trained on super-resolution data, however, we 
attained nuclei segmentation accuracies (F1-Score) in excess of 0.8, comparable to past 
results found when conducting nuclei segmentation on conventional fluorescence 
microscopy images.  Overall, we achieved the best results utilizing the Mask R-CNN 
architecture.

Conclusions:  We found that convolutional neural networks are powerful tools capa-
ble of accurately and quickly segmenting localization-based super-resolution micros-
copy images of nuclei. While broadly trained and widely applicable segmentation 

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Mela and Liu ﻿BMC Bioinformatics          (2021) 22:325  
https://doi.org/10.1186/s12859-021-04245-x

*Correspondence:   
liuy@pitt.edu 
2 Biomedical Optical 
Imaging Laboratory, 
Departments of Medicine 
and Bioengineering, 
University of Pittsburgh, 
Pittsburgh, PA 15213, USA
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04245-x&domain=pdf


Page 2 of 30Mela and Liu ﻿BMC Bioinformatics          (2021) 22:325 

algorithms are desirable for quick use with minimal input, optimal results are still found 
when the network is both trained and tested on visually similar images. We provide a 
set of Colab notebooks to disseminate the software into the broad scientific commu-
nity (https://​github.​com/​YangL​iuLab/​Super-​Resol​ution-​Nuclei-​Segme​ntati​on).

Keywords:  Super-resolution, STORM, Convolutional neural networks, Mask R-CNN, 
UNet, StarDist, ANCIS, Nuclei segmentation

Background
Introduction

Quantitative analysis of nuclei morphology and architecture plays an important role in 
understanding nuclear function and assisting pathological diagnosis. Segmentation of 
cell nuclei is generally the essential first step. Manual segmentation can be highly time-
consuming and is impractical for large data sets. Additionally, it suffers from individual 
user selection bias, boundary errors and lack of reproducibility. Convolutional neural 
networks (CNNs) have been adapted for nuclei segmentation in wide-field fluorescence 
images and bright-field histology images with great success [1–3].

With recent advances in super-resolution fluorescence microscopy, nuclear architec-
ture can now be visualized at the molecular scale down to the resolution of 20–30 nm 
[4–6] in its original spatial context of cells and tissue architecture [7]. In particular, sto-
chastic optical reconstruction microscopy [STORM] has been increasingly used in cell 
biology to visualize chromatin compaction and spatial relationships between DNA and 
DNA-binding proteins using various cell models and tissue samples at different patho-
logical stages [5, 6, 8, 9], as they provide significant insights in understanding genome 
organization and regulation of gene expression important in many fundamental bio-
logical processes and diseases. More recently, such approach was applied for examining 
chromatin structure in clinical tissue samples [7], which may potentially improve cancer 
diagnosis.

Automated analysis of super-resolution images of cell nuclei has been challenging 
due to the unique image characteristics distinct from conventional wide-field fluores-
cence images. Nuclei segmentation on super-resolution images is the essential first step 
towards quantitative analysis of molecular-scale nuclear architecture and chromatin 
organization in cells and tissue. The super-resolved nuclear architecture is often dis-
continuous in nature with frequently disrupted nuclear boundaries (Fig. 1) which may 
result in partial or over segmentation. Their image size exceeds that of conventional 
microscopic images by about 100-fold. Further, compared to conventional fluorescence 
microscopy, localization-based super-resolution microscopy requires ~ 10–20-fold 
higher illumination laser power (to induce blinking events of the fluorophores for single 
molecule localization) which can introduce a high background from non-specific bind-
ing of the fluorophores and out-of-focus fluorophores. These dense noise regions may 
be falsely identified as a cell due to the similarity between noise and nuclei regions. In 
general it has been noted that CNNs tend to produce segmentation results that do not 
ensure contiguous predictions [10]. Therefore, publicly available CNNs for nuclear seg-
mentation, pre-trained on wide-field fluorescent images, may not be well suited for ana-
lyzing super-resolution images.

https://github.com/YangLiuLab/Super-Resolution-Nuclei-Segmentation
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This study is motivated by the need to identify and segment individual nuclei from 
localization-based super-resolution images for high-throughput single-cell analysis. 
Identifying effective neural network architectures for nuclear segmentation and devel-
oping optimal image processing algorithms for segmenting localization-based super-res-
olution images will provide a quick and efficient workflow for quantitative analysis and 
imaging informatics. In this study we aim to optimize and compare the performance of 
multiple commonly used network architectures on nuclear segmentation, evaluate the 
performance of the selected networks when applied to diverse STORM image datasets 
from cell lines and tissue, and elucidate best practices for nuclear instance segmenta-
tion in localization-based super-resolution microscopy images. We will also determine 
whether networks broadly trained to detect nuclei in a variety of conventional micro-
scopic imagery, such as those used in the 2018 Kaggle Data Science Bowl [1], could 
be effective in segmenting super-resolution microscopy images, or whether additional 
training on super-resolution imagery is even necessary.

Overview of related works

The most cited CNNs for nuclear instance segmentation include UNet [11] and Mask 
R-CNN [12], which themselves are the basis for many other networks [10, 13–21]. UNet 
is based on the Fully Convolutional Network (FCN) for semantic segmentation [22, 
23], but with the addition of skip connections between the encoder and decoder lay-
ers to preserve spatial information and scale [11]. Additionally, UNet does not have any 
fully connected layers, utilizing a tiling scheme to analyze arbitrarily sized images one 
tile at a time. Mask R-CNN applies a small CNN for instance segmentation only on the 
proposed regions generated using Faster R-CNN [12]. Region based approaches limit 
instance detections to within a bounding box or area of interest, and have become popu-
lar techniques for improving segmentation accuracy.

Fig. 1  Comparison between conventional wide-field fluorescence microscopy image (left) and STORM 
super-resolution fluorescence microscopy image (right). Note the differences in nuclei structure between 
the STORM and wide-field images, with nuclei appearing as collections of discrete packages rather than as 
contiguous gradients. These textural differences result in incompatibilities when attempting to train a neural 
network for nuclei segmentation using one data set, then applying the trained network onto the other set
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Region proposal based segmentation networks

Object detection networks, such as Faster R-CNN [24], Single Shot Detectors (SSD) [25] 
and You Only Look Once (YOLO) [26], have been implemented in a number of instance 
segmentation neural networks in addition to Mask R-CNN. Attentive neural cell 
instance segmentation (ANCIS) applies UNet based segmentation on regions proposed 
by an SSD [14]. In addition, ANCIS applies two small CNN modules to locate cell fea-
tures and suppress unwanted noise regions, potentially enhancing accurate delineation 
of intricate structures and borders. Similarly, the Single Stage Salient-Instance Segmen-
tation network (S4Net) combines a SSD with the segmentation branch of Mask R-CNN 
[18]. S4Net also utilizes an additional segmentation branch which helps the network to 
distinguish instances using the contextual information both inside and outside of each 
proposed region. Another CNN method utilizes Fast YOLO [27] for instance detection 
and UNet for segmentation [19]. Instance Relation Network (IRNet) builds on Mask 
R-CNN by adding a small CNN module to each of the region proposal network and seg-
mentation heads [16]. This region proposal module helps to remove duplicate proposals 
while the segmentation module learns contextual information from the predictions to 
improve instance differentiation.

Non‑region proposal based methods in instance segmentation

Alternate to bounding box region proposals, some networks utilize semantic or panoptic 
segmentation to improve instance segmentation accuracy. Semantic segmentation can 
be used to identify regions of interest for later instance segmentation [28]. Panoptic seg-
mentation looks to improve instance segmentation by not only identifying target objects 
of interest, but also by identifying and segmenting out the background and other non-
target objects in the image [29].

Various methods are implemented to improve the performance of CNN nuclei seg-
mentation. Among these techniques are edge determination modalities used to better 
delineate closely grouped or touching nuclei. The original UNet study accomplished 
this using a loss function that weights edge loss more heavily than interior, forcing the 
network to better learn instance boundaries [11]. Other techniques include teaching a 
secondary CNN to learn the borders between clustered cells or the cell edges [21, 30, 
31], thresholding, morphological processing, active contours [3] and watershed [32, 33]. 
These methods are not always trained as part of the network, and are commonly applied 
during post-processing on the instance predictions made following network training.

Several methods implement a distance transform to aid clustered cell segmentation. 
One recent technique uses either a UNet or an FCN to predict nuclei locations and esti-
mate boundaries by implementing a regression based learning of the distance maps [34]. 
Another method uses a trained neural network to predict the Euclidean distance map 
from the test image, and then applies a Faster R-CNN on the map to localize the indi-
vidual nuclei [35]. The Hover-Net method learns each prediction’s center of mass, and 
then applies a sobel operator to determine the horizontal and vertical gradients within 
each prediction, the results of which were used as inputs into a marker assisted water-
shed [36]. Lastly, the StarDist method trained an added CNN module to fit star-convex 
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polygons to UNet instance predictions, and then predicted the polygon borders [20]. 
The accuracy of the border predictions was highly dependent on the image scale.

Proposed methods

In this study, we aimed to develop an automated and accurate nuclei segmentation tool 
for localization-based super-resolution images based on convolutional neural networks. 
Our work specifically addressed nuclei segmentation on the unique characteristic image 
features of super-resolution images containing heterogeneous discrete features (as 
opposed to the smoother and more continuous features found in conventional micros-
copy images), noisy background and large image size.

We performed extensive evaluation of the performance of CNN architectures towards 
instance segmentation of nuclei from STORM-based super-resolution images. First, 
we evaluated whether networks broadly trained on publicly available nuclear images 
adopted from the 2018 Kaggle Data Bowl competition [1] could be directly applied 
towards the nuclear segmentation of our super-resolution image dataset. We then 
trained, optimized and tested each of three selected CNNs exclusively on our super-res-
olution image datasets. Our STORM images of cell nuclei include a diverse spatial “tex-
ture”, labeled with fluorophores attached to various molecular targets, from different cell 
and tissue types, biological states and pathological states. For each network, we evalu-
ated the effect of various pre- and post-processing methods (such as downsizing, blur-
ring, contrast enhancement) of STORM images on test accuracy. Lastly, we developed a 
noise removal approach to improve instance segmentation on super-resolution images 
and the effect of overlapping regions on test accuracy.

Results
Results indicate that super-resolution images are not broadly compatible with neu-
ral networks trained on conventional bright-field or fluorescence microscopy images. 
When the networks were trained on super-resolution data, however, we attained nuclei 
segmentation accuracies (F1-Score) in excess of 0.8, comparable to past results found 
when conducting nuclei segmentation on conventional fluorescence microscopy images. 
Overall, we achieved the best results utilizing the Mask R-CNN architecture.

Three convolutional neural networks were selected for training and testing. We 
focused initially on broadly used networks for image segmentation, particularly UNet 
and Mask R-CNN [11, 12]. UNet, however, inherently performs semantic segmentation. 
Therefore, we instead selected a UNet-based instance segmentation algorithm, StarDist 
[20]. To evaluate the effect of region proposal networks using the same base segmenta-
tion network (UNet), we selected ANCIS [14]. In addition, this selection allowed us to 
compare two region-based localization methods with different segmentation algorithms 
in ANCIS and Mask R-CNN. The segmentation results from each technique were com-
pared. Additionally, we tested various image pre and post processing techniques, and 
train a UNet for noise detection and removal from our test images.
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Initial testing

We first trained our networks using the broad, publicly available Kaggle dataset [1]. 
The Kaggle dataset includes a large set of 2D microscopic images of cell nuclei from 
cell culture and tissue across various imaging modalities including conventional fluo-
rescence, histology and bright-field microscopy. Although super-resolution fluores-
cence microscopy is a type of fluorescence microscopy, super-resolved images may or 
may not prove compatible with CNNs trained using traditional fluorescence micros-
copy images. Our goal here is to determine whether training directly on a super-
resolution STORM image dataset is necessary. Each network was trained using the 
optimal number of epochs, steps and other factors determined by the authors of each 
method. Trained networks were then applied to our resized STORM images from 

Fig. 2  Segmentation results using a Kaggle dataset trained Mask R-CNN applied to our STORM images. 
Segmented super-resolution images from the colon tissue dataset were originally downsized to 512 × 512 
before testing (a), and then further downsized to 256 × 256 and blurred before segmenting again (b). 
The Kaggle trained network attained superior results on the blurred 256 × 256 sized image, however 
still demonstrated significant over segmentation. This result demonstrates the need to train these CNN 
segmentation methods on the super-resolution data directly

Table 1  Average test accuracy scores for Mask-RCNN trained on Kaggle dataset and tested on 
super-resolution imagery

Average F1-Score, false negative percent (FN) and Hausdorff distance for a Mask R-CNN segmentation network model 
trained on the Kaggle dataset, and applied to both our super-resolution colon tissue and DNA labelled cell line datasets. The 
network was applied to our Colon Tissue and Cell Line image test sets (512 × 512 resolution), as well as to the downsized 
versions of each test set (256 × 256 resolution), and to Gaussian blurred (Blur) and histogram equalized (HEq) versions

Test set Pre-processing F1-Score FN Hausdorff

Colon tissue 512 × 512 0.181 0.819 14.07

256 × 256 0.268 0.619 8.68

256 × 256 Blur 0.262 0.635 8.03

256 × 256 HEq 0.352 0.501 8.22

Cell line 512 × 512 0.073 0.924 12.83

256 × 256 0.475 0.473 6.9

256 × 256 Blur 0.555 0.268 5.92

256 × 256 HEq 0.628 0.201 6.07
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512 × 512 tissue and cell line test sets. As shown in Fig. 2A and Table 1, the optimal 
results were achieved using Mask R-CNN, but the overall performance is poor. The F1 
score on the tissue and cell line dataset is only 0.181 and 0.073, respectively.

Next, we applied a set of pre-processing methods to improve the performance. The 
STORM images have two unique aspects compared to conventional fluorescence 
images: the inherently discontinuous structural features at the nearly molecular-
scale resolution and the nearly zero “intensity” value in most background regions. We 
deliberately lowered the image resolution by downsizing to 256 × 256 and either blur-
ring or altering the image contrast by histogram equalization (Fig.  2B). These pre-
processing methods overall did improve our test accuracy, while decreasing the false 
negative percentile (Table 1). However, none of the Kaggle trained models succeeded 
in attaining an average F1-Score exceeding 0.5 on the tissue dataset, and a top mark 
of 0.628 was achieved on the cell line dataset. Notable exceptions to these results can 
be found when analyzing individual images. Kaggle trained Mask R-CNN performed 
markedly better on STORM images containing dense or uniform nuclear texture with 
clear borders in both cell line and tissue images (Additional file  1: Figure S1). The 
F1-scores of these segmentations were found to be less than those found using the 
STORM-trained Mask R-CNN network, but they demonstrate the potential of CNNs 
towards the segmentation of super-resolution images.

Optimization

Due to the generally poor results when applying the Kaggle trained networks, we next 
trained each network directly on our STORM image datasets. We determined param-
eters for instance segmentation via a process of training and testing, and utilized test 
accuracy as the determinant factor for best performance. Test accuracy, for optimiza-
tion purposes, was assessed using the F1-Score calculation at an IoU threshold of 0.7. 
Parameters varied included number of epochs and number of training images for all net-
works, as well as number of steps for Mask R-CNN and StarDist. Additional parameters, 
included learning rate and other network specific variables, were optimized as well. A 
summary of optimal parameters determined herein can be found in Table 2.

Table 2  Summary of optimal training parameters determined using each network for each training 
set

* Indicates the number is the maximum number of images available in the dataset

DataSet Optimal parameters Network

Mask R-CNN Stardist ANCIS

Tissue Epochs 400 400 200 (500 RPN)

Steps 500 300 NA

Learning Rate 1E−4 1E−4 1E−4

Training Set 77* 77* 77*

Cell Epochs 600 400 400 (500 RPN)

Steps 500 300 NA

Learning Rate 1E−4 1E−4 1E−4

Training Set 60 65* 65*
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Tissue dataset

A typical trend observed was a quick rise in accuracy with increasing number of epochs, 
followed by a fluctuation and then a settling. After a larger number of epochs, network 
accuracy was observed to level or drop, likely due to overfitting (Fig. 3A). Plotting the 
test accuracy against number of steps provided a similar trend, with networks reach-
ing an accuracy saturation point when using more than a few hundred steps. Note that 
ANCIS did not provide the ability to vary steps, but rather utilized a two-part training 
conducted first on the region-based localization network, then on the instance segmen-
tation network.

It was observed that for Mask R-CNN and StarDist, the optimal number of epochs 
occurred at about 400, whereas 200 epochs produced the peak F1-Score for ANCIS. 
Both UNet methods, ANCIS and StarDist, showed some decrease in test accuracy 
with increasing epochs, beyond the optimal range. Mask R-CNN, on the other hand, 
appeared to fluctuate. Increasing steps improved the accuracy of Mask R-CNN more lin-
early, beyond 100 steps, without significant fluctuation until beyond 500 steps, suggest-
ing nonlinear effects when using too many or too few epochs (Additional file 2: Figure 
S2). StarDist reached a peak accuracy at 300 steps, then dropped off, as with increasing 
epochs, perhaps due to overfitting.

Increasing the size of the training set was expected to improve test accuracy, and this 
was generally found to be the case (Additional file 3: Figure S3). All networks improved 
significantly when increasing from 10 to 20 training images, with each image containing 
an average of 22 instances. ANCIS and StarDist continued to improve at a nearly linear 
trend beyond 20 images, however Mask R-CNN once again demonstrated a fluctuating 
trend. All networks performed best when using the entire available training set of 77 
images, however satisfactory results could be obtained using less. False negative or false 
positive counts tended to be higher when using a smaller dataset, and overlapping detec-
tions occurred with greater frequency.

Varying the learning rate within a limited, though often used, range of 1e−3 to 1e−5 
did not produce a great deviation in test accuracy, however a lower learning rate tended 
to require more epochs to achieve the same accuracy. Since all learning rates within this 

Fig. 3  Test accuracy as a function of F1-Score versus number of training epochs. Optimization plots 
depicting F1-Score versus number of training epochs for each network model trained on the colon tissue 
dataset (a), or on the cell line A dataset (b)
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range provided similar results, we selected a rate in the middle of the range, resulting in 
a common rate of 1e−4 for all networks.

Cell line dataset

The trend for test accuracy versus number of epochs for the cell line data proved to be 
similar to the trend to the results from the tissue dataset, however the F1-Score val-
ues were higher overall with less fluctuation (Fig. 3B). More uniform shapes, less noise 
and greater spacing in-between instances (i.e. less clustering) may help account for the 
increased accuracy for the nuclei segmentation on the cell line dataset versus the tissue 
dataset. The smoother accuracy-versus-epoch curves may also be accounted for by the 
reduced variability between the target instances. The optimal number of epochs, steps 
and learning rate used were found to also be similar to those from the tissue dataset, but 
not the same. Optimal number of epochs were determined at 400 for both StarDist and 
ANCIS, but 600 for Mask R-CNN. Steps versus test accuracy, however, progressed simi-
larly to the results found for the tissue training set.

Effect of training set size was also determined for the cell line dataset consisting of 
65 training images. The performances were overall improved for all networks with 
increasing dataset size (Additional file 3: Figure S3), although Mask R-CNN dropped in 
accuracy when using the entire dataset, from 0.869 to 0.831. Both ANCIS and StarDist 
fluctuated between 40 and 60 images, but maintained an overall upward trend in images 
versus accuracy. ANCIS demonstrated both the highest scores and least variation. 
Indeed, the F1-Score for ANCIS when trained on only 10 images was nearly 0.9, with 
each image containing an average of 4.2 nuclei per image. However, the false negative 
percent of this model was much higher than the model trained on the full dataset, 12.5% 
for the former and 3% the latter, as was the Hausdorff distance, 8.53 and 6.39 respec-
tively. Mask R-CNN demonstrated a similar trend, scoring fairly high even when only 
trained on 10 images, though scores were not as high as for the ANCIS model.

Network testing

Following network training and optimization, nuclei segmentation was conducted on all 
test image sets (Fig. 4). The tissue dataset included the STORM images of nuclei labeled 
with a heterochromatin marker H3K9me3 from both colon and prostate tissue at dif-
ferent pathological states (normal, low-grade and high-grade pre-cancerous lesions and 
invasive cancer). When evaluating the cell line dataset, the test set included images 
with various labeled molecular targets (H3K27me3, H3K4me3, DNA, RNA polymer-
ase II) from different cell lines under normal and treated conditions. Test accuracy was 
assessed again using the F1-Score of instances that achieved an IoU of 0.7. Additionally, 
we calculated the percentage of False Negatives and the average Hausdorff Distance, to 
provide an estimate of border and instance positioning accuracy.

Tissue dataset

STORM images of colon tissue dataset include various pathological states including nor-
mal tissue, precancerous (adenoma, high-grade dysplasia) and invasive cancer. Nuclear 
texture for different pathological phenotype varies significantly, where the nuclear tex-
ture from precancerous (adenoma and high-grade dysplasia) and cancerous tissue 
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exhibit dramatically fragmented chromatin texture with highly disrupted borders. Com-
paring network performance when trained and tested on the colon tissue dataset, we 
found that the Mask R-CNN model provided the highest test accuracy (Table 3). All net-
works demonstrated an optimal F1 score of at least 0.72 on the tissue dataset, but none 
achieved a score greater than 0.80. Additionally, Mask R-CNN was found to result in the 
lowest average Hausdorff distance, implying the greatest average instance border accu-
racy. Mask R-CNN also demonstrated the lowest false negative rate, but also had the 
highest number of false positives, suggesting some degree of over-segmentation. ANCIS, 
on the other hand, had the highest false negative rate and lowest number of false posi-
tives, suggesting under-segmentation (Fig.  4). StarDist performed similarly to ANCIS, 
although with slightly lower accuracy, less false negatives and higher Hausdorff distance.

Further, we evaluated whether the networks trained on the dataset from one type of 
biological sample (e.g., cell line dataset) can be directly used on another type (e.g., tissue 
dataset) to determine cross compatibility between trained models. We first tested the 
networks trained using cell line A data on the colon tissue images. Accuracy scores were 

Fig. 4  Segmentation examples for a colon tissue image (H3K9me3) depicting a high-grade dysplasia. 
Original test image (a) is segmented using (b) Mask R-CNN, (c) ANCIS and (d) StarDist network models. 
Training and testing were done on colon tissue data. Red arrows indicate False Positives, yellow arrows point 
out False Negatives, and pink and orange arrows indicate over- and under-segmentations, respectively



Page 11 of 30Mela and Liu ﻿BMC Bioinformatics          (2021) 22:325 	

Ta
bl

e 
3 

A
ve

ra
ge

 te
st

 a
cc

ur
ac

y 
sc

or
es

 fo
r C

N
N

s 
tr

ai
ne

d 
an

d 
te

st
ed

 o
n 

su
pe

r-
re

so
lu

tio
n 

im
ag

er
y

F1
-S

co
re

 (F
1)

, f
al

se
 n

eg
at

iv
e 

pe
rc

en
t a

nd
 fa

ls
e 

po
si

tiv
e 

pe
rc

en
t (

FN
/F

P)
, a

nd
 H

au
sd

or
ff 

di
st

an
ce

 (H
) f

or
 M

as
k 

R-
CN

N
, A

N
CI

S 
an

d 
St

ar
D

is
t n

et
w

or
k 

m
od

el
s 

tr
ai

ne
d 

on
 th

e 
ST

O
RM

 c
ol

on
 ti

ss
ue

 d
at

as
et

, a
nd

 c
el

l l
in

e 
da

ta
se

ts
 

A
 &

 B
. A

n 
ad

di
tio

na
l c

om
bi

ne
d 

tr
ai

ni
ng

 d
at

as
et

 in
cl

ud
ed

 d
ow

ns
iz

ed
 c

el
l l

in
e 

da
ta

se
t A

, c
ol

on
 ti

ss
ue

 a
nd

 K
ag

gl
e 

da
ta

se
ts

. T
es

tin
g 

w
as

 c
on

du
ct

ed
 o

n 
th

e 
51

2 
×

 5
12

 c
ol

on
 a

nd
 p

ro
st

at
e 

tis
su

e 
te

st
 s

et
s 

as
 w

el
l a

s 
on

 th
e 

51
2 
×

 5
12

 c
el

l l
in

e 
te

st
 s

et
, d

ow
ns

iz
ed

 (2
56

 ×
 2

56
) c

el
l l

in
e 

te
st

 s
et

 a
nd

 u
ps

iz
ed

 (1
02

4 
×

 1
02

4)
 c

ol
on

 te
st

 s
et

. T
ra

in
in

g 
an

d 
te

st
in

g 
w

er
e 

al
so

 c
on

du
ct

ed
 o

n 
hi

st
og

ra
m

 e
qu

al
iz

ed
 (H

EQ
) a

nd
 b

lu
rr

ed
 (B

lu
r)

 v
er

si
on

s 
of

 th
e 

co
lo

n 
tis

su
e 

an
d 

ce
ll 

lin
e 

A
 d

at
as

et
s. 

Pr
e-

pr
oc

es
si

ng
 w

as
 c

on
du

ct
ed

 o
n 

th
e 

51
2 
×

 5
12

 v
er

si
on

s 
of

 th
e 

co
lo

n 
tis

su
e 

an
d 

ce
ll 

lin
e 

A
 d

at
as

et
s 

fo
r b

ot
h 

th
e 

tr
ai

ni
ng

 a
nd

 te
st

 im
ag

es
. T

he
 re

su
lts

 in
di

ca
te

 th
at

 th
e 

or
ig

in
al

 d
at

a 
pr

ov
id

ed
 

th
e 

be
st

 te
st

 a
cc

ur
ac

y 
ov

er
 th

e 
pr

e-
pr

oc
es

se
d 

im
ag

es
 fo

r a
ll 

ca
se

s, 
su

gg
es

tin
g 

no
 a

dv
an

ta
ge

 to
 b

e 
ga

in
ed

 b
y 

th
es

e 
pr

oc
es

se
s. 

To
p 

re
su

lts
 fo

r e
ac

h 
te

st
 s

et
 a

re
 in

di
ca

te
d 

by
 b

ol
d 

nu
m

be
rin

g

D
at

aS
et

M
as

k 
R-

CN
N

A
N

CI
S

St
ar

D
is

t

Tr
ai

n 
se

t
Te

st
 s

et
F1

FN
/F

P
H

F1
FN

/F
P

H
F1

FN
/F

P
H

Co
lo

n 
tis

su
e

Co
lo

n
0.

79
3

0.
17

7/
0.

22
5

9.
76

0.
73

9
0.

31
5/

0.
12

2
10

.6
8

0.
72

5
0.

25
3/

0.
12

6
10

.6
2

Pr
os

ta
te

0.
64

6
0.

22
1/

0.
12

1
8.

82
0.

50
5

0.
49

6/
0.

11
8

9.
64

0.
67

3
0.

35
7/

0.
07

1
9.

17

Ce
ll 

do
w

ns
iz

e
0.

87
2

0.
05

3/
0.

17
5.

65
0.

60
1

0.
20

1/
0.

13
4

13
.2

1
0.

84
7

0.
13

7/
0.

10
5

6.
39

Ce
ll 

Li
ne

 A
 (d

is
cr

et
e)

Ce
ll 

lin
e

0.
83

2
0.

11
/0

.3
8.

21
0.

90
2

0.
10

1/
0.

07
8

7.
05

0.
79

9
0.

10
7/

0.
26

3
8.

87

Ce
ll 

Li
ne

 B
 (a

ll 
te

xt
ur

es
)

Ce
ll 

lin
e

0.
83

1
0.

12
5/

0.
11

6
7.

91
0.

95
2

0.
03

/0
.1

28
6.

39
0.

85
9

0.
07

6/
0.

31
8.

11

Co
lo

n 
up

si
ze

0.
42

3
0.

60
7/

0.
42

4
17

.4
3

0.
48

9
0.

55
1/

0.
07

6
14

.5
1

0.
39

0.
46

7/
0.

64
5

17
.0

6

Co
m

bi
ne

d 
(C

ol
on

 &
 C

el
l)

Co
lo

n
0.

67
6

0.
16

9/
0.

56
4

10
.5

9
0.

75
3

0.
30

5/
0.

11
11

.1
3

0.
61

2
0.

39
6/

0.
39

7
11

.3
9

Ce
ll 

lin
e

0.
88

5
0.

02
1/

0.
23

6
5.

54
0.

94
3

0.
04

1/
0.

10
7

6.
76

0.
92

0.
03

7/
0.

17
4

5.
45

Co
lo

n 
Bl

ur
Co

lo
n 

bl
ur

0.
75

2
0.

24
6/

0.
25

9.
87

0.
72

9
0.

34
9/

0.
13

6
11

.0
6

0.
65

8
0.

38
7/

0.
14

1
11

.0
2

Co
lo

n 
H

EQ
Co

lo
n 

H
EQ

0.
76

9
0.

18
3/

0.
28

7
10

.0
1

0.
73

3
0.

32
8/

0.
12

7
11

.1
7

0.
69

6
0.

34
8/

0.
12

3
10

.9
4

Ce
ll 

A
 B

lu
r

Ce
ll 

bl
ur

0.
79

1
0.

12
/0

.3
33

6.
87

0.
85

8
0.

11
2/

0.
11

8
6.

83
0.

76
1

0.
15

3/
0.

28
8

9.
22

Ce
ll 

A
 H

EQ
Ce

ll 
H

EQ
0.

81
0.

10
5/

0.
36

3
6.

64
0.

86
7

0.
09

8/
0.

12
6

6.
57

0.
78

5
0.

14
/0

.2
85

8.
99



Page 12 of 30Mela and Liu ﻿BMC Bioinformatics          (2021) 22:325 

found to be low, but improved somewhat when the test tissue images were resized to 
1024 × 1024 (i.e. upsized to make the tissue nuclei similar in size to those of the cell line). 
False negatives and Hausdorff distances were also much higher than when segmenting 
with a tissue-trained model. Generally, the models trained with cell line dataset did not 
perform well when applied to tissue images. We then tested networks trained using the 
colon tissue data on the cell line test set. Again, initial results were poor (resulting in 
extensive over-segmentation), but improved drastically when the test set was downsized 
to 256 × 256 (in order to make the cell nuclei similar in size to those of the colon tissue 
images). Downsizing worked better for the Mask R-CNN and Stardist networks than for 
ANCIS (Table 3).

We also briefly compared results between normal nuclei and those at different path-
ological states within our colon tissue test set. Segmentation test accuracy was found 
to be significantly better on the normal nuclear phenotypes (F1 = 0.919) than on the 
pathological phenotypes (low-grade F1 = 0.825, high-grade F1 = 0.779 and invasive 
adenocarcinoma F1 = 0.676), when training on the STORM colon tissue dataset using 
Mask R-CNN (Additional file 4: Figure S4). Scores for ANCIS (normal F1 = 0.871, low-
grade F1 = 0.783, high-grade F1 = 0.676 and invasive F1 = 0.653) and StarDist (normal 
F1 = 0.895, low-grade F1 = 0.702, high-grade F1 = 0.678 and invasive F1 = 0.532) pro-
ceeded similarly. Enhanced performance on the normal tissue is likely due to the dense 
nuclear texture and more well-spaced nuclei observed in those images, compared to the 
more clustered and irregular nuclei found and disrupted nuclear texture in pathological 
tissue sample images.

Lastly, we evaluated the cross compatibility between different tissue types. We applied 
the models trained on the original colon tissue dataset trained networks to the prostate 
tissue test set, labeled with the same nuclear marker (H3K9me3), expressing multiple 
pathological phenotypes (normal, low-grade and high-grade prostatic intraepithelial 
neoplasia and invasive cancer). The network segmentation was found to be acceptable 
across phenotypes (F1 = 0.646, Mask R-CNN), but the accuracy was significantly lower 
than for the segmentation on the colon tissue test set (F1 = 0.793) (Additional file 5: Fig-
ure S5). Potential causes for the reduced accuracy were the variations in nuclear shape 
(more circular) and texture (consisting of more discrete fragments) when compared 
to the colon tissue nuclei. The prostate tissue images also contained a denser noise in 
between nuclei.

Cell line dataset

Training was initially conducted on cell line dataset A, those images with discrete 
nuclear texture (e.g., those labeled with RNA polymerase II). Testing of the trained mod-
els was conducted on a subset of the STORM images of nuclei also with discrete texture 
(dataset A), as well as on a set of STORM images of nuclei with dense or diffuse tex-
ture (e.g. those labeled with DNA, H3K4me3) (Fig. 5). Nuclei segmentation for cell line 
images performed higher in test accuracy than the tissue dataset, likely due to reduced 
cell clustering and more regular cell shapes. Unlike with the tissue dataset, in which 
Mask R-CNN performed the best overall, top marks for cell line dataset were achieved 
using ANCIS. When trained using the cell line dataset with dense nuclear texture, all 
networks achieved F1-Scores above 0.8 (Table  3). Additionally, false negative percent 
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was found to be less than 10% for all trained network models, and Hausdorff distances 
were also less than 10. Results improved further for ANCIS and StarDist when training 
was conducted on cell line dataset B, containing cell nuclei with both discrete and dense/
diffuse texture. The top results using ANCIS achieved an F1-Score of 0.954, with a false 
negative percent of 3 and Hausdorff distance of 6.39. Further, networks were also trained 
and tested on blurred and histogram equalized versions of the images in cell line dataset 
A. Like with the colon tissue set, the original dataset provided the best results, as neither 
blurring nor histogram equalization improved the accuracy.

Lastly, we evaluated cross compatibility between cell line and tissue datasets. As men-
tioned in the previous section, tissue dataset trained network models were applied to 
segment the cell line imagery. In general, the results were sub-optimal, due largely to 
under segmentation of the larger cell line nuclei. However, when the cell images were 
resized down to 256 × 256, the test accuracy improved, particularly for Mask R-CNN 
(F1 = 0.872) and StarDist (F1 = 0.842). The percent false negatives still remained 
higher for StarDist, on the downsized dataset, whereas the Mask R-CNN tissue model 

Fig. 5  Segmentation examples for STORM image of HK2 cells (H3K4me3). Original test image (a) was 
segmented using (b) Mask R-CNN, (c) ANCIS and (d) StarDist network models. Training and testing were done 
on cell line dataset B. Red arrows indicate False Positives, yellow arrows point out False Negatives, and pink 
arrows indicated over-segmentations
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performed better than its cell line trained models (Table 3). These results led us to con-
template whether a combined training network, incorporating STORM images from 
both tissue and cell line datasets, could achieve even better performance.

Combined dataset

We combined the Kaggle, colon tissue and downsized (256 × 256) cell line dataset B 
to create a potentially more robust dataset. Downsizing was conducted on the cell line 
images to roughly match the nuclear sizes to those found in the colon tissue STORM 
images. Testing on the tissue dataset resulted in improved accuracy over the network 
trained on the Kaggle dataset alone (Table  1), but worse than the networks trained 
directly on the STORM images from tissue dataset for both StarDist and Mask R-CNN 
(Table  3). ANCIS, on the other hand, experienced a boost in the nuclei segmentation 
accuracy for tissue dataset (F1 = 0.753) compared to the ANCIS model trained on tissue 
data alone (F1 = 0.739). Since ANCIS had demonstrated a higher false negative percent 
previously, this boost in accuracy was likely due to an increase in the ability of newly 
trained model to accept a greater degree of variability in instance identification, learned 
from the broader dataset with diverse image features. Mask R-CNN, on the other hand, 
suffered from this same increase in variability, since that network model demonstrated 
a trend towards over-selection of instances. Test results on the cell line data, however, 
were surprisingly robust across all networks. Optimal or near optimal F1-Scores, false 
negatives and Hausdorff distances were found for all three broadly trained network 
models (Table 3). The Hausdorff distances for StarDist in particular showed significant 
improvement when trained on the combined dataset, versus when trained on either cell 
line dataset, (Additional file 6: Figure S6).

Image processing of test images

Noise removal

STORM images often contain “noisy regions” due to non-specific binding or unbound 
fluorophores, out-of-focus fluorescence and autofluorescence signals. Such “noisy” 
regions are more prominent in the tissue dataset. To further improve accuracy in nuclei 
segmentation, we conducted noise removal on the test images by training a UNet to 
semantically recognize and segment noisy regions, as shown in Fig. 6. Test accuracy was 
slightly improved for all models due to a reduction in false positives. The F1-Scores for 
Mask R-CNN improved from 0.788 to 0.793, for ANCIS from 0.735 to 0.756 and for 
StarDist from 0.71 to 0.725, when applied to the tissue test images segmented using tis-
sue trained models. Importantly, false negative percent was markedly reduced, by 5% for 
both Mask R-CNN and StarDist, and by 12% for ANCIS. The greater improvement for 
ANCIS, and lesser for Mask R-CNN, is likely due, in part, to the number of total detec-
tions. Indeed, noise removal eliminated just as many false positives with Mask R-CNN 
as with ANCIS. Hausdorff distance was little affected by noise removal. However, it is 
worth noting that networks trained using more optimal parameters tend to detect less 
noise, without any additional processing. Using an additional network for noise detec-
tion and removal can supplement optimization, but does not replace it.
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Application of the UNet trained using tissue dataset noise on the cell line dataset A, 
resulted in the removal of some nuclei along with the noise, when the nuclei with dis-
crete and sparse texture were erroneously recognized as noise. Therefore, independently 
trained UNets were required for tissue and cell line images, due to the variation in the 
noise density between the two different image sets. F1-Scores and false negative percent-
ages were less affected when noise removal was applied to the cell line dataset. On aver-
age, for cell line data, the F1-Scores improved by less than 1%, and false negative percent 
was reduced by less than 2% when segmentation was also conducted by cell line trained 
network models.

Small instance detection and overlap removal

The post-processing steps for the test images, which occurred following instance 
segmentation, included overlap and small instance removal. These processes made a 

Fig. 6  Effect of image denoising on segmentation predictions. A UNet model was trained to identify noise 
regions (a, yellow circles) in our super-resolution images. The identified noisy regions were mapped and 
subtracted from the original image (a) to create a denoised version (b), in order to improve test accuracy. 
When denoising was not performed, noisy regions may be falsely identified as nuclei (c, yellow arrows). After 
denoising, most false positives due to noise disappear (d), with the occasional exception of missed noise 
instances (red arrow in D and red circle in B). Segmentation was conducted using Mask R-CNN
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greater difference in test accuracy with ANCIS and Mask R-CNN (Fig.  7), however 
StarDist already utilized a built-in module to eliminate overlaps and only benefit-
ted from the small instance removal. The elimination of overlaps and small instance 
detections improved the F1-Score from the best scoring Mask R-CNN for the colon 
tissue dataset from 0.774 to 0.793, and the best ANCIS score for tissue data improved 
from 0.73 to 0.756. The removal of small instances from StarDist tissue segmentation 
results improved the F1-Score only from 0.716 to 0.725. When applied to cell line 
dataset A with discrete texture, post processing improved the F1-Score from 0.813 to 
0.832 for Mask R-CNN, from 0.883 to 0.902 for ANCIS and from 0.778 to 0.799 for 
StarDist. Additionally, the false negative percent was reduced by 5 and 17% for Mask 
R-CNN and ANCIS, respectively, and by 4% for StarDist, when applied to the tissue 
dataset. False negative percent for the cell line test results only improved by less than 
2% for all network models. Interestingly, the Hausdorff distance was not improved by 
more than 0.25 for any test set.

Discussion
Super-resolution STORM imaging of nuclear organization has been increasingly used 
in basic biological research. Recent success in imaging nanoscale chromatin structure 
on tissue and pathological samples paves the way for its future use in assisting clini-
cal pathology. Nuclei segmentation is the first and essential step towards quantitative 
analysis of chromatin texture and molecular-scale chromatin folding. However, unlike 
conventional fluorescence or bright-field microscopic images of cell nuclei, STORM 
images present several unique characteristics and challenges for nuclei segmentation 
due to the localization-based single molecule detection. The nucleus often lacks clear 
borders and uniform texture. As the resolution reaches near molecular scales, many 
biological structures often appear discrete. In various biological processes or patho-
logical states, the nuclear architecture can also be disrupted. These characteristics make 
nuclei segmentation very challenging using traditional image processing methods. The 

Fig. 7  Effect of overlapping instance removal on segmentation predictions. Raw Mask R-CNN-based nuclei 
segmentations before merging and dividing overlapping instances (a, yellow arrows), and after (b, pink 
arrows)



Page 17 of 30Mela and Liu ﻿BMC Bioinformatics          (2021) 22:325 	

success of applying CNNs in nuclei segmentation on various conventional microscopic 
images motivated us to explore whether it can achieve similar success on the challenging 
STORM-based super-resolution images.

Initial testing

The Kaggle dataset included a broad range of stained nuclei images from conventional 
fluorescence and bright-field microscopy on cells and tissue from different imaging 
conditions. We found that the Kaggle trained networks severely over-segmented the 
STORM-based super-resolution images. Notably, our Kaggle trained ANCIS model 
produced F1-Scores of about 0.01 or less for all test sets. Mask R-CNN, which is more 
prone to over-selection and under-segmentation, produced the highest test scores, but 
still failed to segment the images to an acceptable standard. Upon inspection of the seg-
mentation results, we believe the reason for such poor results is the detection of the dis-
continuous fragments inside the nuclei of super-resolved images as very small instances, 
largely coming from the inherently discrete or fragmented nuclear texture in the 
STORM images. Indeed, when we downsized our test set or performed blurring, smaller 
segments merged into larger detectable pieces, and the test scores improved (although, 
not by very much). As a result, many of the instances produced were of size less than our 
minimum test IoU threshold, and so were noted as false negatives. Therefore, training 
directly on super-resolution imagery was required.

Network testing

Overfitting

We have noted that as our networks were trained with increasing number of epochs, the 
mean test accuracy, judged by F1-Score, increased up to a point before either decreas-
ing again or leveling off. While increased training typically resulted in decreased noise 
detection, false positives and overlap, it also created an overfitting condition where the 
network model failed to recognize valid instances, resulting in increased false nega-
tives. In other words, the network lost some of its ability to infer, and began to discard 
nominally positive detections. In some cases, we also noticed a drop in test accuracy 
with increasing dataset size. This condition only occurred with StarDist when trained 
on the tissue dataset and Mask R-CNN when trained using the cell line dataset. The rea-
son may well again be due to overfitting, although in the case of Mask R-CNN it may 
have been a fluctuation in test accuracy, as we have seen demonstrated by this network 
on our dataset. Furthermore, we have found that test accuracy increases rapidly with 
training set size (Additional file 3: Figure S3). Taken together, these findings indicate that 
good results can be gained from training sets consisting of tens of images, rather than 
hundreds or thousands. The exact number will vary depending on image type and tar-
get instances. In our own datasets we have observed that fewer cell line nuclei instances 
than tissue nuclei instances were required to accurately train a CNN for segmentation, 
due to less variation between instances. In either case, satisfactory results could be 
attained when training on as few as 20 images.
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Effects of scale and tiling

Nuclei size often varies significantly (from a few microns to tens of microns) among 
different cell types, cultured cells and tissues. Scale makes a significant difference in 
segmentation accuracy [2, 15]. Networks trained on a limited dataset without scale 
variation or image augmentation, may get locked into recognizing only a limited set of 
nuclear sizes, resulting in over or under segmentation of instances as well as increased 
false negatives and splits and merges when applied to a test set containing different 
nuclear sizes. Many networks are trained to be scale invariant so as to offset these issues 
by augmenting the training set with scaled versions of the data [3, 11, 17, 21]. Inversely, 
one study rescaled all of the images so that nuclei were about the same size [15]. Feature 
Pyramid Networks (FPN) have also been useful in creating prediction feature maps at 
various image scales [37], and have been used for instance detection with FCNs [38] and 
with Mask R-CNN [12, 23]. In dealing with the discontinuous image features, typical of 
STORM-based super-resolution microscopy images, recognizing multiple nuclear sizes 
may prove particularly important in helping prevent over- or under-segmentation issues.

Additionally, we found that downscaling super-resolution images (i.e. from 
5120 × 5120 to 512*512) can be an effective way to handle computational memory limi-
tations involved with processing large scale images. Training and testing on downsized 
images and then upsizing the segmentation maps to fit the original image scale proved 
to be a more accurate method than anticipated. The relative positions of the nuclear 
boundaries in both the downsized images and their labels scaled accurately when upsiz-
ing. However, this method was found to be much less effective when scaling ultrahigh 
resolution images, with each axis containing 10,240 pixels or more. Such large images 
may be downsized by about 10 folds, however the memory gains are still offset by image 
size. In these cases, it may be more advantageous to use an image tiling method where 
each high-resolution image is divided into smaller squares. Network training and testing 
are then conducted on these squares, and the segmentation results can then be recom-
bined into a full image.

We tested the accuracy of this tiling method (described in Methods) on our colon 
image dataset, and dividing each 5120 × 5120 image into 512*512 squares, or tiles. Using 
the same optimal parameters reported for Mask R-CNN in Table 2, we found the accu-
racy of this tiling method to be comparable to the scaling method reported herein. When 
training and testing on colon tissue images, the F1-score for the tiling method was found 
to be 0.783, a drop in accuracy of 0.01 from the scaling method. A slight drop in accu-
racy could be accounted for by a reduction in network segmentation fidelity to the more 
detailed nuclear borders found in the full-resolution image tiles. Similarly, when training 
and testing on cell line images using the tiling method, the test accuracy dropped from 
0.831 to 0.818.

Performance of nuclei segmentation using different networks

Under the same settings, including epochs, steps, RPN and confidence threshold values 
as well as maximum instance limits, ANCIS models demonstrated increased false nega-
tives whereas Mask R-CNN models had more false positives when trained and tested on 
the same dataset. Two distinct differences may have given rise to this condition, the first 
being the different region proposal networks used (SSD versus Faster R-CNN) and the 
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second being the different segmentation network (UNet versus Mask R-CNN). One item 
of note in favor of identifying the segmentation network as the culprit is that the greater 
number of false negatives occurred when applying the UNet based StarDist network 
as well; this suggests UNet may be a more selective algorithm than Mask R-CNN. An 
additional difference between the networks is the extra modules. StarDist incorporates a 
module for eliminating overlaps, while ANCIS incorporates a module for distinguishing 
intricate object features from background. These modules, however, perform more as 
supplements to improve segmentation border accuracy, and should not cause or prevent 
over or under selection of instances.

It is worth noting that the quality of nuclei segmentation may not be fully reflected by 
the quantitative metrics on the test results (e.g., F1-score) for each network. The overall 
qualitative perception on the segmented nuclei can also be an important factor to con-
sider. Comparing network performance, certain general features became apparent. Mask 
R-CNN appeared to achieve the greatest number of detections, in both true positive 
nuclei and false positives consisting of mainly noise and small, off-target nuclei (Figs. 4B 
& 5B, Additional file 4: Figure S4). Both Mask R-CNN and ANCIS utilized region-based 
localization, which resulted in some overlapping detections. ANCIS, however, appeared 
to detect less noise than Mask R-CNN, a quality reflected in the increased false nega-
tive percent found in the data. StarDist generally detected less noise as well, but also 
made fewer true positive detections, again indicating that UNet is a stricter segmenta-
tion algorithm than Mask R-CNN. The Hausdorff distances were lower for Mask R-CNN 
and ANCIS than for StarDist, possibly due more to the star-distributed polygon fitting 
module creating a more rounded border, rather than the segmentation network.

In addition to training each network on cell line image sets with discrete nuclear tex-
ture, we also trained on a broader cell line dataset containing various labeled molecular 
targets with both discrete and dense or diffuse nuclear texture. This introduced greater 
variability to the training set, potentially making it more robust. The broadly trained cell 
line network models demonstrated increased test accuracy for both ANCIS and StarDist 
networks. The Mask R-CNN model, however, did not perform as well using our broader 
training set. In fact, the increased variability appearing to cause increased splits and 
merges of instances. One reason may be that the increased variability in the training set 
confused a segmentation network that is already more prone towards over selection. We 
have seen that ANCIS and StarDist, both of which are built on UNet, and both of which 
demonstrated greater false negatives than Mask R-CNN, can enjoy reduced false nega-
tives when trained on a broader dataset. Mask R-CNN on the other hand appeared to 
perform better when trained more specifically.

Training segmentation networks on one image type, such as from the cell line dataset, 
and testing on another, such as our colon tissue test set, typically produced poor results. 
Even when both training and testing on either tissue or cell line images, the results may 
suffer if the test set presented a dramatically different texture or image features than the 
training set. Such a result was observed when training on our colon tissue data and test-
ing on the prostate tissue images, where the F1 segmentation accuracy dropped between 
5 and 15% points compared to the results found when segmenting the colon tissue 
test set. In most cases, while a pre-trained network can be a good starting place, and 
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worth trying out, it is better to train the network on the same type of image that is being 
segmented.

Post processing

Noise detection

Well-trained networks are more robust against noise, and therefore do not require as 
much post-processing, however noise removal can still be beneficial as long as it is not 
too aggressive. When training a noise detection network, care must be taken to train on 
noise similar to that found in the test set to avoid misclassification issues. For example, 
if only very dense noise is used to train a noise removal network for a dataset contain-
ing nuclei with various textures and label densities, including low density, discrete or 
diffuse labelled nuclei, then some of those may be misidentified as noise and removed 
(Additional file 7: Figure S7). Noise removal is especially effective on STORM images in 
the tissue dataset, where large “noisy” regions can be prominent due to the out-of-focus 
fluorophores and autofluorescence. Therefore, it is typically helpful to train a noise rec-
ognition network on the same, or similar, training set as used for instance detection.

Overlap removal

The method used for merging or, more particularly, splitting overlapping instances 
may not be ideal. However, we found that for nuclei segmentation on STORM images, 
a significant improvement in test accuracy was gained even by roughly splitting, or 
merging, the overlapping cells. An imprecise solution, as demonstrated in the meth-
ods section (Fig. 10), can still improve test accuracy by as much as 5–10% points on 
the F1-Score. Methods that more accurately divide the overlap will not add more than 
1–2 additional percentage points, in most of the cases we have observed. While this 
gain is nonetheless desirable, no method will always achieve perfect results.

Overall, despite the small gain on test accuracy metrics due to noise removal and 
post processing, we believe it is worth attempting. Even with post processing, there 
will still be segmentation errors. Those errors can, however, and at the user’s discre-
tion, be manually corrected. While this is a time-consuming endeavor, it is certainly 
less so than segmenting all of the instances manually.

Conclusion
In conclusion, we evaluated the performance of a set of three CNNs for nuclei seg-
mentation on STORM-based super-resolution fluorescence images from a diverse 
dataset from cell lines and tissues with different labeled molecular targets at differ-
ent biological and pathological states. We found that Mask R-CNN has the best over-
all performance for nuclei segmentation of STORM-based super-resolution images, 
when trained on the STORM images from tissue alone, with high test accuracy, low 
false negatives and good border identification (short Hausdorff distance). The pre-
trained model on the tissue dataset can achieve a good performance on the down-
sized images from cell lines as well. Optimal performance will still be achieved when 
training and testing are conducted on the same data type. Image processing such as 
noise removal and overlap removal helped improve the overall accuracy, especially on 
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the tissue dataset. We have built our software using the Python platform, and used 
GitHub and Google Colaboratory to disseminate to the biomedical research commu-
nity (https://​github.​com/​YangL​iuLab/​Super-​Resol​ution-​Nuclei-​Segme​ntati​on).

Methods
Data collection

Images were collected using our custom-built STORM system on both formalin-
fixed, paraffin-embedded (FFPE) tissue section and cultured cells. The imaging sys-
tems, sample preparation, image acquisition and reconstruction have been previously 
described [5, 7]. The image characteristics of cell nuclei can vary dramatically depend-
ing on the labeled targets. We included a diverse set of STORM images of nuclei with 
different molecular targets that exhibit various distinct nuclear textures (e.g., discrete 
clusters, diffuse pattern, or dense clumps) from the various labeled molecular targets 
from different biological or pathological states. Additional file 8: Table S1 shows the 
list of cell/tissue types, labeled target in the nuclei, biological or pathological states of 
the cells or tissue and fluorophore used.

All STORM-based super-resolution images were originally captured at 5120 × 5120 
pixels, and were resized for speed during training. Downsizing was conducted 
using bilinear interpolation with averaging. Datasets were constructed by creating 
1024 × 1024, 512 × 512 and 256 × 256 versions of the STORM images of cell nuclei 
from human colon tissue as well as 512 × 512 and 256 × 256 versions of the STORM 
images of cell nuclei from cell lines.

Fig. 8  Workflow for STORM image acquisition, labeling, processing, network training and testing. Sequence 
begins at the top left and proceeds clockwise

https://github.com/YangLiuLab/Super-Resolution-Nuclei-Segmentation
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Additional datasets were created for training and testing by blurring or contrast 
enhancing the STORM images of nuclei from human colon tissue and cell lines with 
resized 512 × 512 and 256 × 256 datasets. Blurring was applied using a Gaussian filter 
with sigma set at 2. Contrast enhancement was conducted by means of histogram equal-
ization with normalization, to limit intra image variations. All image resizing and pre-
processing steps described in this section were conducted using Fiji [39]. Our workflow 
is depicted in Fig. 8.

STORM images of cell nuclei from tissue samples

A total of 134 STORM images of nuclei labeled with heterochromatin marker 
(H3K9me3) were included in the human colon tissue dataset, of which 60% were used 
for training, 30% for testing and 10% for validation. The same testing, training and vali-
dation images were used for each network. Additionally, a set of 69 STORM images 
of nuclei stained with the same marker from mouse prostate tissue (from Myc-driven 
prostate tumorigenesis mouse model and wild-type mice) were used as an alternate test 
set for the network models trained on colon tissue data. These datasets include normal 
tissue and those at different pathological states (low-grade and high-grade precancer-
ous lesions and invasive cancer). As we have previously shown, chromatin compaction 
becomes progressively more disrupted in carcinogenesis and therefore chromatin tex-
ture varies significantly in normal tissue, precancerous lesions, and invasive cancer [7].

STORM images of cell nuclei from cell lines

Two training sets were collected for the cell line dataset. Cell lines used in this dataset 
include mouse and human fibroblast cells, human breast cancer cells, kidney cells and 
prostate cancer cells. A wide variety of molecular targets in the cell nuclei (H3K27me3, 
H3K4me3, DNA, RNA polymerase II) were labeled, which are characteristic of a diverse 
“texture” of nuclear organization. These datasets were generally divided into two catego-
ries based on its image characteristics: discrete and dense nuclear texture, which depend 
on either molecular targets or biological states. A total of 44 STORM images with dis-
crete nuclear texture and an additional 65 images with dense nuclear texture were used 
in this study. Each dataset was divided: 60% for training, 30% for testing and 10% for 
validation. The STORM images of cell nuclei with discrete nuclear texture comprised 
our first, single-source (single labeled target of RNA polymerase II) cell line training and 
validation dataset (Additional file 9: Figure S8), herein referred to as cell line dataset A. 
Next, the STORM image training and validation datasets including images with both 
discrete and dense nuclear texture comprised our second, multiple-source (i.e., various 
labeled targets) training and validation set, which we shall call cell line dataset B. Then, 
the two test sets from cell line datasets A & B were combined to create a single test data-
set for both the discrete and dense nuclear texture cell line training sets. In this way, we 
directly compared the network performances of both models: trained on a single data 
source presenting a discrete texture, versus trained on multiple sources containing both 
discrete and dense texture. A more complete breakdown of cell type, biological state, 
labeled molecular target and fluorophore used in each image set, as well as a breakdown 
of which dataset each image type appears in (Additional file 8: Table S1).
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Kaggle dataset

In addition to our own STORM super-resolution image dataset, we also trained and 
tested our selection of neural networks using the 2018 Kaggle data science bowl data-
set [1]. Included in this publicly available nuclear image dataset were wide-field fluores-
cence, H&E stained and brightfield microscopic images of nuclei from cultured cells and 
tissue. From the entirety of the dataset, we utilized only the stage 1 training set, contain-
ing 670 labeled images. Kaggle datasets were not resized, but rather tested as is.

Neural network implementation

All networks were implemented using Python 3.6.9 with Tensorflow 1.14 and Keras 
2.3.1. Training and testing was conducted on an Alienware X51 r3 PC running Ubuntu 
18.04 LTE, implementing an Intel® Core™ i7-6700 (8  MB Cache, 4.0  GHz) CPU with 
32  GB (2133  MHz) DDR4 RAM and a NVIDIA GeForce GTX 1060 GPU with 6  GB 
memory.

All networks utilized the Adam optimization algorithm to iteratively update network 
weights. Additionally, all networks used image augmentation to increase the robustness 
of the training datasets. Augmentation methods included random horizontal and verti-
cal flipping, rotations of 90 or 270 degrees and scaling by values between 0.5 and 1.5. 
Non-linear transforms such as stretching, skewing or sheering were not used.

Software distribution

To make our methods more readily available and duplicable, we have coded a set of 
Colab notebooks on which users can both test and train the neural networks used in this 
study (https://​github.​com/​YangL​iuLab/​Super-​Resol​ution-​Nuclei-​Segme​ntati​on). Colab 
notebooks are designed to run using a hosted runtime on the Google cloud service. 
This allows users access to all of the necessary coding libraries, as well as GPU compute 
power, without having to install and setup the environment locally. Notebooks were cre-
ated for Mask R-CNN and ANCIS, as well as the UNet used herein for noise detection. 
A separate notebook for StarDist was not created, since a good Colab notebook focus-
ing on nucleus segmentation already exists for this network, and can be used with our 
pretrained weights [40]. Our modifications for post processing predictions and resizing 
images were also included in the code, as optional parameters. We have also included 
links to our pre-trained weights for each network using our super-resolution image sets.

StarDist

The StarDist distribution applied here was version 0.6.0, downloaded from the author’s 
GitHub page [20]. Parameters used included a batch size of 2 and a training patch size of 
128 × 128. The number of rays for the star distributed polygons was set at 32, the author 
recommended value. During prediction, the non-maximum suppression (nms) thresh-
old was set to 0.3 and the probability threshold to 0.5. Additional settings were left to 
their default values, including binary cross-entropy training loss function and mean 
average error polygon distance loss function parameters.

https://github.com/YangLiuLab/Super-Resolution-Nuclei-Segmentation
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ANCIS

Our tested distribution of the ANCIS code was also downloaded from the author’s 
GitHub page [14]. Network parameters used for all training and testing included a nms 
threshold of 0.7, confidence threshold of 0.5 and segmentation threshold of 0.5. Thresh-
olds were selected based on previous experiences with image segmentation networks, 
as well as findings reported in the literature. The batch size was limited to 2 by the GPU 
capacity. The maximum detectable instance limit was set greater than the number of 
instances in any of the training or test images, we used 400, since we did not wish to 
limit segmentation in this way. Anchors were left at defaults values, along with default 
cross entropy loss function.

Mask R‑CNN

Matterport’s broadly disseminated Mask R-CNN distribution, version 2.1, was imple-
mented in these experiments [41]. Threshold parameters and maximum instance lim-
its were matched to those reported above for ANCIS. In addition, we applied some of 
the parameters set by Waleed Abdulla in his nucleus segmentation example code [41]. 
Anchors per image were set to 64, and anchor scales were set at (8, 16, 32, 64, 128). 
We did not implement mini masks, however, and our batch size was limited to 1. The 
network backbone used was resnet50, and binary cross entropy loss function as used. 
Training was initialized on the pre-trained coco dataset weights, downloaded from the 
code author’s website [41].

Network training and testing

Initial testing

Each of our tested neural networks came packaged with a pre-trained model using the 
Kaggle stage 1 dataset. We evaluated the performance of these broadly trained nuclei 
detection models on our super-resolution images by calculating the F1-Score of the 
segmentation results. Images used for segmentation included our STORM images of 
nuclei from human colon tissue and cell line test sets (original 5120 × 5120 image size 
downsized to 512 × 512). The F1-Scores were calculated at an IoU threshold of 0.7, using 
Caicedo’s method [21]. Additionally, we tested the effect of resizing by testing the Kaggle 
models on the same datasets downsized to 256 × 256. To evaluate whether converting 
the super-resolution images into their lower-resolution versions improve the perfor-
mance of nuclei segmentation, we also tested the models on blurred and histogram 
equalized versions of our 256 × 256 test sets.

Optimization

To identify the optimal parameters, we performed training and testing over a range of 
variable parameters including epochs, steps per epoch and learning rate. Performance 
comparisons were conducted by tabulating the F1-Scores on the resultant test data, eval-
uated at an IoU of 0.7, using the method set down by Caicedo et al. [21]. Optimization 
was conducted for the colon tissue dataset and also for the cell line A dataset (discrete 
nuclear texture). First, a model for each network was trained using 5, 10, 20, 50, 100, 
200, 400, 600, 800 and 1000 epochs, then each epoch’s model was tested for compari-
son. StarDist and Mask R-CNN networks were then trained using the optimal number 
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of epochs with 20, 50, 100, 200, 300, 400 and 500 steps, and again tested. ANCIS was not 
evaluated for number of steps as the code did not provide the option to change steps, 
however ANCIS did provide separate training functions for both the region proposal 
and segmentation networks, and both were optimized for epochs. Lastly, each network 
was trained using learning rates of 1e−3, 1e−4 and 1e−5.

In order to determine the minimum number of required images in the dataset to 
achieve acceptable results, we varied the size of each dataset used for training. Using the 
tissue dataset, the training set size was varied from 10, 20, 40, 60 and 77 images; for the 
cell line dataset, we used 10, 20, 40 and 65 images. Models were retrained for each train-
ing set size, and accuracy testing was conducted for each network.

Network evaluation

Using the optimal settings determined in the previous section, we conducted a more 
thorough testing and evaluation of each network’s performance on our STORM images. 
Test accuracy was analyzed using the F1-Score, Hausdorff distance and the false negative 
percentage, again using an IoU threshold of 0.7. The Hausdorff distance was calculated 
using the scikit-image version 0.17.2 python library. Both the Hausdorff distance and the 
F1-Score were averaged across all instances that achieved the requisite IoU threshold in 
each test dataset. The false negative percentage was determined as the total number of 
ground truth instances that did not achieve the requisite IoU score in the predictions of 
each test set divided by the total number of ground truth instances in that set. Similarly, 
the false positive percentage was calculated as the total number of predicted instances 
without a corresponding ground truth instance, divided by the total number of ground 
truth instances in the image.

The optimally trained colon tissue network models were used to evaluate both the 
colon tissue and prostate tissue test sets, as well as the 512 × 512 and 256 × 256 cell line 
test data. Additionally, the trained network models for cell line training sets A & B were 
both used to evaluate the cell line test set images. Only the network models for cell line 
training set B (containing both discrete and dense nuclear texture) was applied to the 
512 × 512 and 1024 × 1024 colon tissue test sets. Both the colon tissue and cell line net-
work models were used to create two new datasets (each) by either blurring or perform-
ing a histogram equalization on the images. Networks were trained on the blurred or 

Fig. 9  Denoising super-resolution images using UNet. Noisy super-resolution image from our colon tissue 
dataset (a), noise probability map (b) output from a UNet model trained on similar noise regions from 
super-resolution images, and the denoised image (c), resulting from subtracting the noise map from the 
original image in (a)
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equalized images using the same optimal parameters as the original image datasets were 
trained on, and then tested on their corresponding blurred or equalized test sets.

Segmentation processing

Noise removal

Test images were pre-processed before segmentation. A semantic UNet [11] was inde-
pendently trained on the human colon tissue and cell line B training sets, using labels 
indicating not nuclei, but rather noise regions, consisting of out-of-focus nuclei or 
unbound fluorophores. The UNet was trained for 50 epochs at 300 steps per epoch, with 
a learning rate of 1e−4. Image augmentation, like that used for training our instance 
detection networks, was applied, along with the Adam optimizer (0.9 momentum) 
and binary cross entropy loss function. The trained models were then tested on their 
respective test sets, creating noise probability maps as the outputs (Fig. 9). The probabil-
ity maps were binarized using Otsu’s method and subtracted from their respective test 
images, creating our denoised test sets.

Post processing

Following test image segmentation, post processing was applied. First, small instances 
with pixel area of less than 25% of the image average, were removed. Next, overlapping 
instances were merged or separated. Where overlapping instances were located, the 

Fig. 10  Method for splitting merged instances. (a) The lighter area is where the two instances overlap, 
(b) The center of each instance is identified, (c) Centers are connected, and the dividing line is drawn 
perpendicular to the connecting, and through its center point, (d) Instances are relabeled without overlap
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pixel area of each instance was calculated as was the area of the overlap. Instances shar-
ing more than 50% of their total pixel area, or where 50% of either instance’s pixels over-
lap, those instances were merged. When the overlapping area comprised less than 10% 
of one instance, but more than 10% of the other, the overlap was assigned to the instance 
with the greatest overlap. However, when both instances contributed 10% or less of their 
pixels to the overlapping region, the entire region was randomly assigned. Lastly, when 
the overlap comprised less than 50% of each instance, but more than 10%, the overlap-
ping region was split, as shown in Fig. 10.

The first step in dividing an overlap was to find the center of mass of each instance. 
Next, the two center points were connected by a line segment. The center of the line was 
then found, and a new line was created, perpendicular to the first and passing through 
its center point, as well as through the borders of the overlapping regions. The overlap-
ping instances were then split along the second line and each section assigned a different 
label. Any new small instances created during the split were again removed.

Tiling

Training neural networks directly on large format, super-resolution images can be a slow 
and memory intensive process. To offset memory limitations of our system, we down-
sized our images prior to training. Segmentation results from a trained network were 
later upsized to match the original image. We compared the accuracy of our method to 
a tiling method, where each image in the training and testing datasets was divided into a 
sequence of smaller images. These images, which would retain the detail of the original 

Fig. 11  Example of dividing large image into square tiles. A large 5120 × 5120 super resolution image is 
divided into many smaller image patches, or tiles. The image label, identifying fluorescent nuclei, is similarly 
divided. A tile overlap is used for test images, to be segmented by a trained network, in order to help 
recombine overlapping predictions and remove tile borders
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super-resolution images, were then used to train the networks along with their corre-
sponding labels (Fig. 11).

When conducting segmentation on test images, the original images (5120 × 5120) 
were divided into (512 × 512) squares with each square overlapping its neighbors by a 
128-pixel margin. The purpose of the overlap is to help merge predictions when reunit-
ing the segmented image squares. This is accomplished by sampling and matching the 
labels of overlapping segments, eliminating false segment divisions created by tile image 
borders (Additional file 10: Figure S9). Resulting whole test image segmentations were 
analyzed for accuracy.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04245-x.

Additional file 1: Figure S1. Mask R-CNN trained on the Kaggle dataset and applied to STORM images. Using a 
Kaggle data trained Mask R-CNN, examples of the best results we can achieve when conducting nuclei segmenta-
tion on super-resolution images from cell lines and tissue with distinct nuclear texture. Downsizing the test images 
(A-D) and applying the neural network to densely labeled cell line nuclei (A) can result in very good segmentation.  
When applied to less dense nuclei with discrete (B) or diffuse (C) structures, over or under segmentation can occur.  
Additionally, the trained network can perform well on tissue images where the nuclei exhibit bright intensity and are 
well separated (D).  However, the results here, with the exception of (A), are not as good as those found when apply-
ing Mask R-CNN trained directly on STORM data.

Additional file 2: Figure S2. Training steps per epoch and RPN versus test accuracy.  (A) Training steps per epoch 
versus test accuracy for Mask R-CNN and StarDist trained on the STORM images of human colon tissue dataset.  
Results for the cell line datasets proceeded similarly, only at higher F1-Scores.  After early fluctuation, the accuracy 
continued to grow with steps for Mask R-CNN up to 500 steps.  StarDist test accuracy, however, slowly rose to a 
peak at 300 steps before falling off.  ANCIS did not provide a step-per-epoch variable, but provided separate training 
programs for its region proposal network (RPN) and segmentation algorithm.  RPN epochs versus test accuracy plot 
(B) for ANCIS rose quickly between 0 and 50 epochs, then more slowly until reaching a peak at 600 epochs.

Additional file 3: Figure S3. Test accuracy versus number of images in the training set.  Training set size had a 
distinct effect on test accuracy when conducting training for each of the three networks on the colon tissue dataset 
(A) and the cell line A dataset (discrete nuclear texture) (B).  All networks demonstrate a general improvement 
in accuracy with number of images, with exceptions.  In the tissue set, the Mask R-CNN test accuracy fluctuated, 
although the largest training set still provided the best accuracy.  When training the cell line dataset, it was StarDist 
that fluctuated, while Mask R-CNN performed best when trained on 60 images rather than the maximum number.

Additional file 4: Figure S4. Example Mask R-CNN segmented STORM images of colon tissue at normal and various 
pathological states. States include (A) normal healthy tissue, (B) a low-grade dysplasia, (C) a high-grade dysplasia, 
and (D) an invasive adenocarcinoma.  Results for the normal state were the most accurate, followed by low-grade, 
high-grade and invasive cancer.  This demonstrates a decrease in test accuracy with decreasing nuclear cohesion. 
Segmentation was conducted using Mask R-CNN trained on the STORM colon tissue dataset.

Additional file 5: Figure S5. Nuclei segmentation on STORM images from prostate tissue dataset.  Segmentation of 
prostate tissue images using models which were pre-trained on the STORM colon tissue dataset.  The original STORM 
image of prostate tissue (A) was segmented using (B) Mask R-CNN, (C) ANCIS and (D) StarDist networks.  All three 
networks had multiple false negatives, however border placement appeared fairly accurate on the true positives.  
Mask R-CNN performed the best on this tissue dataset.

Additional file 6: Figure S6. Improved nuclei segmentation of StarDist method when trained on a mixed dataset.  
Representative nuclei segmentation of the StarDist algorithm on our cell line test images when training was 
conducted on our cell line A dataset (A), versus when trained on a combined dataset (B) (dataset included Kaggle, 
STORM colon tissue, and STORM cell line images).  Similarly, we trained StarDist on our colon tissue dataset and 
applied the model to our colon tissue test set (C), and then applied the StarDist trained on the combined dataset to 
the same test set (D).  Training on the combined dataset clearly improved instance border accuracy, particularly for 
the cell line images (B), and reduced false negatives in the tissue images (D).  ANCIS demonstrated a similar improve-
ment when trained on the combined dataset and tested on the tissue images.  Mask R-CNN alone did not improve 
when trained on the combined dataset.

Additional file 7: Figure S7. Improper noise model can result in nuclei deletion when denoising.  When conducting 
denoising using an improperly trained UNet noise model (trained only on dense noise), less noisy super-resolution 
images from our colon tissue dataset (A), which also contain less densely labeled nuclei, sometimes suffered from 
nuclei deletion (C) due to the networks inability to accurately distinguish noise from cell data (B).  The noise prob-
ability map (B) from the UNet model shows a high probability of suspected noise (white regions) over several nuclei 
sites.  The resulting denoised image, when this model is applied to the original image (A), shows the deletion of real 
nuclei (C).

https://doi.org/10.1186/s12859-021-04245-x
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Additional file 8: Table S1. Cell types included in our STORM datasets, along with their respective labeled targets, 
biological states, fluorophores and datasets.

Additional file 9: Figure S8. Example cell line images, each expressing different textures.  Textures include a dim, 
diffuse pattern (active form of RNA polymerase II in 3T3 cells) (A), more densely placed labels (DNA in 3T3 cells) (B) 
and (H3K4me3 in HK2 cells) (C), and discrete labels (H3K27me3 in CA1h cells) (D).

Additional file 10: Figure S9. Tiling method example with and without overlap. When the test image is divided into 
non-overlapping squares, or tiles, for segmentation, the borders between tiles will act as artificial borders between 
labeled detected instances upon image reconstruction, creating divided predictions (upper diagram).  Overlapping 
allows for a post-segmentation program to sample the overlapping region in adjacent tiles and merge overlapping 
instances during reconstruction (lower diagram).
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