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Abstract 

Background:  RNA degradation is important for the regulation of gene expression. 
Despite the identification of proteins and sequences related to deadenylation-depend-
ent RNA degradation in plants, endonucleolytic cleavage-dependent RNA degradation 
has not been studied in detail. Here, we developed truncated RNA end sequencing in 
Arabidopsis thaliana to identify cleavage sites and evaluate the efficiency of cleavage 
at each site. Although several features are related to RNA cleavage efficiency, the effect 
of each feature on cleavage efficiency has not been evaluated by considering multiple 
putative determinants in A. thaliana.

Results:  Cleavage site information was acquired from a previous study, and cleavage 
efficiency at the site level (CSsite value), which indicates the number of reads at each 
cleavage site normalized to RNA abundance, was calculated. To identify features related 
to cleavage efficiency at the site level, multiple putative determinants (features) were 
used to perform feature selection using the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model. The results indicated that whole RNA features were 
important for the CSsite value, in addition to features around cleavage sites. Whole RNA 
features related to the translation process and nucleotide frequency around cleavage 
sites were major determinants of cleavage efficiency. The results were verified in a 
model constructed using only sequence features, which showed that the prediction 
accuracy was similar to that determined using all features including the translation 
process, suggesting that cleavage efficiency can be predicted using only sequence 
information. The LASSO regression model was validated in exogenous genes, which 
showed that the model constructed using only sequence information can predict 
cleavage efficiency in both endogenous and exogenous genes.

Conclusions:  Feature selection using the LASSO regression model in A. thaliana 
identified 155 features. Correlation coefficients revealed that whole RNA features are 
important for determining cleavage efficiency in addition to features around the cleav-
age sites. The LASSO regression model can predict cleavage efficiency in endogenous 
and exogenous genes using only sequence information. The model revealed the sig-
nificance of the effect of multiple determinants on cleavage efficiency, suggesting that 
sequence features are important for RNA degradation mechanisms in A. thaliana.
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Background
RNA degradation is an important process for regulating gene expression in living 
organisms [1]. RNA degradation is mediated by deadenylation-dependent or endonu-
cleolytic cleavage-dependent RNA degradation mechanisms [2]. In both degradation 
mechanisms, the final step in RNA digestion is catalyzed by exonucleases. Deadenyla-
tion-dependent RNA degradation has been studied in plants [3], and some proteins 
and related sequences were identified and analyzed; however, endonucleolytic cleavage-
dependent RNA degradation has not been analyzed in detail.

Degradome sequencing methods, which are techniques for detecting truncated 
RNA ends using next-generation sequencing (NGS), have been developed to study the 
mechanisms underlying endonucleolytic cleavage–dependent RNA degradation [4–6]. 
Although these methods contribute to the identification of cleavage sites, the detected 
cleavage sites are biased toward the 3′ end of the transcript because of poly A selection 
in library preparation [6, 7]. In previous work from our group, we attempted to solve 
this problem by developing truncated RNA end sequencing (TREseq) in A. thaliana 
[8]. TREseq analysis showed high G nucleotide frequency around the cleavage sites; the 
cleavage sites were highly accumulated around the start and stop codons, and three-
nucleotide periodicity was observed in the coding sequences (CDSs) [8, 9]. These ten-
dencies are similar to ribosome movements, which are reported in ribosome profiling 
methods, suggesting that the translation process affects RNA cleavage [8–10]. In our 
previous study, we evaluated the relationships between single determinants and cleavage 
efficiency in A. thaliana using Pearson’s correlation analysis [11]. We found that cleavage 
efficiencies were related to several determinants (e.g., G nucleotide frequency around 
cleavage sites and RNA length). However, because Pearson’s correlation analysis can 
evaluate only one-to-one relationships, the effects of multiple putative determinants on 
cleavage efficiency remain to be elucidated.

To evaluate several features, multiple regression analysis has been performed using 
large feature sets [12, 13]. Sequence information (e.g., nucleotide sequence, codons, 
or amino acid usage) was used, and RNA abundance or RNA stability was predicted 
by a multiple regression model. However, multiple regression models can result in 
predictions with large variance, thereby affecting the accuracy of prediction in high-
dimensional data [14]. To overcome the shortcomings of multiple regression in high-
dimensional data, the Least Absolute Shrinkage and Selection Operator (LASSO) 
regression model was designed [15]. LASSO penalizes the absolute size of regression 
coefficients. Therefore, by setting as many coefficients as possible to zero, the objec-
tive variable is regressed with as few features as possible. Necessary features can thus 
be extracted according to the coefficient in the LASSO regression model. In a previous 
study, a LASSO regression model was applied to predicting the ribosome occupancy on 
RNA (i.e., the translation process) [16]. Sequence information was used, and approxi-
mately 60 features were reduced to a subset of 10–20 features. The results revealed 
that specific nucleotides or codon sequence patterns are important for the translation 
process. Although these integrated analyses using the LASSO regression model were 
used to predict the transcription (RNA expression level) or translation process (ribo-
some occupancy) [16, 17], little information is available in RNA degradation mechanism, 
especially for endonucleolytic cleavage–dependent RNA degradation in A. thaliana. 
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Although some cleavage sites induced by microRNA were analyzed and could be pre-
dicted by computing RNA complementary sequences (nucleotide information) [18], the 
majority of cleavage sites did not appear to be induced by microRNA [8, 19, 20]. There-
fore, the determinants of genome-wide RNA cleavage sites remain to be elucidated in A. 
thaliana.

To address this issue, we obtained cleavage sites throughout the genome and per-
formed feature selection for cleavage efficiency using LASSO in A. thaliana. In the 
LASSO regression model, 155 features were selected, and the coefficients indicated that 
in addition to features around cleavage sites, features of the whole RNA were also impor-
tant. We also confirmed the selected features in the LASSO regression model using a 
different regression model (Ridge regression), which addressed some of the problems 
of multiple regression models but did not decrease the number of features relative to 
LASSO. In addition, we attempted to predict cleavage efficiency in endogenous and 
exogenous genes using only sequence information, and the prediction accuracy was sim-
ilar to that of the model using all features. These results suggest that sequence features in 
whole RNA and around cleavage sites are critical for determining the cleavage efficiency 
at each site in both endogenous and exogenous genes in A. thaliana.

Materials and methods
Plant material

Arabidopsis thaliana T87 cell suspension was obtained from Riken Cell Bank (Tsukuba,
Japan) and cultured in modified Murashige–Skoog medium, as described previously 

[21].

Data processing for TREseq

Reads from cultured cells and seeds of A. thaliana ecotype Columbia-0 transformed 
with p35S::firefly luciferase (F-luc)::heat shock protein 18.2 terminator (HSPT) [11, 22] 
were acquired from previous TREseq analyses [8, 11] and mapped to the TAIR version 
10 reference genome (www.​arabi​dopsis.​org) or the p35S::F-Luc::HSPT sequence using 
HISAT2. After mapping, the first nucleotide (5′ end) of each read was counted using 
BED files as described previously [9]. Cap RNA with more than 50 reads at each gene 
was used for RNA abundance information [9]. To estimate the cleavage efficiency at each 
site, the reads at each 5′ degradation intermediate normalized to RNA abundance were 
defined as the cleavage score at the site level (CSsite). At the gene level, we defined the 
total CSsite value at each gene as the CSgene value.

Library construction for ribosome profiling

Ribosome-protected fragments (RPFs) were selected as described previously [23, 24]. In 
brief, A. thaliana T87 cells were harvested 3 days after inoculation and frozen in liquid 
nitrogen, followed by homogenization in extraction buffer (200 mM Tris–HCl, pH 8.5, 
50 mM KCl, 25 mM MgCl2, 2 mM EGTA, 100 µg/ml heparin, 100 µg/ml cycloheximide, 
2% polyoxyethylene 10-tridecyl ether, and 1% sodium deoxycholate), and centrifuged at 
15,000 g for 10 min at 4 °C [23]. Cells were incubated with 6 μl RNase I (Thermo Fisher 
Scientific, MA, USA) for 30  min, and the reaction was stopped by addition of 10  μl 
RNase inhibitor (Thermo Fisher Scientific). A 26.25–71.25% sucrose density gradient 

http://www.arabidopsis.org
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buffer (200 mM Tris–HCl, pH 8.5, 200 mM KCl, and 200 mM MgCl2) was used to collect 
monosomes by sucrose density gradient centrifugation at 55,000 rpm for 50 min at 4 °C 
in an SW55 rotor (Beckman Coulter, CA, USA). After isolation of monosomes, RPFs 
were purified using the TruSeq Ribo Profile kit (Illumina). The libraries were sequenced 
on an Illumina NextSeq 500 (Illumina).

Data processing for ribosome profiling

The adapter sequences were trimmed, and reads were mapped to the TAIR version 10 
reference genome (www.​arabi​dopsis.​org) using the modified MOIRAI system [8, 9]. 
After mapping, the first nucleotide (5′ end) of each read was counted using BED files. To 
estimate the RPFs at each site, the average of RPF reads at the 5’ end of each site normal-
ized to RNA abundance was defined as ribosome occupancy at the site level (ROsite). At 
the gene level, the total ROsite values at each gene were defined as ROgene values.

Analysis of cleavage sites using LASSO and Ridge regression

In TREseq analysis, cleavage sites are detected in approximately 2 million sites. To select 
reliable sites, we selected sites in the genes with > 20% cleaved sites relative to RNA 
length and whose CSgene values were between the 5th and 95th percentile. In addition, 
we removed expected microRNA-induced cleavage sites using psRNATarget [18]. Data 
were separated into training and test sets (9: 1), and training data were used to construct 
the model.

Explanatory variables in the model

In the model, features around the cleavage sites or features in whole RNA were extracted 
(Fig. 1). RNA sequence information (nucleotide, codon, and corresponding amino acid 
sequence) were obtained from the TAIR10 database (www.​arabi​dopsis.​org), and the 
minimum free energy (stability of secondary structure) was predicted using the RNA-
fold software (http://​rna.​tbi.​univie.​ac.​at/) based on RNA nucleotide sequences [25]. 
In addition, in the ribosome profiling method used in this analysis, ROsite and ROgene 
values were used to obtain ribosome occupancy information (Fig.  1). For the features 
around cleavage sites, we determined nucleotide, codon, and the corresponding amino 
acid sequences ± 30 nucleotides around the cleavage sites. A comprehensive search of 
the features around the cleavage sites was performed and nucleotide, codon, or cor-
responding amino acid frequencies were calculated. The window size was changed by 
one nucleotide (minimum length, 1 nucleotide; maximum length, 60 nucleotides) and 
the sliding window was shifted by one nucleotide. Because ribosome occupancy affects 
long-distance cleavage efficiency [26], the region was extended by ± 200 nucleotides 
around the cleavage site. In terms of secondary structure, because the minimum free 
energy of short RNA sequences cannot be predicted by RNAfold, the minimum window 
size was changed to 5 nucleotides (minimum length, 5 nucleotides; maximum length, 60 
nucleotides), and the sliding window was shifted by 5 nucleotides.

In terms of whole-RNA features, we extracted 5′-UTR, CDS, 3′-UTR, and whole RNA 
sequences from the TAIR10 database (www.​arabi​dopsis.​org) and calculated the nucleotide, 
codon, and corresponding amino acid frequencies. The minimum free energy was predicted 
using RNAfold in each region (5′-UTR, CDS, 3′-UTR, or whole RNA). The sum of ROsite 

http://www.arabidopsis.org
http://www.arabidopsis.org
http://rna.tbi.univie.ac.at/
http://www.arabidopsis.org


Page 5 of 17Ueno et al. BMC Bioinformatics          (2021) 22:380 	

values in each region (5′-UTR, CDS, 3′-UTR, or whole RNA) was used to obtain ribosome 
occupancy information. In addition, 50-nucleotide sequences were extracted from the 5’ or 
3’ end of each region (5′-UTR, CDS, 3′-UTR, or whole RNA), and the nucleotide frequency 
information was added to the model. Because several codons around start codon appeared 
to be related to the translation process [27, 28], 10 codons or their corresponding amino 
acid sequences were extracted from 5’ or 3’ end of CDS, and the codons or corresponding 
amino acid frequencies were used for the model. An example of an explanatory variable 
using “nucleotide sequence” is shown in Fig. 2.

To remove multi-collinearity from explanatory variables, we calculated the Spearman 
rank correlation coefficient among features. If the correlation coefficient between fea-
tures was ≥ 0.6, the feature with the highest correlation to the CSsite value was used for 
the model. In addition, explanatory variables that showed no correlation (r < 0.1) accord-
ing to the Spearman coefficient were removed. Finally, 1,191 features were used for the 
LASSO and Ridge regression models. RNA sequence information can be obtained from the 
TAIR10 database, and the data processed in this analysis (cleavage sites and ribosome pro-
filing information) are available in GitHub (https://​github.​com/​daish​in-​ueno/​LASSO_​and_​
Ridge_​regre​ssion/​tree/​main/​Datas​ets).

Construction of the LASSO and Ridge regression models

For feature selection, we used linear_model.Lasso or linear_model.Ridge from the Python 
package scikit-learn [29]. In the i-th observation, yi was the objective variable, and the 
cleavage efficiencies (CSsite values) and the vector xi =

(
xi1, xi2, · · · , xip

)
 were the cor-

responding feature value set. The linear regression model of the cleavage efficiencies was 
defined as follows:

Removing uncorrelated features using
Spearman correlation test (r < 0.01)

Removing multi-correlation in explanatory variables
using Spearman correlation test (r ≥ 0.6)

Feature extraction for the LASSO and Ridge 
regression models

[1] Around cleavage sites
Sequences (nucleotide, codon or amino acid sequence)
Stability of secondary structure predicted by RNAfold
Ribosome occupancies

[2] Whole RNA features 
Extracting features similar to [1] in whole RNA, 5’-UTR, CDS,
3’-UTR or around start and stop codon sequences

Fig. 1  Feature extraction for models. Features related to sequences, stability of the secondary structure, and 
ribosome occupancy were extracted from around cleavage sites. For whole RNA features, similar features 
around cleavage sites were extracted from whole RNA, 5′-UTR, CDS, 3′-UTR, or around start and stop codon 
sequences. Uncorrelated features and multi-correlation in explanatory variables were removed.

https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Datasets
https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Datasets
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where β • xi represents the inner product of the vectors β =
(
β1,β2, · · · ,βp

)
 and xi , βj 

is the coefficient for j-th feature, α is the intercept, and p is the number of features.
The LASSO regression estimator uses the L1 regularization penalty:

ŷi = α + β • xi = α +

p∑

j=1

βjxij ,

Fig. 2  Example of an explanatory variable. Nucleotide sequences were used as explanatory variables 
(features) around cleavage sites (a) or in whole RNA (b). Search regions were comprehensively changed, and 
nucleotide frequencies were calculated in the selected region. Similar data processing was conducted in the 
whole RNA. Nucleotide frequencies were calculated in the 5′-UTR, CDS, 3′-UTR, or whole RNA and were also 
calculated in 50-nucleotide sequences from the 5’ or 3’ end of each region (5′-UTR, CDS, 3′-UTR, or whole 
RNA).
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where �
∑p

j=1

∣∣βj
∣∣ is the L1 regularization penalty on the coefficient βj and � ≥ 0 is 

the tuning parameter.
The Ridge regression estimator uses the L2 regularization penalty:

where �
∑p

j=1β
2
j  is the L2 regularization penalty on βj and � ≥ 0 is the tuning 

parameter.
The tuning parameter λ was determined using training data. In LASSO regres-

sion, mean squared error (MSE) between predicted and measured CSsite values was 
calculated by changing the parameter λ (10–10–10–1) in tenfold cross validation [30] 
using model_selection.cross_val_score from the Python package scikit-learn [29, 
31]. To increase interpretability in the LASSO regression model, we determined the 
parameter λ with a reduced number of features while maintaining MSE (Fig. 3a). The 
same data processing approach was used in the LASSO regression model, which was 

βLASSO = argmin
β

{∑N

i=1

(
yi − ŷi

)2
+ �

∑p

j=1

∣∣βj
∣∣
}
,

βRidge = argmin
β

{∑N

i=1

(
yi − ŷi

)2
+ �

∑p

j=1
β2
j

}
,
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Fig. 3  Optimizing the tuning parameters in the LASSO regression model. Average mean square error (MSE) 
was calculated in tenfold cross validation (tenfold CV) by changing the parameter λ in LASSO regression. The 
number of non-zero features in the LASSO regression model was also calculated, and the parameter λ was 
determined according to the average MSE and the number of non-zero features in the LASSO regression 
model (a). The same data processing approach was used for the LASSO regression model, which used only 
sequence information (b). The Y-axis indicates the number of non-zero features in the LASSO regression 
model. The X-axis indicates the average MSE in tenfold CV. λ (0.01) was used in each regression model
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constructed using only sequence information (Fig.  3b). In Ridge regression, MSE 
between predicted and measured CSsite values was calculated by changing the param-
eter λ (10–10–10–1) in tenfold cross validation [30] using model_selection.cross_val_
score from the Python package scikit-learn [29, 31]; we determined that λ = 105 where 
MSE was smallest in the range 10–10–10–1. Source codes for the LASSO or Ridge 
regression model using linear_model.Lasso or linear_model.Ridge from the Python 
package scikit-learn are available at GitHub (https://​github.​com/​daish​in-​ueno/​
LASSO_​and_​Ridge_​regre​ssion/​tree/​main/​Source_​code).

Results and discussion
Data processing in the LASSO regression model

For the objective variable, indicators of cleavage efficiency at the site level (CSsite value) 
were calculated using our previous TREseq data [8], with the number of reads at each 
cleavage site normalized to RNA abundance. Explanatory variables (features) can be 
divided into three categories: sequence (nucleotide, codon, or corresponding amino acid 
frequency), stability of secondary structure, and ribosome occupancy (Fig.  1). For the 
explanatory variables (features), RNA sequences were obtained from the TAIR10 data-
base, and nucleotide, codon, and corresponding amino acid frequencies were acquired. 
Minimum free energies of secondary structures were calculated using the RNAfold soft-
ware based on RNA nucleotide sequences. In addition, ribosome occupancy information 
(DRA010802) was obtained under the conditions used for our previous TREseq data [8], 
and the ROsite value (the number of ribosome-protected fragments at the site level, nor-
malized against RNA abundance) was used for model. Because multi-collinearity among 
features negatively affects the prediction accuracy, we removed features with high cor-
relations between explanatory variables. In addition, features that showed no correlation 
between objective and explanatory variables according to Spearman’s correlation test 
(r < 0.01) were removed from the feature extraction process (Fig. 4). To obtain reliable 
cleaved sites, we selected genes with > 20% cleaved sites relative to RNA length. The total 
numbers of analyzed genes and sites were 1,107 and 429,185 sites, respectively. Sites 
were separated into training and test data sets (Table 1), and the CSsite value was used as 
the objective variable. Input data were formatted using CSsite values and features (Fig. 4) 
and are available in GitHub (https://​github.​com/​daish​in-​ueno/​LASSO_​and_​Ridge_​regre​
ssion/​tree/​main/​Datas​ets/​Final_​input_​data_​for_​model_​const​ructi​on). The LASSO or 
Ridge regression model was then constructed using training data, and its performance 
was evaluated using test data. Features of non-zero coefficients were selected, and each 
feature was estimated according to its importance score in the model (Fig. 4).

Prediction of CSsite value using the LASSO regression model

The prediction accuracy (Pearson’s correlation coefficient) was calculated using test 
data; the correlation coefficient was r = 0.74 (Fig.  5). Features with a coefficient of 
zero were removed, which decreased the number of features from 1,191 to 155. The 
resultant 155 features predicted the cleavage efficiency. These features were divided 
into positive (contributing to increased cleavage efficiency) and negative (contrib-
uting to decreased cleavage efficiency) groups according to the correlation coeffi-
cient. In the positive coefficient (effect) group, the correlation coefficient of whole 

https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Source_code
https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Source_code
https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Datasets/Final_input_data_for_model_construction
https://github.com/daishin-ueno/LASSO_and_Ridge_regression/tree/main/Datasets/Final_input_data_for_model_construction
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RNA features around cleavage sites was 0.78 (59.7%) and that of whole RNA features 
was 0.53 (40.3%) (Fig.  6a). Nucleotide sequences accounted for approximately 90% 
of the positive coefficients in the features around cleavage sites (Fig. 6b). This result 

Fig. 4  Data processing in the LASSO and Ridge regression models. Sequences (nucleotide, codon, or 
corresponding amino acid sequence), stability of secondary structures, and ribosome occupancy information 
was obtained, and features with multi-collinearity among explanatory variables or no correlation to the 
objective variable were removed from the feature extraction process. Cleavage sites (CSsite values) were 
divided into training and test data sets, and input data were formatted. Subsequently, the LASSO or Ridge 
regression model was constructed using the training dataset. Finally, model performance was evaluated 
using test data, and features of non-zero coefficients were estimated according to the importance score 
(coefficients in the LASSO or Ridge regression model)

Table 1  Training and test data in the LASSO and Ridge regression models

Training Test

Number of cleavage sites 395,375 43,742

Number of genes 996 111
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is consistent with those of previous studies reporting that nucleotide frequency 
around cleavage sites has a positive effect on CSsite values [8, 9, 11], and suggests 
that sequence features are major determinants of CSsite values in the positive coeffi-
cient features. When we focused on the positive coefficients of whole RNA features, 
ribosome occupancy, codon, and corresponding amino acid sequence accounted 
for approximately 50% (Fig.  6c). These results suggest that the translation process 
(codon, corresponding amino acid sequence, or ribosome occupancy) has a positive 
effect on CSsite value in features of the whole RNA, but not in features around cleav-
age sites.

In the negative coefficient group, whole RNA features were also related to cleav-
age efficiency; however, the majority of features were around cleavage sites (Fig. 7a). 
Analysis of the features around the cleavage sites indicated that nucleotide fre-
quency was a major determinant of CSsite values in the negative coefficient group 
(Fig.  7b), which is similar to the observation in the positive coefficient features 
around cleavage sites (Fig. 6b). Among whole RNA features, codon or corresponding 
amino acid sequences were selected in addition to nucleotide sequences in the nega-
tive coefficient group (Fig. 7c). Considering that some nucleotide sequence patterns 
have an effect on ribosome occupancies [16], the nucleotide sequences in whole 
RNA features seemed to be involved in the translation process and to affect cleavage 
efficiency at the site level (Figs. 6c, 7c). These tendencies were also observed after 
selecting the five most positive or negative features based on the correlation coef-
ficient in the LASSO regression model (Tables 2, 3). In particular, a G nucleotide fre-
quency of − 4 to + 2 (positive) and a G nucleotide frequency of + 4 to + 5 (negative) 
were selected. These results are consistent with the nucleotide frequency around the 
cleavage sites because G nucleotide frequency was high from the − 3 to + 1 position, 

Measured CSsite values

P
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S
si

te
va
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es

LASSO regression 
n = 155 features

r = 0.74
n = 43,742 sites

Fig. 5  Prediction of the CSsite value using the LASSO regression model. The model was constructed using 
training data, and Pearson’s correlation coefficient was calculated using test data. The X-axis indicates the 
measured CSsite value in TREseq and the Y-axis indicates the predicted CSsite value in the LASSO regression 
model. Histograms above and to the right of each plot show the distribution of measured and predicted 
CSsite values, respectively
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whereas it was low around the + 4 position, as reported in a previous TREseq anal-
ysis [8].  Taken together, these results indicate that the 155 features explained the 
CSsite value in the LASSO regression model, and whole RNA features (e.g., transla-
tion process) were related to cleavage efficiency, in addition to nucleotide frequency 
around cleaved sites.

Confirmation of selected features using a different model

The advantages of the proposed LASSO regression model include reduction of the 
number of features (explanatory variables) and increased interpretability. On the other 
hand, the LASSO regression model cannot select several features if they have similar 

0 0.2 0.4 0.6 0.8 1

Around cleavage sites

Whole RNA

Nucleotide sequence (90.4 %)
Other (9.6 %)

Around cleavage sites

Whole RNA 

Nucleotide sequence (44.6 %)

Ribosome occupancy (26.5 %)

Codon, amino acid sequence (25.4 %)

Other (3.5 %)

Coefficients in LASSO regression

A

B

C

Fig. 6  Positive coefficients in the LASSO regression model. Positive coefficient features around cleavage sites 
and in whole RNA were extracted (a). The proportions of coefficients were categorized into features around 
the cleavage sites (b) and features of the whole RNA (c).
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A

B

C

-1-0.8-0.6-0.4-0.20

Around cleavage sites

Whole RNA

Nucleotide sequence (95.6 %)

Other (4.4 %)

Nucleotide sequence (68.1 %)
Codon, amino acid sequence

(31.9 %)

Around cleavage sites

Whole RNA

Coefficients in LASSO regression

Fig. 7  Negative coefficients in LASSO regression. Negative coefficient features around cleavage sites 
and features in whole RNA were extracted (a). Detailed features were categorized, and the proportions of 
coefficient in the LASSO regression model in features around cleavage sites (b) and features in whole RNA (c) 
were calculated

Table 2  Positive coefficient features in the LASSO regression model

Features (positive) Coefficient

Ribosome occupancy in RNA 0.135

GG frequency around cleavage sites − 4 to + 2 0.108

G frequency around cleavage sites at + 1 0.090

G frequency around cleavage sites − 2 to + 1 0.067

G frequency around cleavage sites − 1 to + 3 0.045
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correlations to the objective variable. Hence, it is possible that some important features 
for cleavage efficiencies were removed from the LASSO regression model. To over-
come this limitation, we needed to confirm that similar trends would be observed if we 
used a different model. Therefore, to confirm the importance of the features selected 
in the LASSO regression model, we performed an experiment using the Ridge regres-
sion model. We constructed the Ridge regression model based on data processing in 
the LASSO regression model. The prediction accuracy of Ridge was first tested using 
Pearson’s correlation coefficient, which showed that the prediction accuracy was com-
parable to that of the LASSO regression model (Fig. 8). The features with a coefficient of 
zero were removed, and the 1191 features were reduced to 1,051 features (Fig. 9a). We 
also calculated the correlation coefficient of feature importance, which is common in the 
LASSO and Ridge regression models, using Pearson’s correlation coefficient, and simi-
lar tendencies were observed in both models (Fig. 9b). In addition, when the five most 
positive or negative features were selected (Tables 4, 5), nucleotide frequency around the 

Table 3  Negative coefficient features in the LASSO regression model

Features (negative) Coefficient

G frequency around cleavage sites + 4 to + 5 − 0.061

G frequency around cleavage sites + 8 to + 14 − 0.052

U frequency around cleavage sites at − 2 − 0.051

C frequency around cleavage sites at + 4 − 0.050

A frequency around cleavage sites + 17 to + 19 − 0.042

Ridge

Measured CSsite values
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Ridge regression 
n = 1,051 features

r = 0.75
n = 43,742 sites

Fig. 8  Prediction of the CSsite value using the Ridge regression model. The model was constructed using 
training data, and Pearson’s correlation coefficient was calculated using test data. The X-axis indicates the 
measured CSsite values in TREseq and the Y-axis indicates the predicted CSsite values in the Ridge regression 
model. Histograms above and to the right of each plot show the distribution of measured and predicted 
CSsite values, respectively
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cleavage sites and whole RNA features related to the translation process were selected. 
These results suggest that features selected in the LASSO regression model are reliable.

Predicting CSsite values using only sequence information

Although ribosome occupancy had the highest positive coefficient in the LASSO regres-
sion model, most coefficients were related to sequence information. In addition, ribo-
some occupancy was explained by nucleotide or codon sequence in a previous study 
[15]. Thus, we hypothesized that we could predict cleavage efficiency at each site using 
only sequence information. We removed features related to ribosome occupancy or 
secondary structure information and re-constructed the LASSO regression model. 

LASSO

Ridge
Features; n = 1,051

Features
n =155

A

Coefficients in LASSO regression
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r = 0.84
n = 155 features

Fig. 9  Confirmation of selected features in the LASSO regression model using the Ridge regression model. 
There were 155 common features in the LASSO and Ridge regression models (a). Pearson’s correlation 
coefficient was calculated using the common features in both models (b)

Table 4  Positive coefficient features in the Ridge regression model

Features (positive) Coefficient

Ribosome occupancy in RNA 0.074

GG frequency around cleavage sites − 4 to + 2 0.052

GG frequency around cleavage sites − 1 to + 1 0.045

GG frequency around cleavage sites − 3 to − 1 0.041

G frequency around cleavage sites − 2 to + 1 0.037

Table 5  Negative coefficient features in the Ridge regression model

Features (negative) Coefficient

AA frequency around cleavage sites − 1 to + 2 − 0.035

G frequency around cleavage sites + 4 to + 5 − 0.033

GU frequency around cleavage sites + 4 to + 6 − 0.028

A frequency around cleavage sites − 1 to + 1 − 0.028

UG frequency around cleavage sites + 1 to + 2 − 0.027
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Prediction accuracy (Pearson’s correlation coefficient) was calculated using test data; 
the correlation coefficient was r = 0.68 (Fig. 10). These results indicate that cleavage effi-
ciency at the site level could be explained using only sequence information.

Validation of the LASSO regression model through prediction of exogenous genes

The LASSO regression model was constructed using endogenous genes. If this model 
could explain cleavage efficiency in plant cells, we hypothesized that cleavage effi-
ciency could be predicted in exogenous genes in A. thaliana. We obtained the CSsite 
values of the Firefly luciferase (F-luc) gene, which was inserted into the A. thaliana 
genome (DRA009373) [11, 22]. Because ribosome profiling information for the F-luc 
gene was lacking, we used a model constructed using only sequence information 
(Fig. 10). We predicted CSsite values in F-luc RNA and calculated the Pearson’s corre-
lation coefficient between measured and predicted CSsite values. The prediction accu-
racy was r = 0.71 (Fig. 11). These results suggest that the selected features for CSsite 
values in the LASSO regression model are reliable, and RNA cleavage efficiency at 
the site level in both endogenous and exogenous genes can be predicted using only 
sequence information in A. thaliana.

Conclusions
We conducted feature selection using the LASSO regression model in A. thaliana. The 
model revealed the significance of the effect of multiple determinants on cleavage effi-
ciency at each site, and suggests that whole RNA features are important for determining 
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n = 164 features

r = 0.68
n = 43,742 sites

Fig. 10  Prediction of the CSsite value using the LASSO regression model (only sequence information). The 
model was constructed using training data, and Pearson’s correlation coefficient was calculated using test 
data. The X-axis indicates the measured CSsite values in TREseq and the Y-axis indicates the predicted CSsite 
values in the LASSO regression model. Histograms above and to the right of each plot show the distribution 
of measured and predicted CSsite values, respectively
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cleavage efficiency in addition to features around the cleavage sites. The selected fea-
tures in the LASSO regression model were validated using a different method, and this 
model could predict cleavage efficiency in both endogenous and exogenous genes using 
only sequence information. These results indicate that mathematical models can predict 
cleavage efficiency at the site level in transgenes in plants, providing new insight into the 
importance of sequence features for RNA degradation mechanisms in A. thaliana.
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