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Background
Epigenetic modifications, including DNA methylation and histone modifications, play 
important roles in embryonic development in part through the regulation of gene transcrip-
tion [1]. Increasing evidence suggests that the epigenetic modifications interact with each 
other to shape their distribution patterns [2]. In mammals, CG methylation, a major form 
of DNA methylation, undergoes global reprogramming during germ-cell development. 
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Then, in the postnatal ovary, an oocyte-specific CG methylation pattern is established by 
de novo DNA methyltransferase DNMT3A [3]. In  vitro studies revealed that DNMT3A 
contains protein domains that potentially interact with histone modifications and regulate 
recruitment of this protein to target loci [4, 5]. Indeed, reverse genetics approaches began 
to reveal the impact of histone modifications, such as H3K36me3, on the establishment 
of CG methylation in mouse oocytes [6], but the entire picture of the epigenetic crosstalk 
regulating CG methylation patterns is unknown. This is partly due to the scarcity of oocyte 
samples available for molecular studies and the high cost required for a genome-wide epi-
genetic modification analysis. Previous studies showed that machine learning approaches 
are useful for predicting CG methylation patterns based on limited measurable features 
(mainly DNA sequence information) and thus may complement biological experiments [7–
10]. However, most of the existing approaches aim at finding DNA sequences responsible 
for the CG methylation patterns and were not tailored for studying the epigenetic crosstalk.

In this study, we built a machine learning model named epiNet to predict CG methyla-
tion patterns based on other epigenetic features. Using epiNet, we identified biologically 
relevant epigenetic crosstalk between histone H3K36me3, H3K4me3, and CG methylation 
in mouse oocytes. This model also predicted the altered CG methylation pattern of mutant 
oocytes having perturbed histone modification and was applicable to cross-species pre-
diction of the CG methylation pattern of human oocytes. It also identified the epigenetic 
crosstalk potentially important in other cell types. The use of epiNet should help to design 
or complement biological experiments in epigenetics studies.

Results
Outline of epiNet: prediction of CG methylation patterns based on other epigenetic 

features

To aid in the identification of epigenetic features regulating CG methylation patterns, we 
developed a convolutional neural network-based regression model named epiNet, which 
predicts CG methylation patterns based on other available genome-wide epigenetic fea-
tures. Contrary to the previous machine learning approaches, epiNet does not use DNA 
sequences as input, in an attempt to focus on the interactions between the epigenetic fea-
tures. epiNet consisted of four layers, including one convolutional and one fully connected 
layer, and built a model for the prediction of CG methylation levels of 1-kilobase (kb) bins 
(genomic segments) based on the fragment per kb per million mapped reads (FPKM) val-
ues of input data (Fig. 1a and “Methods” section). Datasets of the following features from 
fully-grown mouse oocytes (FGOs) or metaphase II oocytes were used as input: six his-
tone modifications, chromatin accessibility, and transcription [6, 11–17] (Additional file 1: 
Table S1). To incorporate the effect of the epigenetic state of the neighboring regions, the 
mean of FPKM values of 10 nearby (5 upstream and 5 downstream) bins was also used 
(Additional file  1: Fig. S1a, b). CG methylation data were obtained from whole genome 
bisulfite sequencing (WGBS) [6, 12].
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Prediction of the epigenetic crosstalk responsible for CG methylation patterns by epiNet 

models

To examine to what extent the features cooperate to impact CG methylation, all possi-
ble combinations (n = 255) of the eight features were respectively used as input. We set 
aside datasets from chromosome 1 for performance test and used those from all other 
chromosomes for training and validation. As a result, a combination of all eight features 
(N = 8) gave the highest predictive power (correlation with the actual CG methylation 
data (R) = 0.96) (Fig. 1b, c). We then sought combinations of a smaller number of fea-
tures that achieved good performance and found that even H3K36me3 alone had high 
predictive power (R = 0.88) (Fig. 1b, c). Our model based on H3K36me3 outperformed 
the baseline method of linear regression (R = 0.83) (Additional file 1: Fig. S1b), especially 
at gene bodies and intergenic regions, but not at CpG islands (Additional file 1: Fig. S1c). 
Importantly, when a randomly shuffled H3K36me3 dataset was used, there was no cor-
relation with the actual data (R = 0.00) (Additional file  1: Table S2). A combination of 

Fig. 1  Building epiNet models to predict CG methylation patterns based on other epigenetic features. a 
The epiNet model. Input FPKM values were transformed by one convolutional layer and one fully connected 
layer to predict the CG methylation levels of 1-kb bins (see “Methods” section). The shape of each layer is 
indicated within bracket. N: Number of input features. b The prediction of the CG methylation pattern of 
mouse FGOs based on varying numbers of input features. For each number of features (N = 1–8), the feature 
combination that showed the best correlation between the predicted and actual CG methylation patterns is 
shown. c A representative genome browser shot showing the predicted CG methylation patterns. The actual 
CG methylation, H3K36me3 and H3K4me3 patterns are shown for comparison. Genomic regions in which 
prediction was improved by the addition of the H3K4me3 data are highlighted in yellow. RefSeq genes are 
shown at the bottom. d Pairwise correlations between the actual data of all epigenetic features. Pearson 
correlation coefficients between the CG methylation pattern and the distributions of the respective features 
are indicated on the right
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H3K36me3 and H3K4me3 showed a higher correlation (R = 0.94), which was close to 
the value achieved by all of the features (R = 0.96) (Fig.  1b, c). This is consistent with 
the fact that, in FGOs, the genomic distribution of CG methylation shows the highest 
correlation with that of H3K36me3 (R = 0.83) and highest anti-correlation with that of 
H3K4me3 (R = − 0.50) (Fig.  1d). The predicted CG methylation patterns showed that 
the addition of H3K4me3 greatly improved the prediction at CpG islands (Additional 
file 1: Fig. S1d), which are rich in H3K4me3 [18]. Consistent with this, H3K4me3 alone 
showed a high predictive power at CpG islands (R = 0.85) (Additional file 1: Fig. S1c) but 
not in the entire genome (R = 0.58) (Additional file 1: Table S2). The further addition of 
H3K9me3, H3K9me2 and H3K27me3, which were either correlated or anti-correlated 
with CG methylation (R = 0.52, − 0.46 and − 0.40), slightly improved the prediction 
(R = 0.95) (Fig. 1b).

Are H3K36me3 and H3K4me3 biologically relevant to CG methylation? Previous gene 
knockout (KO) studies on histone modification enzymes showed that the depletion of 
H3K36me3 (by Setd2 KO, see below) causes a genome-wide loss of CG methylation 
(with occasional local gains) in oocytes [6] and that the depletion of H3K4me3 (by Mll2 
KO) causes local changes in CG methylation (more losses than gains) [11] (Additional 
file 1: Fig. S2) (see also Fig. 2b for H3K36me3 depletion). These results suggest that the 
two features, which showed the highest contribution to the in silico prediction of the 
CG methylation pattern, are biologically relevant. This in turn suggests that prediction 
using epiNet may aid experimental biologists in tasks such as the selection of KO targets 
among the epigenetic modification enzyme genes.

Prediction of the altered CG methylation patterns of mutant oocytes having perturbed 

histone modifications

We next investigated whether epiNet, when trained with the wildtype dataset, 
would predict the CG methylation changes upon perturbation of an epigenetic fea-
ture. Only one previous study, an oocyte-specific KO of Setd2 (the only H3K36me3 
enzyme) [6] provided a dataset that could be used to answer this question (Additional 
file 1: Table S1). In this analysis, we used 50-kb bins due to the resolution limit of the 
data. When H3K36me3 and H3K4me3 from Setd2 KO FGOs were used as input, we 
observed a moderate correlation between the predicted and actual CG methylation 
patterns (R = 0.71). However, the performance dropped when H3K36me3 (R = 0.33) 
or H3K4me3 alone was used (R = 0.15) (Fig. 2a). A closer examination of the predicted 
pattern revealed that a combination of H3K36me3 and H3K4me3 reproduced not only 
the global loss, but also the local gains, of CG methylation in Setd2 KO FGOs (Fig. 2b). 
Although the local gains in CG methylation coincided with the reductions in H3K4me3, 
H3K27me3 and H3K27ac in KO FGOs [6], the inclusion of the H3K27me3 and H3K27ac 
data caused a deterioration in predictive performance (R = 0.65–0.68) (Fig. 2c).
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Cross‑species application of epiNet models to human oocytes

We next examined whether epiNet could be used to predict the CG methylation pat-
tern of human oocytes, which are precious and not easily accessible. The model would 
be especially useful if it performs reasonably well based on a limited number of epige-
netic features or a limited amount of the feature data. Other than CG methylation data 

Fig. 2  Application of epiNet models to predict the CG methylation pattern of Setd2 KO FGOs. a Pearson 
correlation coefficients between the predicted and actual CG methylation patterns of Setd2 KO FGOs. epiNet 
models trained with the data of the indicated feature(s) from wildtype FGOs were used to predict the CG 
methylation pattern for the input data of the same feature(s) from Setd2 KO FGOs. The Setd2 KO data were 
from the entire genome. b A representative genome browser shot showing the predicted CG methylation 
patterns of Setd2 KO FGOs. The actual CG methylation patterns of wildtype and Setd2 KO FGOs are shown 
for comparison. Genomic regions showing CG methylation gains are highlighted in yellow. RefSeq genes are 
indicated at the bottom. c The effect of additional features on the prediction of the CG methylation pattern of 
Setd2 KO FGOs. The details are the same as in a 

Fig. 3  Cross-species application of epiNet models to human oocytes. a Pearson correlation coefficients 
between the predicted and actual CG methylation patterns of human FGOs. The features used to predict 
the CG methylation pattern were H3K4me3, H3K27me3 and chromatin accessibility. The species from which 
the training and test data originated are indicated. When training and testing were performed in the same 
species, the test data were from chromosome 1 and training and validation data were from the rest of the 
chromosomes. For cross-species testing, H3K4me3, H3K27me3 and chromatin accessibility data from all 
mouse chromosomes other than chromosome 1 were used to build an epiNet model. Then, H3K4me3, 
H3K27me3 and chromatin accessibility data from the entire human genome were used to predict the human 
CG methylation pattern. b A representative genome browser shot showing predicted CG methylation 
patterns of human FGOs. The actual CG methylation, H3K4me3 enrichment, H3K27me3 enrichment, and 
chromatin accessibility of human FGOs are shown for comparison. RefSeq genes are indicated at the bottom
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[19], only H3K4me3, H3K27me3 and chromatin accessibility data were available from 
human FGOs [20] (Additional file  1: Table  S1). We first tested whether the same fea-
tures of mouse FGOs could predict the mouse CG methylation pattern and observed 
good performance (R = 0.87) (Fig.  3a, b). We then used the human dataset for testing 
(chromosome 1) and training/validation (all other chromosomes) and observed similarly 
good predictive performance (R = 0.86). Notably, when the human dataset (the entire 
genome) were applied to an epiNet model trained with the mouse dataset (chromosomes 
other than chromosome 1), we still observed a reasonably high correlation between the 
predicted and actual CG methylation patterns (R = 0.77) (Fig. 3a, b). This suggests that 
the cross-species application of an epiNet model is possible within the mammalian class.

Application of epiNet to other cell types

We then investigated whether epiNet can be applied to cells other than oocytes. We 
focused on three cell types: mouse embryonic stem cells, human embryonic stem cells, 
and human neuronal progenitor cells, all of which have de novo CG methylation activity 
(and actively create a CG methylation pattern) as oocytes [21, 22]. Importantly, a com-
mon set of data comprising CG methylation and five histone modifications was available 
for these cell types (Additional file 1: Table S1) [23–25]. When all possible combinations 
(n = 63) of the five features (histone modifications) were respectively used as input, we 
found that a combination of all five features (N = 5) gave the highest correlation with the 
actual CG methylation data in these cell types (R = 0.79–0.89) (Fig. 4a, b, c, d). We then 
found that even H3K4me3 alone had a high predictive power (R = 0.71–0.81). This con-
trasts with the highest performance achieved with H3K36me3 in oocytes but is consist-
ent with the fact that, in all three cell types, the genomic distribution of CG methylation 

Fig. 4  Application of epiNet to other cell types. a The prediction of the CG methylation pattern of mouse 
embryonic stem (ES) cells, human ES cells, and human neuronal progenitor (NP) cells based on varying 
numbers of input features. For each number of features (N = 1, 2 or 5), the feature combination that showed 
the best correlation between the predicted and actual CG methylation patterns is shown. b–d Representative 
genome browser shots showing the predicted CG methylation patterns of mouse ES cells (b), human ES 
cells (c) and human NP cells (d). Together with the actual CG methylation pattern, the patterns of the two 
histone modifications responsible for the best prediction of CG methylation (H3K4me3 and either H3K27me3 
or H3K36me3) are shown for comparison. Genomic regions in which H3K4me3 enrichment coincides with a 
local reduction of CG methylation are highlighted in yellow. RefSeq genes are shown at the bottom
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shows the highest anti-correlation with that of H3K4me3 (R = − 0.74 to − 0.60) (Addi-
tional file 1: Table S3). A combination of H3K4me3 and the best second feature (either 
H3K27me3 or H3K36me3, depending on the cell type) showed a higher correlation 
(R = 0.76–0.86), which was close to the value achieved by all of the features.

Are these features biologically relevant to CG methylation in these cell types? In 
mouse embryonic stem cells, a H3K4me3 depletion (by Mll2 KO) and a H3K27me3 
depletion (by Eed KO) respectively caused a genome-wide gain and redistribution of CG 
methylation [26, 27]. Thus, the two features showing the highest contribution to the in 
silico prediction were indeed biologically relevant. While the biological relevance of the 
features in human embryonic stem cells and neural progenitor cells awaits experimental 
validation, our results from epiNet will give us a hint to design future studies.

Discussion
In this study, we built epiNet, a machine learning model to predict genome-wide CG 
methylation patterns of mammalian oocytes based on a limited number of other epige-
netic features. epiNet captured the crosstalk between the epigenetic features and found 
that a combination of H3K36me3 and H3K4me3 can predict the CG methylation pat-
terns of mouse oocytes quite accurately. Are the two histone modifications biologically 
relevant to CG methylation? DNMT3A, an enzyme responsible for the de novo CG 
methylation in oocytes, contains a PWWP domain, which recognizes H3K36me3, and 
an ADD domain, which recognizes H3K4me0 (regions devoid of H3K4me3) [4, 5]. Pre-
vious gene knockout (KO) studies showed that the depletion of H3K36me3 in oocytes 
causes a genome-wide loss of CG methylation (with occasional local gains) [6] and that 
the depletion of H3K4me3 causes local changes in CG methylation (more losses than 
gains) [12]. These results suggest that the two features are indeed biologically relevant. 
This in turn suggests that prediction using epiNet may aid experimental biologists in 
tasks such as the selection of KO targets among the epigenetic modification enzyme 
genes. The epiNet model is also applicable to cross-species prediction of the CG meth-
ylation pattern in human oocytes, although the predictive power seems somewhat lower.

The CG methylation establishment in mouse oocytes has been viewed as a transcrip-
tion-coupled event, based on the previous studies on individual loci [28] and the entire 
genome [16]. While the CG methylation level is generally high in transcribed regions, 
our results suggest that the transcriptome data is not directly associated with the CG 
methylation pattern in mouse oocytes (Fig. 1b, d). Rather, a transcription-coupled his-
tone modification, H3K36me3, is the major contributor to the CG methylation predic-
tion in oocytes. This is consistent with the recent report that transcription likely impacts 
CG methylation through histone modifications and chromatin remodeling in mouse 
oocytes [29].

Lastly, we confirmed that epiNet is applicable to mammalian cells other than oocytes, 
such as embryonic stem cells and neuronal progenitor cells, the outcome of which sug-
gested that different histone modifications play dominant roles in the formation of the 
CG methylation pattern in different cell types. The biological relevance of the prediction 
was confirmed by the gene KO studies in mouse embryonic stem cells [26, 27]. While 
the biological relevance in other cell types awaits experimental validation, epiNet should 
help to design biological experiments in future studies.
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Conclusions
The epiNet models could predict the CG methylation patterns of mammalian oocytes 
and embryonic stem cells accurately based on datasets from a limited number of other 
epigenetic features and could infer the crosstalk between the features and CG methyla-
tion. The available gene KO data suggest that the crosstalk inferred by epiNet is indeed 
biologically relevant. It also has the advantage of cross-species application. Our findings 
provide insight into the epigenetic crosstalk in mammalian oocytes and embryonic stem 
cells and demonstrate the usefulness of machine learning approaches in designing or 
complementing biological experiments in epigenetics studies.

Methods
Data processing

The datasets used in this study are summarized in Additional file  1: Table  S1. The 
sequence reads were trimmed to remove low quality bases and adaptor sequences using 
Trim Galore 0.3.3 [30]. To obtain a CG methylation pattern, WGBS reads of mouse 
oocytes were mapped to mouse genome mm10 using Bismark 0.20.0 [31]. The WGBS 
data of human oocytes were downloaded from the NBDC human database [19]. The 
methylation levels of CG sites covered by 5–100 reads were extracted for downstream 
analyses. Bins with less than five informative CG sites were excluded. To obtain a histone 
modification or a chromatin accessibility pattern, ChIP-seq or CUT&RUN reads (for 
histone modification) or DNase-seq or ATAC-seq reads (for chromatin accessibility) of 
mouse and human oocytes were mapped to mm10 or human genome hg19 by bowtie2 
2.2.9 [32]. Duplicate and low-quality reads (MapQ < 5) were removed using Picard 2.6.0 
[33]. To obtain a transcription profile, RNA-seq reads of mouse oocytes were mapped 
to mm10 by HISAT2 2.0.5 [34]. The WGBS and histone modification data of human cell 
types (other than oocytes) were downloaded from the NIH Roadmap Epigenomics data-
base [35]. In order to be used by epiNet, CG methylation levels (between 0 and 100%) 
were scaled between 0 and 1. FPKM values of other features were scaled between 0 and 
1 by assigning the 95th percentile value as 0.95.

The structure and application of epiNet

The model predicts CG methylation levels of bins from FPKM values of epigenetic 
features. It was implemented on python 3.6.8 [36], Tensorflow 1.14.0 [37] and Keras 
2.2.4 [38]. The model consisted of four layers, including one convolutional layer and 
one fully connected layer. The genome was divided into 1-kb or 50-kb bins. Scaled 
CG methylation levels and FPKM values of input features were calculated for these 
bins. For each bin with N features, we constructed an N × 2 feature matrix s where 
si1 is the FPKM value of the ith feature in the bin and si2 is the mean FPKM value of 
the ith feature from 10 nearby bins. The input matrix s is first transformed by a two-
dimensional convolutional layer with a kernel size of 2 for each feature, followed by 
the rectified linear unit (ReLU) function. The output, Xfi, at the filter f (total 64 filters) 
for the ith feature is represented as follows:
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where wfk is the weight of convolutional filter f of kth element of input matrix si of the 
ith feature. All outputs in the previous layer are compiled into a single N × 64 matrix. 
This single matrix is flattened to a 64  N-dimensional vector Y. Y is transformed to a 
256-dimensional vector Z:

where W(2) and b(2) are the 256 × 64 N weight matrix and 1 × 64 N bias matrix, respec-
tively. The final output layer transforms Z to predicted CG methylation level Ĉ:

where W(3) and b(3) are a 1 × 256 weight matrix and 1 × 256 bias matrix respectively.
Otherwise noted, we used data from chromosome 1 as the test set, data from chro-

mosomes 2 and 3 as the validation set, and data from all other chromosomes as the 
training set for both mouse and human. Training was performed by fitting the model 
on the training set with a batch size of 100 and by optimizing the hyperparameters 
through minimizing the mean squared error F in total V bins of the validation set, 
until there was no more reduction in F for 20 epochs:

where Cv and Ĉv are the actual and predicted CG methylation levels of the vth bin 
respectively. The final model performance was evaluated on the test dataset, by calculat-
ing the Pearson correlation coefficient between the actual and predicted CG methylation 
patterns.

Linear regression

Linear regression was performed using class LinearRegression of scikit-learn 0.23.1 
[39] on python 3.6.8 [36].

Data visualization and statistical analysis

Genome browser shots were generated using Integrative Genomics Viewer [40]. Pear-
son correlation coefficients between the eight input features and CG methylation 
were determined by deepTools 3.3.1 [41].
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)2



Page 10 of 11Au Yeung et al. BMC Bioinformatics          (2021) 22:341 

oocyte; FPKM: Fragment per kb per million mapped reads; kb: Kilobase; KO: Knockout; NP cell: Neuronal progenitor 
cell; RefSeq: Reference sequence; ReLU: Rectified linear unit; RNA-seq: RNA sequencing; WGBS: Whole genome bisulfite 
sequencing.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04272-8.

Additional file 1: Fig. S1. Incorporation of the mean FPKM value of the neighboring region around the bin as input. 
Fig. S2. The CG methylation patterns of mouse FGOs depleted of H3K36me3 or H3K4me3. Table S1. Data used in 
this study. Table S2. Performance of epiNet based on actual versus randomly shuffled data. Table S3. Pearson cor-
relation of histone modfications with CG methylation in cell types other than oocytes.

Acknowledgements
We thank Motoko Unoki, Takashi Ishiuchi, Hidehiro Toh, Chaoqing Wen, Ryo Shimizu and Tomoyo Taniguchi (Kyushu 
University) for helpful discussion and technical assistance.

Authors’ contributions
WKAY conceived the project, conducted the experiments and analyzed the data. WKAY, OM, and HS supervised the 
project, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by a JSPS KAKENHI grant to H.S. and O.M. (JP18H05214). The funding bodies did not play any 
roles in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The data used in this study are summarized in Additional file 1: Table S1. The epiNet model is available through GitHub at 
https://​github.​com/​donal​day/​epiNet under the GNU General Public License v3 [42].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812‑8582, 
Japan. 2 Faculty of Design, Kyushu University, Fukuoka 815‑0032, Japan. 

Received: 21 October 2020   Accepted: 15 June 2021

References
	1.	 Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.
	2.	 Soshnev AA, Josefowicz SZ, Allis CD. Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell. 

2016;62:681–94.
	3.	 Sendžikaitė G, Kelsey G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 

2019;63:691–705.
	4.	 Rondelet G, Maso TD, Willems L, Wouters J. Structural basis for recognition of histone H3K36me3 nucleosome by 

human de novo DNA methyltransferases 3A and 3B. J Struct Biol. 2016;194:357–67.
	5.	 Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M. Structural basis for recognition of H3K4 methyla-

tion status by the DNA methyltransferase 3A ATRX–DNMT3–DNMT3L domain. Embo Rep. 2009;10:1235–41.
	6.	 Xu Q, Xiang Y, Wang Q, Wang L, Brind’Amour J, Bogutz AB, et al. SETD2 regulates the maternal epigenome, genomic 

imprinting and embryonic development. Nat Genet. 2019;51:844–56.
	7.	 Lu L, Lin K, Qian Z, Li H, Cai Y, Li Y. Predicting DNA methylation status using word composition. J Biomed Sci Eng. 

2010;03:672–6.
	8.	 Zheng H, Wu H, Li J, Jiang S-W. CpGIMethPred: computational model for predicting methylation status of CpG 

islands in human genome. BMC Med Genomics. 2013;6:S13.
	9.	 Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using 

deep learning. Genome Biol. 2017;18:67.
	10.	 Tian Q, Zou J, Tang J, Fang Y, Yu Z, Fan S. MRCNN: a deep learning model for regression of genome-wide DNA meth-

ylation. BMC Genomics. 2019;20:192.

https://doi.org/10.1186/s12859-021-04272-8
https://github.com/donalday/epiNet


Page 11 of 11Au Yeung et al. BMC Bioinformatics          (2021) 22:341 	

	11.	 Hanna CW, Taudt A, Huang J, Gahurova L, Kranz A, Andrews S, et al. MLL2 conveys transcription-independent H3K4 
trimethylation in oocytes. Nat Struct Mol Biol. 2018;25:73–82.

	12.	 Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, et al. Mouse oocyte methylomes at base resolution 
reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 
2013;9:e1003439.

	13.	 Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, et al. Resetting epigenetic memory by reprogramming of histone 
modifications in mammals. Mol Cell. 2016;63:1066–79.

	14.	 Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, et al. Reprogramming of H3K9me3-dependent heterochromatin during 
mammalian embryo development. Nat Cell Biol. 2018;20:620–31.

	15.	 Au Yeung WK, Brind’Amour J, Hatano Y, Yamagata K, Feil R, Lorincz MC, et al. Histone H3K9 methyltransferase G9a 
in oocytes is essential for preimplantation development but dispensable for CG methylation protection. Cell Rep. 
2019;27:282–93.

	16.	 Veselovska L, Smallwood SA, Saadeh H, Stewart KR, Krueger F, Maupetit-Méhouas S, et al. Deep sequencing and de 
novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation 
landscape. Genome Biol. 2015;16:1–17.

	17.	 Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. 
Nature. 2017;547:419–24.

	18.	 Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation 
landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43:811–4.

	19.	 Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, et al. Genome-wide analysis of DNA methylation 
dynamics during early human development. PLoS Genet. 2014;10:e1004868.

	20.	 Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, et al. Resetting histone modifications during human parental-to-zygotic transi-
tion. Science. 2019;6451:353–60.

	21.	 Chen T, Ueda Y, Dodge JE, Wang Z, Li E. Establishment and maintenance of genomic methylation patterns in mouse 
embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003;23:5594–605.

	22.	 Ziller MJ, Ortega JA, Quinlan KA, Santos DP, Gu H, Martin EJ, et al. Dissecting the functional consequences of 
de novo DNA methylation dynamics in human motor neuron differentiation and physiology. Cell Stem Cell. 
2018;22:559–74.

	23.	 Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HHD, Matarese F, et al. Whole-genome bisulfite sequencing of 
two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell. 2013;13:360–9.

	24.	 Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, et al. Allelic reprogramming of the histone modification H3K4me3 
in early mammalian development. Nature. 2016;537:553–7.

	25.	 Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse 
genome. Nature. 2014;515:355–64.

	26.	 Douillet D, Sze CC, Ryan C, Piunti A, Shah AP, Ugarenko M, et al. Uncoupling histone H3K4 trimethylation from 
developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat Genet. 
2020;52:615–25.

	27.	 Li Y, Zheng H, Wang Q, Zhou C, Wei L, Liu X, et al. Genome-wide analyses reveal a role of Polycomb in promoting 
hypomethylation of DNA methylation valleys. Genome Biol. 2018;19:18.

	28.	 Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M, et al. Transcription is required for establishment 
of germline methylation marks at imprinted genes. Gene Dev. 2009;23:105–17.

	29.	 Gahurova L, Tomizawa S, Smallwood SA, Stewart-Morgan KR, Saadeh H, Kim J, et al. Transcription and chromatin 
determinants of de novo DNA methylation timing in oocytes. Epigenet Chromatin. 2017;10:25.

	30.	 Krueger F. Trim Galore. Github. https://​github.​com/​Felix​Krueg​er/​TrimG​alore.
	31.	 Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics. 

2011;27:1571–2.
	32.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
	33.	 Picard. http://​broad​insti​tute.​github.​io/​picard. Accessed 25 May 2021.
	34.	 Kim D, Landmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 

2015;12:357–60.
	35.	 Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference 

human epigenomes. Nature. 2015;518:317–30.
	36.	 van Rossum G, de Boer J. Interactively testing remote servers using the Python programming language. CWI Q. 

1991;4:283–304.
	37.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: a system for large-scale machine learn-

ing. https://​www.​tenso​rflow.​org.
	38.	 Chollet F. Keras. Github. https://​github.​com/​keras-​team/​keras.
	39.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J 

Mach Learn Res. 2011;12:2825–30.
	40.	 Robinson J, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat 

Biotechnol. 2011;29:24–6.
	41.	 Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for 

deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.
	42.	 Au Yeung WK. epiNet. Github. https://​github.​com/​donal​day/​epiNet.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/FelixKrueger/TrimGalore
http://broadinstitute.github.io/picard
https://www.tensorflow.org
https://github.com/keras-team/keras
https://github.com/donalday/epiNet

	A convolutional neural network-based regression model to infer the epigenetic crosstalk responsible for CG methylation patterns
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Outline of epiNet: prediction of CG methylation patterns based on other epigenetic features
	Prediction of the epigenetic crosstalk responsible for CG methylation patterns by epiNet models
	Prediction of the altered CG methylation patterns of mutant oocytes having perturbed histone modifications
	Cross-species application of epiNet models to human oocytes
	Application of epiNet to other cell types

	Discussion
	Conclusions
	Methods
	Data processing
	The structure and application of epiNet
	Linear regression
	Data visualization and statistical analysis

	Acknowledgements
	References


