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Abstract

Background: Antifreeze proteins (AFPs) are a group of proteins that inhibit body
fluids from growing to ice crystals and thus improve biological antifreeze ability. It

is vital to the survival of living organisms in extremely cold environments. However,
little research is performed on sequences feature extraction and selection for anti-
freeze proteins classification in the structure and function prediction, which is of great
significance.

Results: In this paper, to predict the antifreeze proteins, a feature representation of
weighted generalized dipeptide composition (W-GDipC) and an ensemble feature
selection based on two-stage and multi-regression method (LRMR-Ri) are proposed.
Specifically, four feature selection algorithms: Lasso regression, Ridge regression, Maxi-
mal information coefficient and Relief are used to select the feature sets, respectively,
which is the first stage of LRMR-Ri method. If there exists a common feature subset
among the above four sets, it is the optimal subset; otherwise we use Ridge regres-
sion to select the optimal subset from the public set pooled by the four sets, which

is the second stage of LRMR-Ri. The LRMR-Ri method combined with W-GDipC was
performed both on the antifreeze proteins dataset (binary classification), and on the
membrane protein dataset (multiple classification). Experimental results show that
this method has good performance in support vector machine (SYM), decision tree
(DT) and stochastic gradient descent (SGD). The values of ACC, RE and MCC of LRMR-Ri
and W-GDipC with antifreeze proteins dataset and SVM classifier have reached as high
as 95.56%, 97.06% and 0.9105, respectively, much higher than those of each single
method: Lasso, Ridge, Mic and Relief, nearly 13% higher than single Lasso for ACC.

Conclusion: The experimental results show that the proposed LRMR-Ri and W-GDipC
method can significantly improve the accuracy of antifreeze proteins prediction
compared with other similar single feature methods. In addition, our method has also
achieved good results in the classification and prediction of membrane proteins, which
verifies its widely reliability to a certain extent.
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Background

Antifreeze proteins (AFPs) are proteins that inhibit ice recrystallization by reducing the
freezing point of intracellular fluids. It enables fish, insects, plants, algae, bacteria and
other organisms to survive in extremely cold environments [1]. It is essential for the sur-
vival of organisms in extremely cold environments [2].

In the 1950s, Scholander et al. [3] first observed that certain fish could survive at
temperatures below their body fluid freezing point. Until 1997, some researchers first
discovered that this antifreeze substance, which can make the living body tolerant of
coldness, is a special protein and was named as antifreeze proteins [4]. In 2002, Davies
et al. successively found that AFP can adsorb on the surface of ice crystals. The interac-
tion between AFP and ice crystals has a significant effect on the overall growth of ice [5].
The identification of new AFPs plays an important role in understanding the interac-
tion of proteins with ice and the creation of new ice-binding domains in other proteins.
Because of the wide variety of antifreeze proteins, identifying new antifreeze proteins is
a challenge for biologists. Identifying antifreeze proteins in organisms by traditional bio-
technology is time-consuming and costly. With the rapid growth of sequences genomic
data, dealing with large amounts of biological sequences data requires fast and accurate
automated methods for identification and annotation. Therefore, many research groups
are dedicated to the study of biological sequences extraction algorithms, feature selec-
tion, and classification algorithms using machine learning and deep learning methods,
such as amino acid composition (AAC), pseudo amino acid composition (PseAAC), pro-
tein position-specific scoring matrix (PSSM), dipeptide composition (DipC), tripeptide
composition (TPC), 20-D condensed feature vectors (CFV), general dipeptide compo-
sition (GDipC), Lasso feature selection, neural network (NN), support vector machine
(SVM), k-nearest neighbor (KNN), random forest (RF) and decision tree (DT), etc., and
successfully applied them to protein structure and functional spectrum classification
and prediction [6-23]. Recently Stochastic Gradient Descent (SGD) has been success-
fully applied to the field of sparse and large-scale machine learning [24, 25]. Strictly, SGD
is only an optimization technique, not a specific machine learning model. However, it is
a both simple and efficient method to fit linear classifiers and regressors under convex
loss functions such as squared loss.

Until 2011, Daswamy et al. applied machine learning technology to antifreeze proteins
prediction for the first time. In their proposed method, a variety of physicochemical
properties were used to encode the features of the protein sequences, and a random for-
est algorithm was used as the classifier [26]. This innovation has attracted wide atten-
tion of researchers to related fields, and many researchers have joined the antifreeze
proteins sequences research. In 2012, Zhao et al. proposed a prediction method called
AFP_PSSM, which used support vector machine (SVM) and position-specific scoring
matrix (PSSM) to predict antifreeze protein. PSSM was applied to predict antifreeze
proteins for the first time in this study [27]. In 2014, Mondal et al. proposed a method
called AFP-PseAAC in which Chou’s pseudo-amino acid composition (PseAAC) was
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successfully applied to the prediction of antifreeze proteins with an accuracy of 84.75%
[28]. In 2015, based on previous research, Yang et al. proposed an AFP recognition
system called AFP-Ensemble, in which random forest classifiers were trained by com-
bining different training subsets. Then it was aggregated into a consensus classifier by
majority vote, and finally, the experiment achieved good results [29]. In the same year,
He et al. proposed a new AFP predictor based on antifreeze proteins sequences, called
TargetFreeze, whose main idea is the weighted combination of multiple protein extrac-
tion methods, including amino acid composition (AAC), pseudo amino acid composi-
tion (PseAAC) and position-specific scoring matrix (PSSM), and used support vector
machine as the classifier [30]. In 2016, Xiao et al. proposed a method called iAFP-Ense
based on AFP-PseAAC, whose main idea is to combine the gray model and the PSSM
expression with PseAAC, and then to integrate eleven different random forest classifiers
through the voting system. Xiao’s final experimental results show that the performance
of the predictor is better than AFP-PseAAC [31]. In 2017, Pratiwi et al. built a Web
server for classifying antifreeze proteins from non-antifreeze proteins, and the predic-
tor has good performance with an accuracy of 88.82%. In addition, the server annotated
AFPS using statistical and principal component analysis propensity scores and impor-
tant physical and chemical properties [32]. Recently, Khan et al. proposed a method
called RAFP-Pred, which first used information gain (IG) to extract feature of antifreeze
proteins sequences and classified them with random forests. Experimental results show
that the method has better robustness [33]. To further improve the robustness of the
predictive model, Nath et al. used k-means clustering algorithm to create diverse and
balanced training and test set, overcoming the shortcomings of random segmentation,
making the model more generalized and robustness [34].

At present, researchers usually combine multiple extraction methods of protein
sequences to make the obtained protein sequences more comprehensive, but this will
cause a lot of information redundancy. Feature selection methods can effectively solve
information redundancy. Therefore, in this paper, we propose an improved feature
extraction method for antifreeze proteins, called weighted generalized dipeptide compo-
sition (W-GDipC), and an ensemble feature selection method based on two-stage mul-
tiple regressions, called LRMR-RI. In the study, we first discuss the weighted coefficients
in the fusion expression and then perform the fusion feature expression on the support
vector machine (SVM), decision tree (DT) and stochastic gradient descent (SGD) classi-
fication algorithms. The experiment was carried out and the effectiveness of the method
was verified by a five-fold cross-validation based on five evaluation indicators, accuracy;,
recall, precision, F-Measure and Matheus correlation coefficient. Finally, four commonly
used feature selection algorithms, Lasso, Ridge, Maximal information coefficient (Mic),
and Relief are introduced to process high-dimensional protein data. To avoid the local
optimal problem coming from each single algorithm of above four, and to remove the
redundancy to a greater extent, the ensemble feature selection (LRMR-Ri) based on
two-stage multiple regressions is proposed, which is carried out both on the antifreeze
proteins dataset (binary-classification problem) and on the membrane protein dataset
(multi-classification problem), respectively. From the experimental results and related
analysis, it can be seen that the proposed W-GDipC and LRMR-Ri methods can obtain
excellent prediction results.
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Results and discussion

The selection result of fusion coefficient

In order to reflect the effectiveness of W-GDipC and make the fusing effect optimal,
we conducted several groups of comparative experiments with different weights. The
threshold of fusion coefficient is set from 0 to 1, which is increased by 10% proportion-
ately in each experiment. In order to show the influence of different weights of DipC and
GDipC on the accuracy in the fusion process more clearly and intuitively, we plotted the
change of the accuracy under different fusion coefficients based on three different classi-
fiers SVM, DT, and SGD, as shown in Fig. 1.

It can be seen from Fig. 1 that with the increase of the fusion coefficient, the accu-
racy of three classifiers are all greatly improved, which shows that the features extracted
by the DipC method are more recognizable. The higher the proportion of DipC is, the
higher the recognition rate. When a is 0.8, the accuracy of DT is the highest among the
nine groups of weight distribution experiments based on three different classification
algorithms. At this time, the accuracy is 91.33% and the fusion expression of W-GDipC
is (0.8DipC +0.2GDipC). The accuracy was 2.92% and 0.23% higher than the highest val-
ues obtained by support vector machine (SVM) and stochastic gradient descent (SGD)
at (0.8DipC+ 0.2GDipC) and (0.9DipC+ 0.1GDipC), respectively. Therefore, when the
fusion coefficient is 0.8, the weight proportion of feature vectors extracted by DipC
about 80%. At this time, the overall prediction effect is the best.

Comparison of sequences feature extraction algorithms
In order to further evaluate the effectiveness of the proposed W-GDipC feature extrac-
tion, two single feature expression methods, GDipC and DipC, are used to compare with
W-GDipC. The SVM, DT and SGD classifiers with different features were constructed
by five-fold cross-validation for comparison. The average accuracy and Matthew correla-
tion coefficient after the five-fold cross-validation were obtained.

From the experimental results, no matter which classifier is used, the ACC of
W-GDipC is better than those of GDipC and DipC. Similarly, MCC of W-GDipC is
better than those of GDipC and DipC. Specifically, in the prediction results with SVM,
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Fig. 1 Accuracy of W-GDipC with different fusion coefficients under three classification algorithms for
antifreeze proteins dataset
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the average accuracy of W-GDipC, GDipC and DipC are 88.41%, 79.51% and 84.78%,
respectively, and the average MCCs are 0.7704, 0.6232 and 0.7161, respectively. For clas-
sifier DT, the average accuracy of W-GDipC, GDipC and DipC are 91.33%, 83.37% and
90.75% respectively, and the average MCCs are 0.8254, 0.6854 and 0.8188 respectively.
With classification algorithm SGD, the average accuracy of W-GDipC, GDipC and DipC
are 91.10%, 90.76% and 90.40% respectively, and the average MCCs are 0.8239, 0.8232
and 0.8093, respectively. These data are sufficient to demonstrate the effectiveness of
W-GDipC in the feature representation of antifreeze proteins sequences. In order to
more intuitively see the prediction effects of three features representation under differ-
ent classification algorithms, we drew the following Fig. 2.

It can be seen from Fig. 2 that the cross-validation results of W-GDipC in the three
classification algorithms are better than the two single feature representation methods.
This is because the length of the antifreeze proteins sequences is mostly in the range of
50-100, while GDipC is more suitable for short peptide and specific functionally promi-
nent biological sequences, which are mainly used to enrich partial sequences features.
And the features extracted by DipC are more likely to lead to local data sparsity. The
W-GDipC proposed in this paper can optimize the feature representation of the two
feature extraction methods on the antifreeze proteins sequences to a certain extent,
because it contains more features than the former two, so that the evaluation index has a
robust improvement compared with the first two feature extraction algorithms.

Comparison of sequences feature selection methods

In order to verify the effectiveness of the proposed method, based on the feature repre-
sentation of W-GDipC, the above antifreeze proteins dataset was still used as the bench-
mark dataset 1, and the classification models constructed by LRMR-Ri and the original
feature selection algorithms based on DT, SVM and SGD classification algorithms is ver-
ified by five-fold cross-validation respectively. The values of evaluation indexes are given
in Table 1.

According to the Table 1, for the antifreeze proteins dataset, the conclusions of the
three models DT, SVM and SGD are generally consistent, that is, the values of RE, ACC
and MCC of LRMR-Ri are all much larger than those corresponding values of single fil-
ters Lasso, Ridge, Mic and Relief. Among the four single filters (feature selection meth-
ods), it is easily seen that the performance of Lasso is the worst among the four, Mic
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Fig. 2 Evaluation of three feature extraction methods for antifreeze proteins dataset
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Table 1 Evaluation based on four singer filters and LRMR-Ri for antifreeze proteins dataset with
three models

Model Evaluating Lasso Ridge Mic Relief LRMR-Ri
indicator
DT RE (%) 77.65 90.59 88.82 92.94 95.88
ACC (%) 7693 92.39 89.81 91.34 93.21
MCC 0.5328 0.8545 0.7932 0.8283 0.8627
SVM RE (%) 77.65 95.88 87.06 94.71 97.06
ACC (%) 82.79 93.56 90.75 93.21 95.56
MCC 0.6574 0.9001 0.8138 0.8639 0.9105
SGD RE (%) 7647 88.82 81.87 87.13 91.76
ACC (%) 81.87 85.38 83.04 87.13 90.53
MCC 0.6675 0.7205 0.6698 0.7450 0.8332
100 100 100
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Fig. 3 Evaluation of antifreeze proteins prediction by different feature selection methods based on three
classification algorithms

is the third, the results of Ridge and Relief are close and both good while on the whole
Ridge is better than Relief, which is the reason why Ridge is chosen in the second stage of
LRMR-Ri method. Specifically, in the prediction model of DT, the differences of LRMR-
Ri and Lasso are 18.23%, 16.28% and 0.3299 for RE, ACC and MCC, respectively, these
differences are 19.41%, 12.77% and 0.2531 for SVM model and 15.29%, 8.66% and 0.1657
for SGD model, showing a generally outstanding performance of the proposed LRMR-
Ri, for example, with classifier SVM, whose ACC value is nearly 13% higher than that of
Lasso. The prediction effect obtained by the Lasso method is the worst compared with
the other three single filters. This may be due to the excessive compression of non-zero
coefficients in the Lasso analysis, which increases the deviation of the estimation results,
resulting in poor prediction performance. And Lasso uses L1 regularization to make it
easier to make part of the weights take 0, making the weights sparse; and Ridge uses L2
regularization can only make the weights close to 0, rarely equal to 0. This may also be
the reason why the prediction effect of Ridge is higher than that of Lasso.

Figure 3 provides a more intuitive view of the performance comparisons among the
models. As can be seen from Fig. 3, the proposed LRMR-Ri method is superior to the
other four methods, Lasso, Ridge, Mic and Relief for the prediction of antifreeze pro-
teins. Therefore, it can be reasonably concluded that redundant features and local
optimal or sub-optimal feature subsets are screened out to a great extent and a more
effective feature subset is extracted by LRMR-Ri method.
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Prediction of membrane protein types by LRMR-Ri method

The prediction of these antifreeze proteins mentioned above is a binary classification
problem, but membrane protein prediction belongs to the multi-classification problem.
In order to verify the conclusion that the proposed method (and the fusion coefficient
of W-GdipC is still 0.8) is also effective to the multi- classification prediction, we carried
out the related comparison experiment. The average PE, RE, F-Measure of eight catego-
ries and the overall ACC and MCC of membrane proteins are calculated based on differ-
ent feature selection methods and different models, whose values are shown in Table 2.

In Table 2, the ACC of the proposed LRMR-Ri method can reach as high as 80.15%
based on SGD algorithm, around 9% higher than of Lasso. As far as ACC and MCC val-
ues are concerned, the performance of LRMR-Ri on membrane protein dataset is still
better than that of the other four feature extraction methods no matter with which
model. For the indexes of PE, RE and F-Measure, the performance of LRMR-RIi is gener-
ally average.

Figure 4 shows the evaluation of eight categories of membrane proteins by three differ-
ent classification algorithms, DT, SVM and SGD with different indexes. No Three clas-
sification algorithms consistently suggested that, some indexes of categories 3 or 4 are
0, which intuitively reflects that the values of TP and FP of some categories are both
zero in the process of prediction, indicating that those categories have not been recog-
nized. This is due to the much too small number of samples in these two categories (only
30 sequences in category 3 and 56 sequences in category 4), whose training subsets are
24 and 44, respectively, resulting in poor learning results. On the contrary, the indica-
tor values of category 5 (including 4581 sequences) are greater than 0.8 and higher than
those of all other categories, showing that the more samples trained for the classification
are, the better the prediction effect will be.

Figure 5 gives the overall prediction results of membrane protein types with ACC
and MCC by three classification algorithms DT, SVM and SGD based on five feature

Table 2 Evaluation based on four singer filters and LRMR-Ri for membrane protein dataset with
three models

Model Evaluating indicator Lasso Ridge Mic Relief LRMR-Ri
DT PE 03296 04928 03487 06778 04585
RE 0.3350 0.3760 0.3425 04376 04258
F-Measure 03316 04021 0.3443 04339 04353
ACC (%) 69.86 77.97 71.82 77.59 79.83
MCC 0.5037 0.6101 0.5036 0.6171 0.6563
SVM PE 0.5446 0.5352 05228 0.5569 05159
RE 04853 04391 04762 04574 04432
F-Measure 0.5051 04616 04910 0.4842 04549
ACC (%) 65.68 6741 67.70 6843 7257
MCC 05133 0.5766 0.5601 0.5951 0.6007
SGD PE 03487 0.5777 0.6304 04776 0.5593
RE 0.3425 04614 0.3911 0.3847 0.4460
F-Measure 0.3443 04934 04384 04076 04810
ACC (%) 71.82 78.19 75.88 75.88 80.15

MCC 05237 0.6304 0.5648 0.5827 0.6562
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methods and models
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Fig. 5 Membrane protein prediction with ACC and MCC by three classification algorithms and five feature
selection methods

selection methods. Even though there still exist O values of the predicted PE, RE or
F-Measure for certain categories with small sample sizes, the overall accuracy and
Matthew correlation coefficient of LRMR-Ri are relatively good among all, which ver-
ifies certain effectiveness of the proposed method in the multi-classification of mem-
brane proteins.
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Comparison of antifreeze proteins with other machine learning methods

We compare the method proposed in this paper with the other three classifiers that also
predict the antifreeze proteins by machine learning methods. The three methods are:
AFP-Pred [26], AFP-PseAAC [28], TargetFreeze [30]. It can be seen from Table 3 that
although the prediction performance of W-GDipC combined with multi-regression fea-
ture selection ensemble method using SVM as classifier is not good, but the prediction
performance of SGD and DT as classifiers is better than other methods. And the pre-
diction performance of DT as the classifier is the best, MCC and ACC are 0.158 and
7.9% higher than the AFP-Pred method, respectively. The poor prediction performance
of using SVM as a classifier may be due to the small number of samples in the dataset we
use. Comparison of antifreeze proteins with other machine learning methods shown in
Table 3.

Conclusion
In this work, we proposed a new feature representation method and a new feature selec-
tion method for predicting the antifreeze proteins, W- GDipC and LRMR-Ri. As far as
W-GDipC, it uses a linear weighted fusion of GDipC and DipC. When the fusion coef-
ficient is 0.8, the overall prediction effect is the best. The average accuracy of five-fold
cross-validation of W-GDipC based on SVM, DT and SGD is 88.41%, 91.33% andis
88.41%, 91.33% and 91.10%, respectively. The average Matthew correlation coefficients
are 0.7704, 0.8254 and 0.8239 respectively. The results show that the cross-validation
results of W-GDipC in three classifiers are superior to two single feature expression
methods. Then the LRMR-Ri method was used to select the features of high-dimen-
sional antifreeze proteins. LRMR-Ri method constructs classification models based on
DT, SVM, and SGD classification algorithms on antifreeze proteins dataset, and achieves
ACC of 93.21%, 95.56% and 90.53% respectively in five-fold cross-validation. For each
single feature method that makes up of the proposed LRMR-Ri & W-GDipC method
was used as the comparison method. The experimental results show that the proposed
LRMR-Ri and W-GDipC method can significantly improve the accuracy of antifreeze
proteins prediction compared with these single feature methods. Moreover, the method
achieves ACC of 79.83%, 72.57% and 80.15% respectively on membrane protein dataset
based on DT, SVM and SGD classification algorithms.

Especially, with antifreeze proteins dataset and SVM classifier, the values of ACC,
RE and MCC of LRMR-Ri and W-GDipC have reached as high as 95.56%, 97.06% and
0.9105, respectively, much higher than those of each single method: Lasso, Ridge, Mic

Table 3 Comparison of our proposed method with other methods for antifreeze proteins dataset

Method MCC ACC (%)
AFP-Pred 0.6674 83.38
AFP-Pse AAC 0.800 89.69
TargetFreeze 0.819 90.95
W-GDipC+ SYM 0.7704 8841
W-GDipC+ SGD 0.8239 91.10

W-GDipC+ DT 0.8254 91.33
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and Relief, nearly 13% higher than single Lasso for ACC. With membrane protein data-
set and SGD classifier, the values of ACC, RE and MCC of LRMR-Ri and W-GDipC
have achieved 80.15%, 44.6% and 0.6562, respectively, also better than other methods,
and around 10% higher than each value of Lasso. Therefore, LRMR-Ri is superior to the
other four feature selection methods not only in the prediction of antifreeze proteins
but also in the prediction of membrane proteins. The proposed method is superior to
other machine learning methods in predicting the performance of antifreeze proteins
data. The related source codes and dataset are available at https://github.com/Xia-xin-
nan/W-GDipc-LRMR-Ri.

In future research, different strategies can be used for the fusion of feature representa-
tion of protein sequences, such as a new feature extraction method based on pK value,
which represents the dissociation constant of the amino acid, and amino acid frequency
[35]. Different optimization algorithms can also be used to optimize the fusion coeffi-
cients [36]. For example, the particle swarm optimization algorithm can be used to opti-
mize the parameters [37]. Because particle swarm optimization (PSO) is easy to fall into
the local optimal solution, once the dimension increases, its performance will decline in
some degree, so better-performing parallel particle swarm optimization (PPSO) can also
be introduced and used to find the optimal parameter and so on [38—41].

At last, we want to give an explanation about the choice of using five-fold cross-vali-
dation. In this test method, we selected four of them for training and one for testing in
turn and the average of the results of five is used as the estimation of the accuracy of the
algorithm, which relatively avoids the risk of data leakage. There are three main reasons
for not using the independent testing datasets in this paper. First, according to literature
[11], and two references which recently cited it, a review article [42] and another one
[43], there are quite a few papers which focused on biopeptides, novel therapeutic pep-
tide functions and short antimicrobial peptides only used cross validation for test, which
enhances the possibility for our W-GDipC method to compare with them. Second, the
segmentation of training, verification and testingdataset sometimes may possibly lead
to over-fitting, for there is a great randomness in the segmentation. For example, the
independent set test is verified on the test set only once, which leads to the expansion
of the randomness, while we can use the cross validation to reduce this randomness by
dividing data several times and get a better robustness through the average method. On
the other hand, how to reasonably divide training set, verification set and test set is a
challenging problem, which is sometimes subjective, thus leading to the risk of insuffi-
cient model training or over fitting. Third, since we do not use deep learning algorithms
in this paper and thus the number of parameters is not large, it is not so necessary to
pay for the cost of time complexity and data segmentation due to independent dataset.
Of course, for future study, some constructive approaches such as independent testing
datasets method or others can also be attempted.
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Table 4 Antifreeze proteins dataset (Binary classification data)

Benchmark dataset 1

Sample types Quantity
1 AFP 480
2 Non-AFP 374

Total 854

Table 5 Membrane protein dataset (multi-classification data)

Benchmark dataset 2

Sample types Quantity
1 Typell 1054
2 Typell 390
3 Type lll 30
4 Type IV 56
5 Mutipass 4581
6 Lipid-chain-anchored 189
7 GPl-anchored 228
8 Peripheral 1054

Total 7582
Methods
Dataset

In this study, we used the antifreeze proteins (AFP) dataset as the benchmark dataset 1
in case of binary classification, and the membrane protein dataset [44] as the benchmark
dataset 2 in case of multiple classification. The dataset of AFPs contains 480 positive
samples and 374 negative samples. The 480 positive samples were confirmed by bio-
logical methods, and selected from Kandaswamy et al. [26] and Zhao et al. [27], whose
construction steps are as follows. First, we extract the initial AFP sequences from Pfam
database [45]. Then we use PSI-Blast with a E-value of 0.001 to search for each sequence
in the non-redundant database and only retain the proteins of AFPs [46]. Finally, we use
CD-HIT [47] to remove the sequences whose similarities are large than or equal to 40%
from the dataset [30]. The 374 negative samples were selected from the cell penetrat-
ing peptide sequences in CPPsite 2.0 [48] and independent of AFP. For the benchmark
dataset 2, there are eight categories of membrane protein sequences, with a total of 7582
proteins. The specific dataset information is shown in Tables 4 and 5.

Weighted generalized dipeptide composition (W-GDipC)
Dipeptide composition (DipC) is a feature extraction method that two adjacent amino
acids are combined and the frequency of occurrence of residues are calculated. There
are 20 x 20 possible amino acid combinations of feature vectors of the extracted protein
sequences [49, 50]. DipC can be defined by Eq. (1) [51]:
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DipC(i) = r{(_i)l, i=1,2,...,400 1)

where f (i) represents the number of the ith dipeptide, # indicates the length of the anti-
freeze proteins sequences.

The generalized dipeptide composition (GDipC) is not limited to count the fre-
quency of occurrence of adjacent doublets, but counting the frequency of occurrence
of residue pairs with isometric intervals [8, 11]. According to [11], the mathemati-
cal expression for the residue pairs with isometric intervals in generalized dipeptide

composition is:
gdipc(k) = {1921k 4293+k> - - -» Aj+1+k> - - -» Dn—1—kGn} )

where gjq; 144, 1 <j < n—1—k represents a pair of residues consisting of residues
with isometric intervals, k1) indicates an isometric interval between two pairs of resi-
dues [11]. Then we gave the following notation:

(3)

GDipC (k) = ( f@ S £ (400) )

n—k—-1n—k-1"n—-k-1

where f '(i) is the number of the ith kind of dimers in gdipc(k). When k=0, GDipC(0) is
DipC.

In [11], researchers arranged all GDipC(k), (0 < k <#n —2) into a vector with
400 x (k — 2) dimension, whose possible maximum dimensional value can reach
400 x (n — 2). For short sequences of cell-penetrating peptides, the authors in [11]
reasonably chose k=1, 2, 3 to form 800-D, 1200-D and 1600-D vectors, respec-
tively. Then they used LDA method to reduce the dimensionality and redundancy.
Generally, for heterogeneous feature data after pattern mapping, data redundancy is
inevitable, which will impair the effectiveness and efficiency of data processing [52].
Therefore, a generalized dipeptide composition with a weighted fusion of sequences
feature extraction methods (W-GDipC) is proposed in this paper, which is fused by
GDipC(k) and DipC with certain weighting coefficient. Since GDipC is more suita-
ble for short sequences, the fusion of GDipC(k) and DipC allows both long and short
sequences to get a better feature expression through proper weights.

The equation of W-GDipC is as follows:

d
W-GDipC =Y _ e GDipC (k) (4)
k=0

wherezzzoak =lLor >, d=12,...,n—2.

In Eq. (4), o > aiy1 implies that the importance of generalized dipeptide decreases
with the increase of the interval length of k.

The feature representation of W-GDipC is shown in Fig. 6.

W-GDipC method is proposed based on the characteristics of antifreeze protein
sequences. Generalized dipeptide composition in [11] is more suitable for short
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Fig. 6 Composition Analysis of W-GDipC

peptide biological sequences with outstanding specific function than the long AFP
sequence here. As a way to eliminate the data sparsity of the traditional dipeptide
composition (DipC), W-GDipC not only can preserve the important features of the
generalized dipeptide composition algorithm, but also further complete the missing
features, which greatly eliminates redundant features and enriches the feature expres-
sion of antifreeze protein sequences.

Especially, in this paper, considering the length of AFP sequences comprehensively,
we use the following simple expression:

W-GDipC = aDipC + (1 — a)GDipC(1) )

where « is the fusion coefficient. In the following section, to simplify the notation,
GDipC(1) is denoted as GDipC in the case of no confusion.
There are two advantages of W-GDipC:

1. Data redundancy can be effectively reduced and a clear representation can be
obtained after data fusion of DipC and GDipC;

2. The sparseness of local data resulted from singly using GDipC or DipC is avoided
to a large extent, so existing feature data is more completely and concisely for long
sequences.

Finally, how to select fusion coefficients is also an important step. Specifically, in
Eq. (4), how to select ay, d =1,2,...,n — 2, satisfying Zzzo ay =1, 0 > gy, SO
as to get prediction results as good as possible, is a very complex and challenging
search process. It is a combination optimization problem with high computational
complexity. Commonly used methods for calculating feature weights include Boolean
weights, word frequency weights, entropy weights etc. In addition, just like reference
[20], when they searched the high dimensional fusion balance factors, they used the
genetic algorithm. In [22], when researchers studied the kernel parameter selection
method, besides the general grid searching method, they used a clever principle, that
is, the optimal kernel parameter makes the reconstruction errors have a reasonable
difference between the internal samples and the edge samples. In this paper, since a
simplified Eq. (5) is studied, it is relatively easy to find a good a value. In order to find
a suitable a, we search it from 0 to 1 with a fixed step in the experiments.
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Ensemble feature selection (LRMR-Ri) method based on two-stage multiple regressions
Inspired by the superimposed generalized learning framework [53], a hierarchical
ensemble feature selection method named LRMR-Ri is proposed in this paper, which
means Lasso, Ridge, Mic and Relief (abbreviated as LRMR) in the first stage and Ridge
(abbreviated as Ri) in the second stage. Specifically speaking, four local optimal fea-
ture subsets are generated by using Lasso, Ridge, Maximal information coefficient
(Mic) and Relief firstly. If there are some common features in the four feature subsets,
the common features could be placed directly into the optimal subset, otherwise, the
four feature subsets would be put into the public collection and be selected again by
the Ridge filter as at the second stage, which is called two-stage method.
The specific operation of each single filter in LRMR-RIi is as follows.

Lasso

The characteristic of lasso regression is that it is a generalized linear model with various
dependent variables, including one-dimensional continuous dependent variable, multi-
dimensional continuous dependent variable, non-negative times dependent variable,
binary discrete dependent variable and multivariate discrete dependent variable etc.
[54]. In addition, Lasso can also filter variables and reduce the complexity of the model.
The variable filtering here refers to not putting all variables into the model for fitting, but
selectively putting variables into the model to get better performance parameters.

Lasso has its own independent variable selection function, so the problem here is
changed into how to choose the appropriate constant ¢ so that # independent variables
we want can be selected. Since there is a strict positive correlation between the value of
¢ and the number of selected independent variables, we use dichotomy to optimize it
directly, and give an initial ¢ value in 0-1,000,000. The iteration ends with a convergence
condition that the number of selected independent variables is greater than or equal to
n and less than or equal to # x 1.05. At the same time, the default value for the maxi-
mum number of iterations is 100. If it does not converge after 100 iterations, the initial
interval is magnified ten times and the iteration is over again. The process of iterating is
repeated up to 10 times. If it doesn’t converge after 10 repetitions, it is defaulted to no
convergence. Due to the number of independent variables selected at the final conver-
gence position is not necessarily exact # (but must be larger), we select the maximum #»
coefficients among all the independent variables selected by Lasso as the final result.

Ridge
Ridge regression [55] is the least square regression with Euclidean norm as the penalty.
In the least square estimation method, b= (X'X) ' X’Y,where (X’X) cannot be 0. How-
ever, when the correlation between variables is strong, (X’X) is very small, even tends to
0.

Ridge regression is a biased estimation method for collinear data analysis. By giving up
the unbiasedness of the least square method, the regression coefficient obtained at the

cost of losing part of the information and reducing the accuracy is more practical and
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reliable. In essence, a non-negative factor is artificially added to the main diagonal ele-

ments of the independent variable information matrix, i.e.,
b)) = X'X +.D7 XY (6)

When 4 = 0,b(4) = b; if A — 00, b(1) — 0. The track of (1) changing with 1 is called
ridge trace. When processing highly correlated data, we usually draw the ridge trace and
select an ideal A corresponding to certain stability.

Since the Ridge algorithm itself does not make variable selection, we solve out the
optimal regular coefficient through the grid search considering the principle of regular-
ity, then select # feature vectors whose absolute value of coefficient is the largest over the
optimal regular coefficient as the result of the selection of the independent variables.

Mic

Maximal Information Coefficient (Mic) [56] is used to measure the linear or nonlinear
intensity of the two variables X and Y, and is calculated by the mutual information (MI)
and meshing methods. The calculation method is as follows:

A MI*(R,x,y)
Mic(R) = max { —— "~ (7)
xy<K(m) | logmin {x,y}

where k(m) is the size of the grid, which is a variable, usually 0.6 power of the amount of
data, R represents the dataset, MI* (R, x, y) is defined as follows:

P(x,
MI*(R, %, y) = max Z ZP(x,y) log ﬁpy(;) (8)
xeX yeY

where P(x,y) represents the joint probability density of variables X and Y, P(x) and P(y)
represent the marginal probability density of variables X and Y.

The calculation of Mic is divided into three steps. First, given i and j, the scatter dia-
gram composed of two variables X and Y is gridded with i columns and j rows, and the
maximum mutual information value is calculated. Second, normalize the maximum
mutual information value. Third, select the maximum value of mutual information
under different scales as Mic value.

The computational logic of Mic is very simple, which is traversing all feature vectors
and calculating the Mic of y and it to take the maximum # independent variables.

Relief
The relief algorithm [57] is a feature weighted filtering algorithm, which generates
weight according to the correlation between features and classification. If the value of a
feature is less than a certain threshold, the feature will be filtered. The relief algorithm is
as follows:

Set the train dataset is D, the sampling frequency is m, the number of original features
is N, the threshold of feature weight is 8, and the output is the weight T of each feature.
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1. Set the weight of all features is 0 and T is empty set;
2.fori=1tomdo
2.1.Randomly select a sample R from D;

2.2. Find the k-nearest neighbor samples H and M of R from the same
sample set and different sample sets of R;

2.3.forA=1toNdo

W(A) =W(A)-
diff(ARH)/m+
diff(A,RM)/m;
3.forA=1toNdo
3.1.if W(A)> =6
Add the A-th
feature weight
T

end

In 2.3 described by the above algorithm, diff(A, R, H) represents the difference between
the samples R and H on the feature A, and its calculation formula is as follows:

IRIAI-HIA]l ¢ o ~
Thax(A)—min(A) if A is continuous

diff(A,R,H) = ¢ 0 if A is discrete and R[A] = H[A] 9)
1 if A is discrete and R[A] # H[A]

The W-GDipC and LRMR-Ri methods we proposed are described as follows:

Step 1: Using DipC to generate 854 x 400 and 7582 x 400 matrices.

Step 2: Using GDipC to generate 854 and 7582 400-dimensional feature vectors.

Step 3: The weighted fusion of the features in step 1 and step 2.

Step 4: Using Lasso, Ridge, Mic and Relief selecting features to generate 4 feature sub-
sets respectively.

Step 5: If there is a common feature set among the 4 feature subsets, it is the optimal
subset, otherwise it goes to the next step.

Step 6: Using Ridge for feature selection, the resulting feature subset is the optimal sub-
set.

Step 7: Put the obtained optimal subset into the classifier.

The overall flow chart of the W-GDipC and LRMR-Ri methods proposed in this paper is
shown in Fig. 7.

Validation method and performance evaluation index

In statistical prediction, the following three cross-validation methods are commonly used
to test the effectiveness of prediction models in practical applications: independent data-
set testing, k-fold cross-validation, and jackknife testing. In the prediction studies of anti-
freeze proteins and membrane proteins, we used the k-fold cross-validation and set k to
be 5. Positive and negative samples of the antifreeze proteins and 7582 membrane proteins
dataset were randomly divided into five subsets in the five-fold cross-validation. In these
five subsets, one of the subsets is retained as a test set, and the remaining four subsets are
used as train set. The cross-validation process is then repeated five times with each subset
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being used as test data in turn. Then average the results of the five predictions as the final
output [58, 59].

In this paper, five common evaluation indexes are used to measure the prediction results:
accuracy (ACC), recall (RE), precision (PE), F-Measure and Matheus correlation coefficient
(MCC). They are defined as follows [60]:

TP + TN

A =
Y = TP Y FP+ IN + EN (10
Recall = — 11
= TP L EN (1)
Precisi TP 12
recision = ————
TP + FP (12)

2 x Precision x Recall
F-Measure = — (13)
Precision + Recall

TP x TN — FP x FN

MCC =
(TP + EP)(IN + EN)(IP + EN)(IN + EP)

(14)

Among them, TP is the number of correctly recognized antifreeze proteins or cate-
gory C membrane proteins; TN is the number that correctly recognizes non-antifreeze
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proteins or classification membrane proteins of category C incorrectly into other cat-
egories; FP is the number of misidentified antifreeze proteins or the correct classifica-
tion of other membrane proteins categories into category C, and FN is the number of
the misidentified non-antifreeze proteins or misclassified of other membrane proteins
categories into category C. The closer the value of the above index is to 1, the better the
performance of the classifier.

Abbreviations

AFPs: Antifreeze proteins; DipC: Dipeptide composition; GDipC: General dipeptide composition; W-GDipC: Weighted
generalized dipeptide composition; Mic: Maximal information coefficient; LRMR-Ri: Ensemble feature selection

with Lasso, Ridge, Mic and Relief in the first stage (LRMR) and Ridge in the second stage (Ri); SVM: Support vector
machines; DT: Decision tree; SGD: Stochastic gradient descent; ACC: Accuracy; MCC: Matthew correlation coefficient; PE:
Precision; RE: Recall.

Acknowledgements
The authors would like to thank the reviewers and editors for their patient guidance and valuable suggestions.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 22 Supplement 3, 2021: Proceedings of the 2019 Inter-
national Conference on Intelligent Computing (ICIC 2019): bioinformatics. The full contents of the supplement are available
online at https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-3.

Authors’ contributions

SW and LD designed the research and the experiments. LD performed most of the experiments. SW, LD and XX analyzed
the data and the experimental results. YF and ZC provided some important ideas in manuscript. SW and LD wrote the
first draft of the manuscript. SW, XX and YF revised the manuscript and wrote this paper. All authors read and approved
the final manuscript.

Funding

This research is fully supported by grants from National Natural Science Foundation of China (62062067, 11661081,
11971421), Natural Science Foundation of Yunnan Province (2017FA032) and Training Plan for Young and Middle-aged
Academic Leaders of Yunnan Province (2018HB031). Publication costs are funded by National Natural Science Founda-
tion of China (11661081). The funding bodies played no role in the design of the study and collection, analysis, and
interpretation of data and in writing the manuscript.

Availability of data and materials
The related source codes and dataset are available at https://github.com/Xia-xinnan/W-GDipc-LRMR-Ri.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

"Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University,
Kunming 650504, China. 2School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China. >School
of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China.

Received: 4 May 2021 Accepted: 9 June 2021
Published online: 23 June 2021

References

1. Tab MM, Hashim NHF, Najimudin N, et al. Large-scale production of Glaciozyma antarctica antifreeze protein 1
(Afp1) by fed-batch fermentation of Pichia pastoris. Arab J Sci Eng. 2018;43(1):133-41.

2. Griffith M, Antikainen M, Hon WG, et al. Antifreeze proteins in winter rye. Physiol Plant. 1997;100(2):327-32.

3. Scholander PF, Dam LV, Kanwisher JW, et al. Supercooling and osmoregulation in arctic fish. J Cell Physiol.
2010;49(1):5-24.

4. Logsdon JM, Doolittle WF. Origin of antifreeze protein genes: a cool tale in molecular evolution. Proc Natl Acad Sci.
1997,94(8):3485-7.

Page 18 of 20


https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-3
https://github.com/Xia-xinnan/W-GDipc-LRMR-Ri

Wang et al. BMC Bioinformatics (2021) 22:340 Page 19 of 20

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

36.

37.

38.

Davies PL, Baardsnes J, Kuiper MJ, et al. Structure and function of antifreeze proteins. Philos Trans R Soc Lond.
2002,357(1423):927-35.

Yuan F, Liu G, Yang XW, Wang SF, Wang XR. Prediction of oxidoreductase subfamily classes based on RFE-SND-CC-
PSSM and machine learning methods. J Bioinform Comput Biol. 2019;17(4):1950029.

Sun SW, Wang CY, Ding H, Zou Q. Machine learning and its applications in plant molecular studies. Brief Funct
Genomics. 2020;19(1):40-8.

Wang J, Yang B, Revote J, et al. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descrip-
tors based on PSSM profiles. Bioinformatics. 2017;33(17):2756-8.

Wang S, Wang X. Prediction of protein structural classes by different feature expressions based on 2-D wavelet
denoising and fusion. BMC Bioinform. 2019,20(25):701.

. Yu HJ, Huang DS. Novel 20-D descriptors of protein sequences and it's applications in similarity analysis. Chem Phys

Lett. 2012;531:261-6.

. Wang S, Cao Z, Li M, et al. G-DipC: an improved feature representation method for short sequences to predict the

type of cargo in cell-penetrating peptides. [EEE/ACM Trans Comput Biol Bioinf. 2020;17(3):739-47.

. Wei LY, Ding YJ, Su R, Tang JJ, Zou Q. Prediction of human protein subcellular localization using deep learning. J

Parallel Distrib Comput. 2018;117:212-7.

. Huang DS, Chi ZR. Finding complex roots of polynomials by feedforward neural networks. 2001;A13-A18. https://

doi.org/10.1109/IJCNN.2001.1016716.

. Huang RB, Du QS, Wei YT, et al. Physics and chemistry-driven artificial neural network for predicting bioactivity of

peptides and proteins and their design. J Theor Biol. 2009;256(3):428-35.

. Wang SF, Li MY, Guo L, Cao ZC, Fei Y. Efficient utilization on PSSM combining with recurrent neural network for

membrane protein types prediction. Comput Biol Chem. 2019,81:9-15.

. Anand A, Pugalenthi G, Suganthan PN. Predicting protein structural class by SYM with class-wise optimized features

and decision probabilities. J Theor Biol. 2008;253(2):375-80.

. Jiang Q Wang G, Jin S, et al. Predicting human microRNA-disease associations based on support vector machine. Int

J Data Min Bioinform. 2013;8(3):282-93.

. Qiu JD, Luo SH, Huang JH, et al. Using support vector machines to distinguish enzymes: approached by incorporat-

ing wavelet transform. J Theor Biol. 2009;256(4):625-31.

. Wen Z, He J, Huang SY. Topology-independent and global protein structure alignment through an FFT-based algo-

rithm. Bioinformatics. 2020;36(2):478-86.

Wang S, Liu S. Protein sub-nuclear localization based on effective fusion representations and dimension reduction
algorithm LDA. Int J Mol Sci. 2015;16(12):30343-61.

Lin H, Li QZ. Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified
Mahalanobis discriminant. Biochem Biophys Res Commun. 2007;354(2):1-551.

Wang S, Nie B, Yue K, et al. Protein subcellular localization with Gaussian kernel discriminant analysis and its kernel
parameter selection. Int J Mol Sci. 2017;18(12):2718.

Yu G, Rangwala H, Domeniconi C, et al. Predicting protein function using multiple kernels. IEEE/ACM Trans Comput
Biol Bioinform. 2015;12(1):219-33.

ZhangT. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In: Proceed-
ings of the twenty-first international conference on machine learning. 2004; p. 116.

Kabir F, Siddique S, Kotwal MRA, et al. Bangla text document categorization using stochastic gradient descent (sgd)
classifier. In: 2015 International conference on cognitive computing and information processing (CCIP). IEEE, 2015; p.
1-4.

Kandaswamy KK, Chou KC, Martinetz T, et al. AFP-Pred: a random forest approach for predicting antifreeze proteins
from sequence-derived properties. J Theor Biol. 2011;270(1):56-62.

Zhao X, Ma Z,Yin M. Using support vector machine and evolutionary profiles to predict antifreeze protein
sequences. Int J Mol Sci. 2012;13(12):2196-207.

Mondal S, Pai PP. Chou'’s pseudo amino acid composition improves sequence-based antifreeze protein prediction. J
Theor Biol. 2014;356:30-5.

Runtao Y, Chengjin Z, Rui G, et al. An effective antifreeze protein predictor with ensemble classifiers and compre-
hensive sequence descriptors. Int J Mol Sci. 2015;16(9):21191-214.

He X, Han K, Hu J, Yan H, Yang JY, Shen HB, Yu DJ. TargetFreeze: identifying antifreeze proteins via a combina-

tion of weights using sequence evolutionary information and pseudo amino acid composition. J Membr Biol.
2015,248(6):1005-14.

Xiao X, Hui M, Liu Z. iAFP-Ense: an ensemble classifier for identifying antifreeze protein by incorporating grey model
and PSSM into PseAAC. J Membr Biol. 2016;249(6):1-10.

Pratiwi R, Malik AA, Schaduangrat N, et al. CryoProtect: a web server for classifying antifreeze proteins from nonanti-
freeze proteins. J Chem. 2017;2017:1-15.

Khan S, Naseem |, Togneri R, et al. RAFP-Pred: robust prediction of antifreeze proteins using localized analysis of
n-peptide compositions. IEEE/ACM Trans Comput Biol Bioinform. 2016;15(1):244-50.

Nath A, Subbiah K. The role of pertinently diversified and balanced training as well as testing datasets in achieving
the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing. 2018;272(10):294-305.
Wang LY, Wang D, Chen YH. Prediction of protein subcellular multisite localization using a new feature extraction
method. Genet Mol Res. 2016;15(3):gmr.15039013.

Zou Q, Lin G, Jiang XP, Liu XR, Zeng XX. Sequence clustering in bioinformatics: anempirical study. Brief Bioinform.
2020;21(1):1-10.

Wang SF, Yue YT, Li XT. Protein subnuclear localization based on a new effective representation and intelligent
kernel linear discriminant analysis by dichotomous greedy genetic algorithm. PLoS ONE. 2018;13(4):0195636.
Lalwani S, Sharma H, Satapathy SC, et al. A survey on parallel particle swarm optimization algorithms. Arab J Sci Eng.
2019;44(4):2899-923.


https://doi.org/10.1109/IJCNN.2001.1016716
https://doi.org/10.1109/IJCNN.2001.1016716

Wang et al. BMC Bioinformatics (2021) 22:340 Page 20 of 20

39.

40.
41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Zhang J, Huang DS, Liu KH. Multi-sub-swarm particle swarm optimization algorithm for multimodal function opti-
mization. In: [EEE congress on evolutionary computation, 2007. CEC 2007. IEEE, 2007.

Huang DS, Jia W, Zhang D. Palmprint verification based on principal lines. Pattern Recognit. 2008;41(4):1316-28.
Yan Y, Wen Z, Zhang D, et al. Determination of an effective scoring function for RNA-RNA interactions with a
physics-based double-iterative method. Nucleic Acids Res. 2018;46(9):e56—e56.

Basith S, Manavalan B, Hwan Shin T, et al. Machine intelligence in peptide therapeutics: a next-generation tool for
rapid disease screening. Med Res Rev. 2020;40(4):1276-314.

Yan J, Bhadra P, Li A, et al. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mol
Ther-Nucleic Acids. 2020;20:882-94.

Chou KC, Shen HB. MemType-2L: a web server for predicting membrane proteins and their types by incorporating
evolution information through Pse-PSSM. Biochem Biophys Res Commun. 2007;360(2):1-345.

Sonnhammer EL, Eddy SR, Durbin R. Pfam: a comprehensive database of protein domain families based on seed
alignments. Proteins. 1997,28(3):405-20.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.

LiW, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics. 2006;22(13):1658.

Agrawal P, Bhalla S, Usmani SS, et al. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides.
Nucleic Acids Res. 2016;44(D1):D1098-103.

Zahiri J, Yaghoubi O, Mohammad-Noori M, et al. PPlevo: protein-protein interaction prediction from PSSM based
evolutionary information. Genomics. 2013;102(4):237-42.

Wang X, Li GZ, Zhang QW, Huang DS. MultiP-SChlo: multi-label protein subchloroplast localization prediction. IEEE.
2014;2014:86-9.

Kira K, Rendell LA. The feature selection problem: traditional methods and a new algorithm. Aaai. 1992,2:129-34.
Peng W, Chen A, Chen J. Using general master equation for feature fusion. Future Gen Comput Syst. 2018;82:119-26.
Wolpert DH. Stacked generalization. Neural Netw. 1992,5(2):241-59.

Tibshirani RJ. Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B Methodol. 1996;73(1):273-82.
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics.
1970;12(1):55-67.

Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large datasets. Science.
2011,334(6062):1518-24.

Kononenko, I. Estimating attributes: analysis and extensions of RELIEF. In: Proceedings of European conference on
machine learning, 1994; p. 171-82.

Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol.
2011,273(1):236-47.

Moreno-Torres JG, Saez JA, Herrera F. Study on the impact of partition-induced dataset shift on k-fold cross-valida-
tion. IEEE Trans Neural Netw Learn Syst. 2012;23(8):1304-12.

Jian Z, Haiting C, Song G, et al. High-throughput identification of mammalian secreted proteins using species-
specific scheme and application to human proteome. Molecules. 2018;23(6):1448.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results and discussion
	The selection result of fusion coefficient
	Comparison of sequences feature extraction algorithms
	Comparison of sequences feature selection methods
	Prediction of membrane protein types by LRMR-Ri method
	Comparison of antifreeze proteins with other machine learning methods

	Conclusion
	Methods
	Dataset
	Weighted generalized dipeptide composition (W-GDipC)
	Ensemble feature selection (LRMR-Ri) method based on two-stage multiple regressions
	Lasso
	Ridge
	Mic
	Relief
	Validation method and performance evaluation index

	Acknowledgements
	References


