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Abstract 

Background:  LncRNAs (Long non-coding RNAs) are a type of non-coding RNA 
molecule with transcript length longer than 200 nucleotides. LncRNA has been novel 
candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to 
discover the true association mechanism between lncRNAs and complex diseases. 
The unprecedented enrichment of multi-omics data and the rapid development of 
machine learning technology provide us with the opportunity to design a machine 
learning framework to study the relationship between lncRNAs and complex diseases.

Results:  In this article, we proposed a new machine learning approach, namely 
LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Associa-
tion prediction), for disease-related lncRNAs association prediction based multi-omics 
data, machine learning methods and neural network neighborhood information 
aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and dis-
ease respectively, and it calculates the similarity between lncRNAs through the lncRNA 
expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein inter-
action matrix. We obtain gene similarity matrix by calculating the lncRNA-gene associa-
tion matrix and the gene-disease association matrix, and we obtain disease similarity 
matrix by calculating the disease ontology, the disease-miRNA association matrix, and 
Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neigh-
borhood information in similarity matrices by using nonlinear feature learning of neural 
network. Thirdly, LGDLDA uses embedded node representations to approximate the 
observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then 
selects potential disease-related lncRNAs.

Conclusions:  Compared with lncRNA-disease prediction methods, our proposed 
method takes into account more critical information and obtains the performance 
improvement cancer-related lncRNA predictions. Randomly split data experiment 
results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP 
and NCPHLDA. The results on different simulation data sets show that LGDLDA can 
accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied 
the method to three real cancer data including gastric cancer, colorectal cancer and 
breast cancer to predict potential cancer-related lncRNAs.
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Background
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA molecule with tran-
script length longer than 200 nucleotides [1, 2]. Many studies have confirmed that the 
human genome contains massive amounts of lncRNA [3]. Many evidences indicate that 
lncRNAs regulate the expression level of genes at multiple levels (e.g., epigenetic regu-
lation, genomic splicing, genomic imprinting, chromatin modification, transcriptional 
activation, transcriptional and post-transcriptional regulation) in the form of RNA [4–
7]. The aberrant expression of lncRNA is involved in the proliferation, apoptosis, angi-
ogenesis, and metastasis of tumors [8, 9]. LncRNA is closely related to the diagnosis, 
prognosis, and prevention and treatment of complex diseases [10]. LncRNA has become 
a new candidate biomarker for cancer diagnosis and prognosis [11].

The experimentally verified information about disease-related lncRNA is gradually 
increasing. A large number of databases have been published. The database LncRNA-
Disease contains 3000 lncRNA-disease associations [12]. The database Lnc2Cancer has 
collected 1500 lncRNA-cancer entries [13]. Moreover, researchers have constructed 
lncRNA-related databases including NONCODE [14], lncRNAdb [15], LNCipedia [16], 
lncACTdb [17]. Although the research on lncRNA has progressed rapidly in recent years, 
the functions of most lncRNAs are still unclear. Bioinformatics calculation methods 
have been developed to predict the potential lncRNA-disease associations for biological 
experiment verifications. The calculation methods can greatly reduce the experimental 
cost and time for finding new disease-related lncRNAs [18, 19].

The disease-related lncRNAs prediction methods can be categorized into network-
based approaches and machine learning-based approaches. Biological system is a 
highly complex heterogenous network involving different molecules. Network-based 
approaches use multiple features including (but not limited to) lncRNA functional 
similarity, lncRNA-gene association, gene–gene interaction, gene-disease association, 
and molecular similarity to construct lncRNA similarity networks, or lncRNA-disease 
heterogeneous networks, then use network model analysis methods (e.g. propagation 
algorithms and random walk theory) to predict potential lncRNA-disease associations 
[20]. RWRlncD constructed a unified network including disease similarity network, 
lncRNA functional similarity network, and disease-lncRNA association network. The 
method used the Random Walk with Restart (RWR) method to predict the potential 
lncRNA-disease association [21]. RWRHLD added miRNA information that interacts 
with lncRNA, further improving the accuracy of the lncRNA-disease prediction method 
[22]. LncRDNetFlow used a streaming algorithm to predict lncRNA-disease associations 
based on multi-omics networks [23]. However, the known lncRNA-disease association 
data is still insufficient, and those methods cannot be applied to the prediction of related 
disease without any known lncRNAs information. To avoid the abovementioned prob-
lems, researchers attempt to combine known pathogenic gene-miRNA association data, 
miRNA-lncRNA association data and other data to predict lncRNA-disease association. 
LncPriCNet used multiple features, including phenotype-gene relations and gene–gene 
interactions, to construct a multi-level composite network and then used similarity 
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scores to predict lncRNA-disease associations [24]. Ganegoda et al. proposed a model 
for predicting potential disease-associated lncRNAs by integrating known cancer-asso-
ciated lncRNAs information and multi-omics data including genomic, regulatory, and 
transcriptional bios data [25].

Recently, many bioinformatics calculation models based on machine learning algo-
rithms have been proposed to find potential lncRNA-disease associations. Lu et  al. 
used inductive matrix completion and principal component analysis to predict poten-
tial lncRNA-disease associations [26]. Based on a review of existing research, Chen 
et  al. proposed a hypothesis that functionally similar lncRNAs tend to be abnormally 
expressed in similar diseases, and developed a semi-supervised machine learning frame-
work based on laplacian regularized least squares method (named LRLSLDA). Unfor-
tunately, the method suffered from selecting multiple parameters effectively [27]. Wang 
et al. used lncRNA similarity data and disease similarity data to train a bagging support 
vector machine (SVM) classifier, and the trained SVM is implemented as a web server 
to predict potential disease-related lncRNAs [28]. You et al. proposed a method called 
LDASR to predict latent lncRNA-disease associations by using collaborative filter-
ing and rotating forest [29]. These methods have achieved good results. Although the 
research on lncRNA has made rapid progress in recent years, unfortunately, these meth-
ods often used unmodified traditional machine learning methods, and the omics data 
used are limited to two or three types. Recently, the accumulation of associated omics 
data between lncRNAs and diseases and the development of machine learning and deep 
learning technologies provide researchers with better opportunities to use supervised 
learning models to predict disease-related lncRNAs.

Meanwhile, modern medical research proves that the alternations of biological factors 
(e.g., miRNA, protein and gene) may directly or indirectly affect diseases. Earlier stud-
ies have shown that RNA–protein interactions regulate gene expression by controlling 
various post-transcriptional processes. LncRNAs regulate the RNA–protein interactions 
by recruiting regulatory complexes [30, 31], and the literatures indicate that many lncR-
NAs also act as regulators to regulate gene expression [32]. Wang et  al. reported that 
lncRNA-miRNA-disease interactive network could be great addition to the biomedical 
research field [33]. Liu et al. reported that lncRNA-binding proteins play a key role in 
the development of many diseases [34]. The accumulated miRNA-disease associations 
can be used for disease treatment [35]. Considering the mechanism of lncRNAs regulate 
genes, and biological factors regulate diseases provide a better opportunity for obtaining 
more information about lncRNA-disease associations.

Inspired by currently well-performing neural network technologies [36, 37], we tried 
to use multiple omics similarity matrices, neural network neighborhood information 
aggregation and trained supervised learning model to extract association features from 
lncRNA-gene-disease association network to predict disease-related lncRNAs. In this 
article, we proposed a new machine learning framework named LGDLDA (LncRNA-
Gene-Disease association networks based LncRNA-Disease Association prediction) for 
disease-related lncRNAs association prediction based multi-omics functional similarity 
data, machine learning methods and neural network neighborhood information aggre-
gation. We collected data from three databases LncRNADisease v2.0 [38], Lnc2Cancer 
[13], and MNDR v2.0 databases [39] separately, and then combined these three data into 



Page 4 of 18Yuan et al. BMC Bioinformatics          (2021) 22:332 

one data. The diseases in this combined data do not include gastric cancer, breast cancer, 
and prostate cancer. Additional file 1:  Fig. S1 provided the data processing procedure 
for disease-lncRNA association instances. This combined data contains 6000 disease-
lncRNA association instances, of which 4000 association instances were used for train-
ing and 2000 association instances were used for validating. Firstly, LGDLDA calculates 
the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-
miRNA interaction matrix and lncRNA-protein interaction matrix. The gene similarity 
matrix is obtained by calculating the lncRNA-gene association.

matrix and the gene-disease association matrix. The disease similarity matrix is 
obtained by calculating the disease ontology, the disease-miRNA association matrix, 
and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates neigh-
borhood information by using nonlinear feature learning of neural network. Thirdly, 
LGDLDA uses embedded node representations to approximate the observed matrices. 
Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential dis-
ease-related lncRNAs. The stability test results show that LGDLDA is more robust and 
the simulation data experiments show that LGDLDA performs better than four state-of-
art methods in predicting lncRNA-disease association. LGDLDA can effectively predict 
potential cancer-related lncRNAs and provide more candidates for biological experi-
mental verification. Most of predicted cancer-related lncRNAs are supported by recent 
literatures.

Results
In the results section, the work we do is described as follows: Firstly, we used ran-
domly split samples to observe the robustness of each method. Secondly, we compared 
LGDLDA with four famous lncRNA-disease association prediction methods on a small 
lncRNA-disease association simulation network. Four state-of-art methods include 
NCPLDA [40], IDHI-MIRW [41], LncDisAP [42] and NCPHLDA [43]. Finally, LGDLDA 
was applied to three real cancer samples to predict potential disease-related lncRNAs.

Comparison of method stability

Before comparing the performance of LGDLDA with four famous lncRNA-disease 
association prediction methods in small data, we need to evaluate the stability of these 
methods. We generally randomly divide the data set into two parts: Ω1 and Ω2. In the 
first step, based on the training set Ω1, we select different parameters and determine 
the parameter configuration with good performance. In the second step, we expect 
that the selected parameter configuration can have an accurate prediction in Ω2. We 
performed this experiment on a small lncRNA-disease association simulation network 
which contains 356 lncRNAs, 354 diseases, 132 genes, 736 known lncRNA-gene asso-
ciations, 462 gene-disease associations and 2169 known lncRNA-disease association 
instances [41]. Ω1 contains 1446 lncRNA-gene association instances and Ω2 contains 
723 lncRNA-gene association instances. There may be two issues to consider: (i) Does 
the randomness in the randomly divided sample affect the stability of the method? (ii) 
Is the stability of LGDLDA better than NCPLDA [40], IDHI-MIRW [41], LncDisAP [42] 
and NCPHLDA [43] ?
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To address the two issues, we observed the performance of the method in two exper-
iments. In the first experiment, we performed 10 random splits on a certain compre-
hensive data set. For each randomly divided data set, we ran LGDLDA on the data set 
and calculated AUC values. The AUC values for 10 realizations are shown in Fig. 1. The 
experimental results from Fig. 1 show that random partition strategy has little effect on 
the method performance. In the second experiment, we performed 50 random splits 
on a certain comprehensive data set. For each randomly divided data set, we ran each 
method on the data set and calculated AUC values. BasedWe performed these experi-
ments on these AUC values, we calculated the minimum, first quartile, median, third 
quartile and maximum value and draw boxplots. The box plots from Fig. 2 show that the 
stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. 
We also performed 10 random splits experiment and 50 random splits experiment on a 
dataset with 10% incorrect data. The AUC values for 10 realizations on the dataset are 
shown in Additional file 1: Fig. S2. The box plots from 50 random splits experiment on a 
dataset with 10% incorrect data are shown in Additional file 1: Fig. S3.

Fig. 1  The AUC values for 10 realizations

Fig. 2  The box plots of LGDLDA, IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA
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Comparison with four state‑of‑art methods on a small simulation data set

In this section, we compared LGDLDA with four famous methods (i.e., NCPLDA, IDHI-
MIRW, LncDisAP and NCPHLDA) on a small lncRNA-disease association simulation 
network which contains 356 lncRNAs, 354 diseases, 132 genes, 736 known lncRNA-
gene associations, 462 gene-disease associations and 2169 known lncRNA-disease asso-
ciations from breast cancer [41]. LncDisAP [42] and IDHI-MIRW [41] are prediction 
methods based on multiple biological datasets and RWR algorithm. NCPHLDA [43] and 
NCPLDA [40] are network-based methods. We performed these experiments on a com-
puter with an Intel i9-10900X CPU and 512 G RAM.

To avoid the small lncRNA-disease association simulation network favoring our 
own model, we run each method on data that does not contain gene-related infor-
mation (i.e., data without genes, lncRNA-gene associations, and gene-disease asso-
ciations). Figure  3 shows the ROCs and corresponding AUC values of LGDLDA 
and four competition methods. As shown in Fig.  3, LGDLDA outperformed other 
four methods in terms of AUC value. The AUC of LGDLDA is 0.926, which is 0.035, 
0.096, 0.163 and 0.116 higher than that of IDHI-MIRW, NCPLDA, LncDisAP and 
NCPHLDA, respectively. We also run each method on data containing gene infor-
mation. Figure 4 shows the ROCs and AUC values of LGDLDA and the four com-
petition methods. As shown in Fig. 4, LGDLDA outperformed other four methods 
in terms of AUC value. The AUC of LGDLDA is 0.935, which is 0.067, 0.134, 0.205 
and 0.131 higher than that of IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA, 
respectively. Considering we often apply method to incomplete data set, we ran-
domly remove 20% of the data and run each method. The ROCs and AUC values 
of LGDLDA and other four methods are shown in Fig. 5. LGDLDA achieved a bet-
ter performance than other four methods in terms of AUC. The AUC of LGDLDA 
is 0.880, which is 0.034, 0.088, 0.053 and 0.208 higher than that of IDHI-MIRW, 
NCPLDA, LncDisAP and NCPHLDA, respectively. Although our method LGDLDA 

Fig. 3  The ROCs and corresponding AUC values of LGDLDA, IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA 
on data that does not contain gene-related information
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is affected by incomplete data, it performs better than other four methods. Com-
pared with the four state-of-art methods, the results on different simulation data 
sets show that LGDLDA can accurately and effectively predict the disease-related 
lncRNAs.

In order to observe whether it is necessary to include each omics data, we per-
formed the experiment on the dataset with missing part of the omics data and 
recorded the AUC values, and compared with the experimental results on the com-
plete multi-omics dataset. The experimental results are shown in Additional file 1: 
Table S1.

Fig. 4  The ROCs and corresponding AUC values of LGDLDA, IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA 
on data containing gene information

Fig. 5  The ROCs and corresponding AUC values of LGDLDA, IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA 
on the data with missing part of the information
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Application to cancer data and potential lncRNA‑disease associations analysis

In this section, we applied LGDLDA to real cancer data including gastric cancer, colo-
rectal cancer, and breast cancer. For a given disease, all known related lncRNAs are 
true labels, and other lncRNAs are candidates for disease. Inspired by the work of 
Guo et al. [29], we used the related information in the LncRNADisease database v2.0, 
DisGeNet, and LncACTdb to train LGDLDA, and other databases including CRl-
ncRNA [44], MNDR v2.0, LncRNAwiki [45], and Lnc2Cancer, were used to verify the 
results. We applied the LGDLDA to real cancer data and ranked the lncRNA-disease 
association scores from large to small, and then identified the top 15 potentially rel-
evant lncRNAs for each cancer.

Gastric cancer is the second most common cancer in the world [46, 47]. Accumu-
lating evidence has demonstrated that many lncRNAs are dysregulated in gastric 
cancer [48, 49]. It is necessary to use computing methods to predict cancer-related 
lncRNAs. In the gastric cancer study, we used 1352 associations and gene related 
associations from databases as positive samples. We randomly selected the same 
number of samples from the database as negative samples. We constructed the test 
data set by extracting gastric cancer-related lncRNAs from other databases. Recent 
literatures supported 12 out of 15 potential gastric cancer-related lncRNAs. The con-
firmed databases and supporting literature of these 15 cancer-related lncRNAs are 
shown in Table 1 and Additional file 1: Table S2, respectively. For example, Xu et al. 
[50] found that overexpression of ZFAS1 is significantly related to lymphatic metasta-
sis and TNM staging. The overexpression of ZFAS1 leads to the loss of control of the 
cell cycle process, which in turn promotes the proliferation and migration of gastric 
cancer cells. Liu et  al. reported that lncRNA H19 is aberrantly highly expressed in 
gastric cancer cell lines. Zai et al. reported that activated DANCR promotes the pro-
liferation and invasion of gastric cancer cells [51]. LncRNA HOXA11-AS promotes 
the invasion and proliferation of gastric cancer by regulating the chromatin modifiers 

Table 1  The confirmed databases of Top 15 gastric cancer-associated LncRNAs predicted by 
LGDLDA

Rank Name of LncRNA Confirmed database

1 UCA1 CRlncRNA/LncRNAWiki/Lnc2Cancer/LncRNADisease v2.0

2 NEHG1 Unconfirmed

3 TINCR Lnc2Cancer/LncRNAWiki/LncRNADisease v2.0

4 HOTAIR Lnc2Cancer/LncRNAWiki/LncRNADisease v2.0

5 C1RL-AS1 Unconfirmed

6 SPRY4-IT1 Lnc2Cancer/LncRNAWiki/LncRNADisease v2.0

7 PVT1 CRlncRNA/Lnc2Cancer/LncRNADisease v2.0

8 NEAT1 LncRNAWiki/LncRNADisease v2.0/CRlncRNA

9 MEG3 LncRNAWiki/Lnc2Cancer/LncRNADisease v2.0

10 MALAT1 LncRNAWiki/Lnc2Cancer/LncRNADisease v2.0

11 DM1-AS Unconfirmed

12 MIAT CRlncRNA/LncRNADisease v2.0

13 GHET1 LncRNAWiki/Lnc2Cancer/LncRNADisease v2.0

14 FER1L4 Lnc2Cancer/LncRNAWiki/LncRNADisease v2.0

15 SUMO1P3 Lnc2Cancer/LncRNAWiki/LncRNADisease v2.0
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LSD1 and DNMT1 [52]. A large number of studies have shown that LncRNA can be 
used as a biomarker for the treatment of gastric cancer [53].

Breast cancer is the most common malignant tumor in women and the second leading 
cause of cancer death [54, 55]. If we can detect cancer-related lncRNA as early as pos-
sible and intervene early, it will greatly reduce the incidence of breast cancer. Recent lit-
eratures supported 12 out of 15 potential breast cancer-related lncRNAs. The confirmed 
databases and supporting literature of these 15 cancer-related lncRNAs are shown in 
Additional file 1: Table S3 and Additional file 1: Table S4, respectively. For example, Yang 
et al. found that overexpression of LncRNA BCRT1 can promote the M2 polarization 
of macrophages, thereby accelerating the development of breast cancer [56]. Schiemann 
reported that lncRNA BORG regulates the transcriptional repressive activity of TRIM28 
to trigger the migration and invasion of potential breast cancer cells [57]. Spector et al. 
reported that lncRNA MaTAR25 affects the proliferation and metastasis of breast cancer 
cells by regulating the expression of Tensin1 gene [58].

Prostate cancer is the second most common cancer in men and the fifth leading cause 
of death worldwide [59, 60]. Recent literatures supported 12 out of 15 potential pros-
tate cancer-related lncRNAs. The confirmed databases and supporting literature of 
these 15 cancer-related lncRNAs are shown in Additional file 1: Table S5 and Additional 
file 1: Table S6, respectively. For example, Zhao et al. [61] reported that overexpression 
of ANRIL promoted the proliferation and migration of prostate cancer cells. Li et  al. 
reported that lncRNA SNHG1 enhanced the expression of CDK7 and promoted cell 
proliferation in prostate cancer by negatively regulating miR-199a-3p [62]. Zhang et al. 
reported that the androgen-reduced transcript of LncRNA GAS5 can promote the pro-
liferation of prostate cancer [63].

Discussion
In case studies, we have found many potential cancer-related lncRNAs. Most of poten-
tial association lncRNAs are supported by recent literatures. In future biological experi-
ments, it would be interesting to find the association mechanisms between new potential 
lncRNAs and diseases.

As shown in Fig.  6, this is a sub-network discovered by our proposed method 
LGDLDA. The sub-network contains some confirmed lncRNAs, PSORS1C3, PTCSC2 
and UCC are predicted lncRNAs not yet reported. we hypothesize the rapidly increas-
ing biological data brings more information (e.g., Lnc2Cancer and LncACTdb), while 
LGDLDA combined with nonlinear mapping can more accurately capture the complex 
features in multi-omics data.

It should be noted that the method LGDLDA is the worst one when focusing only on 
top genes (FRP < 0.05 or in a lesser extent FPR < 0.1). Maybe, this is not the best method 
when focusing on “top prediction”. We believe that this is because the dataset is too small 
and affects the performance of the method. We propose two ideas to improve the per-
formance of LGDLDA. The first idea, we use warm start strategy. We apply LGDLDA 
to similar training datasets to obtain a good performance parameter set β, then fur-
ther optimize the parameter set β on the training set to improve the performance 
of LGDLDA. The second idea, we use stability selection strategy. We run LGDLDA 
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multiple times to obtain multiple results, then use the stability selection strategy to aver-
age these results to remove the risk of overfitting caused by small datasets.

Finally, the real association mechanism between lncRNAs and disease is much more 
complicated than what we assumed. For example, the relationship between lncRNAs 
and complex diseases will change over time. We will try to design a new machine learn-
ing framework to analyze association data and time dynamic data simultaneously.

Conclusions
In this article, we proposed a novel machine learning framework, namely LGDLDA, 
to find cancer-related lncRNAs by integrating analysis of multi-omics data. Firstly, 
LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively. 
LGDLDA calculates the similarity between lncRNAs through the lncRNA expression 
profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction 
matrix. LGDLDA obtains gene similarity matrix by calculating the lncRNA-gene asso-
ciation matrix and the gene-disease association matrix. LGDLDA obtains disease simi-
larity matrix by calculating the disease ontology, the disease-miRNA association matrix, 
and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the 
neighborhood information in similarity matrices by using nonlinear feature learning of 
neural network. Thirdly, LGDLDA uses embedded node representations to approximate 
the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then 
selects potential disease-related lncRNAs. LGDLDA incorporates the prior knowledge 
of biological network topology including lncRNA similarity networks, lncRNA-gene 

Fig. 6  A subnet of lncRNA-gene-breast cancer (BC) network
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association network, gene-disease association network, disease semantic similarity net-
works, and lncRNA-disease association network. In this framework, a deep learning 
model was used to generate feature matrices. In model optimization, the final optimiza-
tion problem is a popular matrix completion problem, which can be solved using convex 
optimization methods. In summary, the method considers more critical information and 
obtains the performance improvement cancer-related lncRNA predictions.

Methods and materials
Overview of LGDLDA

In this section, we will introduce the main steps in the LGDLDA method. (1) 
LGDLDA uses multiple association similarity matrices (including lncRNA func-
tional similarities, gene-disease associations, disease similarities, lncRNA-disease 
associations, and lncRNA-gene associations matrix) to build lncRNA-gene-disease 
association network. (2) Based on the matrices generated in the first step, LGDLDA 
uses the association similarity matrices combined with neural network to calculate 
the neighborhood information of lncRNAs and diseases, and further embeds it into 
the low-dimensional spatial node representations. (3) Inspired by the reconstruction 
matrix algorithm in NNHLDA [36], LGDLDA uses low-dimensional spatial node 
representations to generate the projection matrices to approximate the observed 
matrices, and learns as much information in the original matrix as possible in the 
optimization of the loss function. (4) LGDLDA sorts the elements in the learned 
association matrix and selects the top values to predict disease-related lncRNAs. 
Figure 7 shows the flowchart of LGDLDA method.

Fig. 7  The flowchart of LGDLDA. (1) LGDLDA uses multiple association similarity matrices to build 
lncRNA-gene-disease association network. (2) Based on the matrices generated in the first step, LGDLDA uses 
the association similarity matrices combined with neural network to calculate the neighborhood information 
of lncRNAs and diseases, and further embeds it into the low-dimensional spatial node representations. (3) 
LGDLDA uses embedded representations to generate the reconstructed matrix to approximate the original 
matrix, and learns as much information in the original matrix as possible in the optimization of the loss 
function. (4) LGDLDA sorts the elements in the learned association matrix and selects the top values to 
predict cancer-related lncRNAs
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Datasets

In this paragraph, we will introduce the mathematical formulas used next. S ∈ Rm×m 
is used to represent the lncRNAs functional similarity matrix and D ∈ Rn×n is used 
to represent disease similarity matrix, where m and n denote the number of lncR-
NAs and diseases, respectively. A ∈ Rm×n represents lncRNA-disease association 
matrix, rows represent lncRNAs and columns are used to represent diseases. For 
each entry aij in A, the value of aij is equal to 1 if disease j related to lncRNA i; oth-
erwise, aij is equal to 0. Let Alg ∈ Rm×k be the lncRNA-gene association matrix and 
Agd ∈ Rk×n represents the gene-disease association matrix, where k represents the 
number of genes.

For calculating the functional similarity networks of lncRNAs, LGDLDA uses the 
lncRNA expression profile matrix, lncRNA-protein function association matrix and 
lncRNA-miRNA association matrix. For calculating the disease similarity network, 
LGDLDA uses disease information, protein-disease association matrix and miRNA-
disease association matrix. All lncRNAs and diseases are annotated with standard 
corresponding IDs.

Following the work of Zhang et  al. on data collection [41], LGDLDA uses the 
LncRNA expression data from EMBL-EBI. LncRNA-miRNA and lncRNA-protein 
data come from three databases including starBase v2.0 [64], NPInter v3.0 [65], 
and RAID v2.0 [66]. Disease-miRNA association data and disease-gene association 
data come from HMDD v3.0 database [67] and DisGeNet database [68] respectively. 
LncRNA-disease association data come from LncRNADisease v2.0 [38], Lnc2Cancer 
[13], and MNDR v2.0 databases [39]. Gene-lncRNA association data are collected 
from LncACTdb [69]. A combination of all these three datasets were used for train-
ing and validation in the article. The procedure of combination and processing are 
shown in the Additional file  1: Fig. S1. The combined data recruits 6000 lncRNA-
disease association instances with 1724 lncRNAs and 140 diseases.

Constructing lncRNA/disease similarity network

Since the Pearson correlation coefficient is easily affected by outliers, and outliers are 
inevitably included in the data, we used the biweight midcorrelation (BM) coefficient 
[70, 71]. Compared with Pearson correlation coefficient, the BM coefficient can calculate 
the correlation more accurately. We computed BM coefficients between lncRNAs and 
constructed the lncRNA similarity weighting network LncSm1. The range of BM value is 
from -1 to 1. The stronger the correlation, the larger the absolute value of BM.

The radial basis function (RBF) Gaussian kernel function was applied to lncRNA-
miRNA interactions to obtain Gaussian interaction profile kernel similarity [72], and 
constructed the lncRNA similarity weighting network LncSm2. The similarity network 
can be defined as follows:

(1)Slm
(

i, j
)

= Exp
(

−αl1
∥

∥GIPlm(li)− GIPlm(lj)
∥

∥

2
)

(2)αl1 = α′

l1

(

1

Nl

∑Nl

i=1

∥

∥GIPlm(li)
∥

∥

2

)
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where GIPlm(li) represents the lncRNA-miRNA interaction profile, GIPlm(li) is a binary 
vector in which 1 represents presence of interactions between lncRNA li and miRNA 
and 0 represents absence, αl is the weight factor used to regulate the kernel bandwidth, 
the parameter α′

l is set to 0.5 empirically and Nl denotes the total number of lncRNAs.
Analogous to lncRNA-miRNA interactions-based Gaussian similarity calculation 

method, the lncRNA-protein interactions-based Gaussian similarity of lncRNA pairs 
is calculated by the same method. GIPlp(li) represents the lncRNA-protein interaction 
profile, GIPlp(li) is a binary vector. With the help of the method described above, we con-
structed the similarity network LncSm3.

We first used the R package “DOSE” to compute the correlation coefficients between 
diseases [73, 74]. Then, we can build a weighted disease similarity network DisSm1. We 
used disease-miRNA associations to calculate the kernel similarity of the Gaussian inter-
action spectrum between disease di and dj, and then construct a weighted disease simi-
larity correlation network DisSm2.

where GIPdm(di) denotes disease-miRNA interaction profile, GIPdm(di) is a binary vector.

Constructing lncRNA/disease topological similarity networks

In order to overcome the loss of information caused by the fusion of similarity networks 
(i.e., LncSm1, LncSm2, and LncSm3 or DisSm1 and DisSm2), the idea of network diffu-
sion is employed to generate the topological similarity networks. Motivated by the work 
of Zhang et al. [41], the RWR was applied to each similarity network to construct topo-
logical similarity network. RWR algorithm is a widely used complex biological network 
analysis method [41, 75, 76]. The details of constructing lncRNA/disease topological 
similarity networks were shown in Additional file 1. LTS represents the lncRNA similar-
ity network LncTSN, and DTS represents the disease similarity network DisTSN.

Node embedding

For nodes representing lncRNA or disease in the heterogeneous network, its charac-
teristic information can be summarized from the neighbor information related to it. 
For example, lncRNA’s features can be aggregated from related lncRNAs, genes and 
diseases. Thus, we can use sufficient relevant information (related lncRNA, gene and 
disease information) to accurately represent the features of lncRNA. The aggregation 
can be defined as follows:

(3)Sdm
(

i, j
)

= Exp(−αd
∥

∥GIPdm(di)− GIPdm(dj)
∥

∥

2
)

(4)αd = α′

d

(

1

Nd

∑Nd

i=1

∥

∥GIPdm(di)
∥

∥

2

)
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where lnce′i ∈ R2d , dise′i ∈ R2d and gee′i ∈ R2d are the embeddings of lncRNAi, diseasei 
and geei, respectively. The initial representations of lncRNA, disease and gene nodes 
( lncei ∈ Rd , disei ∈ Rd and geei ∈ Rd ) are randomly set. By considering both node’s 
neighbor information and its own features, we can obtain the network topology feature 
information of each node, and then calculate the feature vector of this node.

The neural network obtains more powerful feature expression capability by using 
nonlinear activation functions. Motivated by the work of Zeng et al. [36], the activa-
tion function σ [·] (ReLU(x) = max(x,0)) can be defined as follows:

where W and b denotes the parameters in the neural networks. The nodes are embedded 
in low-dimensional vectors and normalized:

where e′′i  stands for either lnce′′i  , dise′′i  or gee′′i  . Thus, we used a single-layer neural net-
work to non-linearly transform the nodes’ representation and obtained a new embed-
ding representation.

Training and evaluation

In machine learning, the model contains many parameters, and we need to use training 
data to determine the optimal values of the parameters through training optimization. 
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The optimization goal is to make the difference between the predicted value and the tar-
get value (i.e., loss function) as small as possible. The information loss function between 
the reconstructed matrix and the original information matrix can be defined as follows:

where E ∈ Rp×q are the information mapping matrices, which can extract the main fea-
tures of the nodes from the embedded node information representations. The matrix 
EET is used to enforce symmetry of the recovery.

Since the functions in the method are all differentiable, we can use the gradient 
descent method to iteratively solve step by step to obtain the minimize loss function and 
model parameter values. LGDLDA uses the gradient descent method to train the model 
parameters. After training, elements in the reconstruction matrix can predict each asso-
ciations score. The higher a score is, the larger probability we suggest the potential asso-
ciation exists:

In this sense, the final optimization problem is a popular matrix completion problem, 
which can be solved using convex optimization methods.

Evaluation method and metrics

To be able to fairly evaluate the performance of the methods, we performed LOOCV 
(Leave-One-Out Cross-Validation) on the verified lncRNA-disease association data. 
Given a disease di, each known disease-related lncRNA is left out as test sample, mean-
while other disease-related lncRNAs are used as training samples. All irrelevant lncR-
NAs constitute candidate samples. The test samples are positive samples, and other 
samples are negative samples. In the predicted association matrix, LGDLDA regards ele-
ments larger than the threshold as effective associations between lncRNAs and diseases. 
We used true positive rate (TPR) and false positive rate (FPR) to calculate area under the 
curve (AUC).
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databases of Top 15 prostate cancer-associated LncRNAs predicted by LGDLDA. Table S6. The supporting literature 
of Top 15 prostate cancer-associated LncRNAs predicted by LGDLDA. Table S7. Summary of data sets used by each 
matrix.
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