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Background
Phytopathogens are a major threat to global crop production. The fungal phytopatho-
gen Magnoporthe oryzae that causes cereal blast is responsible for around 30% of rice 
production loss and has now emerged as a pandemic problem on wheat [1] The oomy-
cete Phytophthora infestans causes losses of around 6 billion USD to potato production, 
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annually [2]. The bacterium Ralstonia solanacearum has a wide host range and can 
cause loses of over 30% in potato, banana and groundnut [3]. The incidences of crop 
disease are increasing, global climate change and agricultural practice are expanding the 
geographical range of pathogens and upping the stakes in the evolutionary arms race. 
Effector proteins are the shock troops of infection, manipulating the host at the infec-
tion interface to the pathogens advantage. Identifying and characterising a pathogen’s 
effector content is a critical first step in understanding diseases and developing resist-
ance, but effectors are notoriously difficult to characterise from sequence data. In most 
phyla they have only a few easily determined sequence characteristics (some in fungi 
are cysteine rich or have a MAX motif, some in oomycetes have the RXLR motif or WY 
fold) but in many cases no sequence identifiers are known [4]. Characterising effectors 
requires painstaking molecular experimental work and genome-scale approaches have 
relied on complex computational pipelines with in-built a priori assumptions about 
what might constitute an effector sequence in the absence of sequence features known 
to group them [5]. To understand infection processes, to provide genome-level under-
standing of the functions of this important class of genes and to develop future disease 
resisting crop varieties there is a need to identify effectors computationally from genome 
and protein sequence data.

Machine learning (ML) algorithms are a general group of techniques most often used 
for classification of data into groups. Supervised ML require a set of training examples 
and associated data with which to learn. Defining the best data to use and collect, called 
feature selection is an important and difficult prerequisite. ML approaches have been 
applied with success to biological sequence analysis, particularly in transcription factor 
binding site prediction, for the classification of eukaryote and bacterial nuclear proteins 
[6] and in the plant pathogen domain work by Sperschneider et  al.  [7] developed two 
ensemble-based machine learning models that could identify effectors and predict local-
isation with > 70% accuracy [8, 9].

Deep learning models are distinct from other machine learning processes in that pre-
selection of important features is far less critical and the models can learn these features 
unsupervised from training data [10]. This property removes the need to know which 
properties of a data set must be examined before data collection begins. The Deep learn-
ing models can therefore classify on properties not necessarily known to the operator 
and could be used to uncover cryptic patterns in data. Convolutional neural networks 
(CNNs) are a type of neural network that have found wide application in numerous 
machine vision problems, including image object classification and facial identification 
[11, 12], in time-series data analysis [13] and natural language processing [14]. In the 
biomedical domain they have been used in drug discovery [15] and gene network pre-
diction [16]. In studies with bacterial type III secreted effectors Xue et al. developed an 
accurate CNN classifier for bacterial sequences [17]. CNNs encode information about 
the features used to classify that can be extracted and interpreted. In a sequence clas-
sification problems this means they have the potential to reveal novel sequence features 
that other bioinformatics approaches have not and could be of particular utility when 
analysing sets of effectors.

Deep learning approaches require positive and negative examples from which to 
learn. We used a list of sequences annotated as an effector or not. It is generally held 
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and expected that he larger and more accurate the list the more sensitivity a model can 
obtain. It is critical that training examples are experimentally verified effectors. Much 
of the effector annotation in public genomics databases is from computational predic-
tions of genomics and is therefore of experimentally unverified hypothetical effectors. 
A good source of experimentally verified data is in the Molecular Plant Microbe Inter-
actions (MPMI) literature and The widest ranging manual curation of MPMI papers is 
being performed as part of the PHI-Base [18] database strategy, PHI-base is an expertly 
curated database of genes proven experimentally to affect the outcome of pathogen host 
interactions and is therefore an excellent source of reliable effector sequences.

Here we use combinations of CNNs that do not rely on a priori feature selection to 
classify experimentally verified effectors and non-effectors in three taxa of plant path-
ogen: bacterial, fungal and oomycete. We show that these have very strong predictive 
power, can outperform existing effector prediction methods in accuracy and a better 
balance of sensitivity and specificity. We also analyse the activations of the models in 
response to effectors and non-effectors to gain insights into the sequence features that 
are allowing classification. We have produced an R package that will allow other scien-
tists to easily classify their own sequences of interest, available at https://​ruthkr.​github.​
io/​deepr​edeff.

Sequence data were collected from the PHI-Base database version 4.8 [18] by access-
ing a text dump of the data prepared on request by the PHI-Base team, the file can be 
accessed at https://​github.​com/​PHI-​base/​data/​blob/​master/​relea​ses/​phi-​base_​curre​nt.​
csv. The pipeline in Fig. 1 outlines the steps used. We filtered plant effector proteins and 
their taxonomic groups and collected sequences from UniProt Release 2019_05, using 
the code in https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​ction/​blob/​master/​
scrip​ts/r-​scrip​ts/​getti​ng-​data-​new/​binary-​class/​0001_​first_​step_​getti​ng_​data.​Rmd. We 
created a correspondingly sized data set of non-effectors with secretion signals originat-
ing in species matched to those from which the effectors were drawn. We downloaded 
sequences for randomly selected proteins matching these criteria from Ensembl data-
bases [19]: specifically Ensembl Fungi, Protists and Bacteria manually using the BioMart 
tools [20]. Since the BioMart tool is not available on Ensembl Bacteria, we downloaded 
whole proteome protein sequnces from species matched to those from which the effec-
tor came using FTP. With these we used SignalP 3.0 [21] in order to filter the secreted 
sequences and selected accordingly. We used default paramaters from SignalP, except 
the type of organism group which is euk for both fungi and oomycete sequences, and 
gram- or gram+ for bacteria sequences. Redundant sequences were filtered using 
BLASTp [22]. We achieved these steps using the code in https://​github.​com/​TeamM​
acLean/​ruth-​effec​tors-​predi​ction/​blob/​master/​scrip​ts/r-​scrip​ts/​getti​ng-​secre​ted-​data/​
0005_​proce​ss_​signa​lp_​data.​Rmd.

Encoding and subsetting sequences

The sequences collected were encoded using either one-hot encoding (CNN-LSTM 
based models) or integer based encoding (CNN-GRU-LSTM models). Sequences were 
post-padded with zeroes to bring the vectors to identical lengths to each other and the 
longest sequence in the taxon data set. The longest sequence for bacteria, fungi, and 
oomycete are 2574, 4034, and 934, respectively. Encoded sequences were split into 

https://ruthkr.github.io/deepredeff
https://ruthkr.github.io/deepredeff
https://github.com/PHI-base/data/blob/master/releases/phi-base_current.csv
https://github.com/PHI-base/data/blob/master/releases/phi-base_current.csv
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-data-new/binary-class/0001_first_step_getting_data.Rmd
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-data-new/binary-class/0001_first_step_getting_data.Rmd
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-secreted-data/0005_process_signalp_data.Rmd
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-secreted-data/0005_process_signalp_data.Rmd
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random taxon specific training, test and validation sets at a 60%, 20%, 20% split respec-
tively as described in code at https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​
ction/​blob/​master/​scrip​ts/r-​scrip​ts/​getti​ng-​secre​ted-​data/​0008_​split_​and_​encode.​Rmd.

Model training

We trained four model types on each taxon specific sequence set: CNN-LSTM, CNN-
GRU, LSTM-Embedding, GRU-Embedding. We trained each model using a basic ran-
dom hyperparameter setting initialisation step followed by hyperparamter scans. All 
models were implemented in Python 3.6.9 [23] using the deep learning API Keras 2.2.4 
[24] with the Tensorflow 1.12.0 [25] backend, using NVIDIA GK110GL Tesla K20c 
GPUs and AMD Opteron(TM) Processor 6272 CPUs with 128 GB RAM.

Hyperparameter scans

Hyperparameter scans were performed using random search, a hyperparameter optimi-
zation method where each hyperparameter setting is randomly sampled from a distribu-
tion of possible hyperparameter values [26]. Hyperparameters to vary were selected as the 
ones generally known and expected to have strongest effect. We used RandomSearchCV(), 
the implementation of random search in scikit-learn 0.19.2 [27] together with 

Fig. 1  Workflow diagram for collection of effector sequences from the PHI-Base database annotation and 
cross reference to UniProt

https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-secreted-data/0008_split_and_encode.Rmd
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/scripts/r-scripts/getting-secreted-data/0008_split_and_encode.Rmd
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KerasClassifier() which is an implementation of the scikit-learn classifier API for keras. 
Code for this can be found in https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​ction/​
tree/​master/​scrip​ts/​python-​scrip​ts/​hyper​param​eter-​scan-​scrip​ts. All model training was 
performed as described in section Model Training.

Fine tuning

Fine tuning was performed manually using keras 2.2.4 together with metrics module 
and KFold cross validator from scikit-learn 0.19.2. Scripts implementing the tun-
ing can be found at https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​ction/​tree/​mas-
ter/​scrip​ts/​python-​scrip​ts/​manual_​tune_​scrip​ts. Five-fold cross validation was used in all 
instances.

Model classification correlation

We calculated correlations between the classifications from best performing models on 
the hold-out test data set using Pearson’s correlation co-efficient on the 1/0 classification 
vectors.

Ensemble functions

We computed an aggregate classification using two different ensemble functions, weighted 
average and an overall majority option.

Weighted average is computed as

where wi is the weight, yi is the prediction value of the ith model, and n is the total num-
ber of model. In our case, we use the accuracy of each model as the average.

Overall majority is computed as

where

Metrics

We used the following calculations for different accuracy metrics in our evaluations, spe-
cifically: accuracy, sensitivity, specificity. TP , TN  , FP , and FN  refer to the number of true 
positives, true negatives, false positives and false negatives, respectively.

Accuracy ( Acc ) is the ratio between correctly classified non-effectors and effectors and all 
samples:

Sensitivity Sn is the ratio between correctly predicted as effectors and all effectors:

(1)ȳ =

∑n
i=1 wiyi

∑n
i=1 wi

,

(2)ỹ = argmax(x1, x2, . . . , xn),

(3)y =

{

1 for ỹ > 0.5

0 for ỹ ≤ 0.5

(4)Acc =
TP + TN

TP + TN + FP + FN

https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/hyperparameter-scan-scripts
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/hyperparameter-scan-scripts
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/manual_tune_scripts
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/manual_tune_scripts
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Specificity ( Sp ) is the ratio between correctly predicted as non-effectors and all 
non-effectors:

F1-score is the harmonic average of the precision and recall:

Activation map analysis

To visualise the regions of the sequences that the models were using to discriminate 
between effector and non-effector we adapted a Grad-CAM (Gradient-weighted Class 
Activation Mapping) approach [28]. We extracted the convolutional layer convd_1 and 
computed the gradient of the model output with respect to the output of convd_1. The 
feature map was weighted by every channel and mean result taken. All activation maps 
were summed, normalised and smoothed using Fourier analysis. We used tensorflow 
1.12.0 to compute the activation maps and discrete fourier transform (numpy.fft) 
from numpy 1.17.3 to smooth the result. The code we used for computing and visu-
alising these heatmaps can be found at https://​github.​com/​TeamM​acLean/​ruth-​effec​
tors-​predi​ction/​tree/​master/​scrip​ts/​python-​scrip​ts/​heatm​aps .

Effector prediction software and training data

To test the performance of our models against commonly used tools we used DeepT3 
version 1 [17] and EffectiveT3 version 1.0.1 [29] for bacterial sequences. Effector P Ver-
sion 1.0 and 2.0 [8, 9] for fungal sequences and EffectR [30] for oomycete sequences. All 
the models publish the datasets used to train the models or some examples. We used 
positive training examples (effector sequence examples) in the comparisons we per-
formed. EffectorP provides three different positive datasets (training, test and hold-out 
validation) for EffectorP 1.0 and 2.0 at http://​effec​torp.​csiro.​au/​data.​html. EffectiveT3 
provides a training set at https://​effec​tors.​csb.​univie.​ac.​at/​sites/​eff/​files/​others/​TTSS_​
posit​ive_​train​ing.​faa. DeepT3 provides three sets, a non redundant Pseudomonas syrin-
gae effector dataset, a training dataset and a test data set at https://​github.​com/​lje00​
006/​DeepT3/​tree/​master/​DeepT3/​DeepT3-​Keras/​data. EffectR uses 6 RXLR oomycete 
sequences described in [2] as examples rather than as a training set, namely PexRD36, 
PexRD1, ipi01/Avrblb1, Avr1, Avr4, and Avr3a . All these sets were used in their respec-
tive tools with default settings.

Software implementation

To make our models useful for developers in their own analytic pipelines we have 
provided an R package that provides a useful interface to the models. The package 

(5)Sn =
TP

TP + FN

(6)Sp =
TN

TN + FP

(7)F1 =
2TP

2TP + FN + FP

https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/heatmaps
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/scripts/python-scripts/heatmaps
http://effectorp.csiro.au/data.html
https://effectors.csb.univie.ac.at/sites/eff/files/others/TTSS_positive_training.faa
https://effectors.csb.univie.ac.at/sites/eff/files/others/TTSS_positive_training.faa
https://github.com/lje00006/DeepT3/tree/master/DeepT3/DeepT3-Keras/data
https://github.com/lje00006/DeepT3/tree/master/DeepT3/DeepT3-Keras/data
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and installation instructions are available from GitHub https://​ruthkr.​github.​io/​deepr​
edeff and CRAN https://​cran.r-​proje​ct.​org/​packa​ge=​deepr​edeff

Results
Sequence collection

The performance of the trained classifiers is dependent on the quality of the input 
training data, so it was important that we collected as high a quality set of anno-
tated effectors as possible. To this end we used PHI-Base [18] as our primary 
sequence origin. Sequences in PHI-Base are human curated from the literature 
and have therefore been noted in experimental studies. They do not derive from 
large scale annotations or contain hypothetical or predicted proteins. This attrib-
ute makes it ideal for our purposes as the effectors in PHI-Base are those that have 
been specifically reported as such in the published literature and are not of the class 
of sequences that are merely suspected of being effectors on the basis of carrying 
a secretion signal. To collect effector sequences we parsed a whole database text 
dump of version 4.8 https://​github.​com/​PHI-​base/​data, all proteins marked as plant 
pathogen effectors were filtered and we used the IDs and UniProt IDs to collect the 
protein sequences from PHI-Base or UniProt if PHI-Base stored only the ID (see 
Fig. 1. The sequences and IDs retrieved can be seen in the data file in this manu-
script’s repository https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​ction/​
blob/​master/​data/​getti​ng-​data-​new/​binary-​class-​data/​effec​tor_​data.​csv. Effector 
sequences were then divided into taxonomic groups as bacterial, fungal or oomy-
cete derived accordingly. In total 190 bacterial effectors from 13 species were col-
lected, 97 fungal effectors from 16 species were collected and 85 oomycete effectors 
from 6 species were collected (Table  1). The species and effector count in each 
group can be seen in Additional file 1: Tables S1-S3.

Sequences for non-effector, secreted proteins were collected using a similar pipe-
line. Randomly selected proteins from each species carrying secretion signals were 
extracted from Ensembl databases using the BioMart tool. For each species noted in 
Additional file 1: Tables S1-S3 we collected from either the same strain or species an 
identical number of non-effector, secreted proteins to that in the effector set. This 
gave us a balanced data set of effector proteins as positive learning examples and 
non-effector secreted proteins as negative learning examples. Figure  2 summarises 
the process of building the non-effector set, and the full set of sequences and IDs 
retrieved can be seen in the following data file https://​github.​com/​TeamM​acLean/​
ruth-​effec​tors-​predi​ction/​tree/​master/​data/​secre​ted_​data.

Table 1  Count of effectors listed in publications curated by PHI-Base used in this study in three 
major plant pathogen groups

Pathogen group Species Effectors found

Bacteria 13 190

Fungi 16 97

Oomycete 6 85

https://ruthkr.github.io/deepredeff
https://ruthkr.github.io/deepredeff
https://cran.r-project.org/package=deepredeff
https://github.com/PHI-base/data/blob/master/releases/phi-base_current.csv
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/data/getting-data-new/binary-class-data/effector_data.csv
https://github.com/TeamMacLean/ruth-effectors-prediction/blob/master/data/getting-data-new/binary-class-data/effector_data.csv
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/data/secreted_data
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/data/secreted_data
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Model selection and training

In order to identify a useful classifier we took a randomised hyperparamter search 
over some likely base model architectures. We selected four base architectures on 
which to build models for learning. Two of these contained Convolutional Neural 
Network (CNN) layers followed by either a Long Short Term Memory Layer (LSTM) 
or a Gated Recurrent Unit (GRU), two contained an Embedding Layer followed by the 
LSTM or GRU. All models had fully-connected dense layers after this. See Fig. 3.

We defined a range of values for the hyperparameters that could be optimised in 
each architecture, 10 for CNN-LSTM, 12 for CNN-GRU, 9 for LSTM-Embedding and 
9 for GRU-Embedding. To test all combinations of values in these ranges would take a 
prohibitive amount of processor time, so we selected 50 sets of values for each model 
in each taxon at random to start training, 3000 models in total. Model variants within 
the hyperparameter search were assessed by comparing accuracy values on the devel-
opment validation fraction of the training data. Other hyperparameters were fixed 
and are listed in Additional file 1: Table S5. For each model type and taxon training 
data combination we selected the hyperparameter set giving highest accuracy on the 
validation fraction. From this we had twelve candidate models to develop further.

Fig. 2  Workflow diagram for collection of secreted non-effector sequences from Ensembl Bacteria, Fungi, 
and Protists
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We then manually ran and checked the accuracy and loss of the twelve models on 
the training and validation sets to investigate instances of overfitting and assess gen-
erality. Smaller models are less likely to overfit data, so we investigated the effect of 
regularization rate, filter count and kernel size on the progress and accuracy of the 
model as we reduced the size. Parameters varied in this phase are listed in S6. Final 
selected hyperparameter settings for models in each taxon can be seen in Additional 
file 1: Table S7. The values of accuracy and loss of each model produced are shown in 
Table 2. We found that by reducing the number of kernels on all models from 2 to 1 
and the number of filters reduced from 32 to 16 we removed apparent overfitting and 
retained high accuracy, with training completing in 40 epochs.

Final training progressions for each model in each taxon can be seen in Fig. 4. We 
tested the finalised models on the hold-out test fraction of the data that had not been 
previously seen, for the four bacterial sequence trained models we had accuracies in 
the range 93.4 to 97.4, for the four fungal models we observed accuracy in the range 
60.5 to 84.2 and for the four oomycete models we observed accuracy from 64.7 to 
82.3, reported in Fig. 5. All the models we generated had high statistical power and 
can accurately and reliably classify effectors from other secreted proteins in that 
taxon.

A

B

C

D

Fig. 3  Overview of model architectures tested in this analysis, A CNN-LSTM model; B CNN-GRU model; C 
LSTM-Embedding model; D GRU-Embedding model



Page 10 of 22Kristianingsih and MacLean ﻿BMC Bioinformatics          (2021) 22:372 

The final twelve models were saved into HDF5 objects and stored in the repository 
at https://​github.​com/​TeamM​acLean/​ruth-​effec​tors-​predi​ction/​tree/​master/​data/​final_​
model_​hdf5.

Model characteristics

We examined the tendency of the models to call false positives or false negatives prefer-
entially by creating confusion matrices of the classifications relative to the ground truth 
on the hold-out test data. The bacterial sequence trained models in general showed high 
accuracy and only one or two miscalls with no error bias except for the GRU-Embed-
ding model which called five from 38 effectors as non effectors. The fungal sequence 
trained models were less accurate overall and showed a small amount more bias, again 
in the GRU-Embedding model, which was biased towards calling effectors as non-effec-
tors and the CNN-LSTM model which was slightly biased in the opposite direction, 
calling non-effectors as effectors. The oomycete models were again quite balanced but 
the GRU-Embedding model showed a quite conservative tendancy calling 12 out of 17 
effectors as non-effectors whilst getting all 17 non-effectors correct. Overall the models 
are accurate and show little to no bias toward false positive or false negatives, with the 
exception of the GRU-Embedding type. In oomycete sequences in particular and in this 

Table 2  Accuracy and loss values from best performing parameters values for each model

Group Data set Model Accuracy Loss

Bacteria Training CNN-LSTM 0.917 0.334

Bacteria Training CNN-GRU​ 0.965 0.148

Bacteria Training LSTM-Emb 0.978 0.129

Bacteria Training GRU-Emb 0.947 0.202

Bacteria Validation CNN-LSTM 0.855 0.377

Bacteria Validation CNN-GRU​ 0.947 0.205

Bacteria Validation LSTM-Emb 0.934 0.232

Bacteria Validation GRU-Emb 0.895 0.385

Fungi Training CNN-LSTM 0.907 0.362

Fungi Training CNN-GRU​ 0.814 0.434

Fungi Training LSTM-Emb 0.771 0.505

Fungi Training GRU-Emb 0.788 0.484

Fungi Validation CNN-LSTM 0.526 0.923

Fungi Validation CNN-GRU​ 0.579 0.799

Fungi Validation LSTM-Emb 0.711 0.504

Fungi Validation GRU-Emb 0.842 0.468

Oomycete Training CNN-LSTM 0.657 0.626

Oomycete Training CNN-GRU​ 0.833 0.429

Oomycete Training LSTM-Emb 0.863 0.314

Oomycete Training GRU-Emb 0.706 1.487

Oomycete Validation CNN-LSTM 0.735 0.761

Oomycete Validation CNN-GRU​ 0.618 0.677

Oomycete Validation LSTM-Emb 0.588 0.910

Oomycete Validation GRU-Emb 0.500 1.486

https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/data/final_model_hdf5
https://github.com/TeamMacLean/ruth-effectors-prediction/tree/master/data/final_model_hdf5
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class of model across the different sequence types showed itself to tend to call real effec-
tors as not of that class.

Classification correlations between the different model architectures were high 
and positive in the bacterial sequence trained model’s calls, in the range 0.8 to 0.88, 
see Fig.  6. CNN-GRU and LSTM-Embedding showed identical prediction sets. We 
observed similar levels of correlation in the CNN-LSTM, GRU-Embedding and CNN-
GRU fungal sequence trained model, in the range 0.79 to 0.9 ; though there was a sig-
nificantly lower range of correlations with the LSTM-Embedding which were in the 
range 0.36 to 0.51. The models trained on oomycete sequences all showed this lower 
range of correlations, in the range 0.30 to 0.65. The higher correlation across bacte-
rial trained models is likely from a mixture of the larger training set size and a greater 
uniformity of the sequences themselves. For the fungal sequence trained models we 
can see that the LSTM-Embedding model does not perform as well as the others. 
The oomycete sequence trained models all show a lower range correlation reflecting 
the likely less uniform and smaller training set. It is clear that, particularly for the 

A

B

C

Fig. 4  Training trajectories showing Accuracy and Loss over 40 epochs for four model types on A Bacterial 
sequence training set; B Fungal sequence training set; C Oomycete sequence training set
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fungal and oomycete models, each architecture is capturing separate aspects of the 
sequences and classifying on those with slightly varying levels of success.

Ensemble models

We examined the usefulness of combining the predictions of the different model archi-
tectures using an ensemble function that takes the vectors of classifications of each 
model architecture as input. We performed the classification of the hold-out test data 
set using the ensembled models and the results can be seen in Fig. 7. With the models 
trained in bacterial sequences we observed an increase in classification accuracy over 
the best model, up to 0.99 for both ensemble functions. However, with the fungal and 
oomycete models we observed decreases relative to the best single model in both cases 
due to the higher accuracy of the CNN-LSTM model being diluted by the combined 
inacuracy of the other model architectures. Examining the overlaps in classifications 
between the CNN-LSTM and CNN-GRU/LSTM-Embedding respectively showed that 
the two lesser performing models were not simply predicting subsets of the CNN-LSTM 
model, in both cases the lesser models were able to identify three effectors correctly that 
were missed by the generally stronger models. This indicates that the weaker models 
may be classifying on some patterns missed by the CNN-LSTM model.

Comparison with other classification software

Given the accuracies of the above we selected the ensemble bacterial model and the 
CNN-LSTM fungal and oomycete models to evaluate the performance of our models 
against widely used effector identification software. We compared against predictions 
from the bacterial effector prediction programs DeepT3 [17] and EffectiveT3 classifi-
cation module for plant-associated bacteria 1.0.1 [29], the fungal effector prediction 
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programs EffectorP 1.0 and 2.0 [8, 9] and the oomycete effector predictor EffectR [30]. 
Each comparison was carried out using the respective hold-out test sequence set for 
each taxon. For all taxa we observed greater Accuracy and F1 scores from our models 
than the established software, as shown in Fig.  8. This was particularly marked in the 
F1 score, which incorporates a measure of the incorrect calls. Absolute improvements 
were up to 15 % in bacterial sequences, 15 % in fungal sequences and 20% in the oomy-
cete sequences. The confusion matrices in Fig. 9 show that accuracy and F1 score was 
compromised in all the established tools by the tendency of them all to misclassify true 
effectors as not effectors. All the established software classifiers we tested show lower 
sensitivity than the models we have developed here.

We also evaluated the deep learning models we have developed on the training 
and hold-out validation sequences used to train the previous methods. We calcu-
lated the proportion of the effectors in the training set that the tools could find on 
their respective training and validation sets, according to availability. The bacterial 
tools EffectiveT3 and DeepT3 showed lower proportion found than our Ensemble 
Weighted model, as in Fig 10A, consistent with the observation that our Ensemble 
Weighted model performed more strongly on the validation set that we generated. 
Interestingly, both versions of EffectorP found a greater proportion of the effec-
tors in the EffectorP provided training sets than our CNN-LSTM model, but in the 
unseen validation data provided with EffectorP 2, all three models performed identi-
cally (Fig. 10B). The EffectorP 1 and 2 scores on validation data are well below the 
scores for the training data, a result that is usually interpreted as being evidence of 
an overfitted and less generalisable model. Our CNN-LSTM model for fungi showed 
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similar scores across the training and validation set indicating a greater generability 
and equivalent power. Only six effector sequences are provided as examples with 
the oomycete specific effector finder effectR. As this is not a trainable model in the 
same sense as the others, no large training set is needed. We attempted classifica-
tion with these and effectR was able to classify 5 of the 6, whereas our CNN-LSTM 
model for oomycetes classified 3 of the 6 (Fig. 10C).

Overall, our models performed more strongly than the previously available ones 
tested across the range of sequences examined.
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Convolution heatmaps

An advantage of CNNs relative to other deep neural networks is their relative interpreta-
bility. A CNN can be analysed and activation maps extracted which highlight the regions 
of the input to which the CNN is most strongly relying on to classify. To examine the 
responses of the models, we ran all sequence data sets back through the CNN-LSTM 
models for each taxon and extracted the network activations using the GRAD-CAM 
method. The profiles were smoothed using FFT and examined, (see Fig.  11 ). All the 
models showed a peak of activation at the N-terminus of the sequences, coincident with 
expected positions of secretion signals. The fungal sequences created a single broad acti-
vation region with a width of 50 to 100 amino acids while the bacterial and oomycete 
sequences create a some smaller grouped peaks in a broader region which were each 
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around 20 amino acids. We examined further the sequences under the largest peaks, 
specifically for bacterial sequences we used amino acids 25 to 50, for fungal sequences 
we used amino acids 35 to 80 and for oomycete sequences we used amino acids 15 to 
40. Compositional analysis of the sequence under the peaks showed no apparent pri-
mary sequence conservation or motifs as shown in the logo plots in Fig. 11 even within a 

Table 3  Enrichment analysis of amino acid types

Proportions of each amino acid type in the activation region of All Sequences: Effector Sequences, with (Probability). 
Probability by hypergeometric test of the observed number of amino acid type in the region of activation in effector 
sequences in our compiled sequence set relative to a background of the same region in all sequences in that taxon

Taxon Hydrophobic Polar Neutral Basic Acidic

Bacteria 0.44 : 0.40 (0.00) 0.26 : 0.28 (0.00) 0.09 : 0.09 (0.20) 0.11 : 0.13 (0.00) 0.09 : 0.09 (0.16)

Fungi 0.39 : 0.38 (0.06) 0.29 : 0.28 (0.08) 0.09 : 0.09 (0.29) 0.13 : 0.14 (0.00) 0.10 : 0.11 (0.26)

Oomycete 0.44 : 0.43 (0.01) 0.28 : 0.27 (0.00) 0.07 : 0.08 (0.00) 0.10 : 0.10 (0.07) 0.10 : 0.12 (0.00)
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Fig. 11  Grad-CAM activation profiles of CNN-LSTM models when run with all datasets showing the region 
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taxon and data set. Enrichment analysis of different amino acid categories showed some 
statistically significant ( p < 0.05 ) changes in proportions of amino acid types relative 
to the whole set of sequences in the activated regions (Table 3). Bacterial effectors are 
depleted of hydrophobic amino acids and enriched in polar and basic amino acids. Fun-
gal effectors are enriched in basic amino acids, with no other differences. The oomycete 
effectors are most interesting in that their activating regions are depleted in hydrophobic 
and polar amino acids while enriched in neutral and acidic amino acids.

Discussion
We have compiled a set of known experimentally validated effectors from phytopatho-
genic bacteria, fungi and oomycetes and used them as positive training examples with 
which to tune a range of CNN classifiers, the sequences are all taken from the database 
PHI-Base, a manually curated database that aims to search all the literature on patho-
gen and host interactions [18]. The data in PHI-Base is complete as far as 2013 at the 
moment, thus the phytopathogen effectors we have collected should be all those shown 
experimentally to have an effect on a host that have been reported on since that time. 
We chose this set as we believed that this would give us the most reliable and unbiased 
set of effectors on which we could train learners. That is not to say that the set itself can-
not be biased and that the set does not introduce any bias into the classifications of our 
learners. Sources of bias in our sequence set include the time limits on what has so far 
been included in PHI-Base, any effectors known but not reported on in this seven year 
time period cannot be represented in the models. The species of phytopathogens rep-
resented in the set also create bias, the effectors are not selected from species sampled 
proportionally or randomly but instead are those that trends in effector research over 
the last seven years have brought to focus. In particular, species that have had genome 
sequencing projects over this time are over-represented. There may also be some echoes 
of other methods previously applied, effectors studied experimentally must be identified 
first as hypothetical effectors, usually with the aid of computational tools whose models 
are themselves biased towards the sort of sequence that we already know. The effectors 
in the literature may therefore be enriched with respect to known features and results 
from classifiers should be interpreted with this in mind. We are not easily able to quan-
tify any bias, but the greater generalisability of our models over the others tested gives us 
reason to believe that the sequence set trained on was broad enough for good models to 
be developed.

A common misconception of deep learning models is that training datasets need to 
be extremely large, this is only half true. In fact, in practice training data need only to be 
large with respect to the model size. Here we have coupled small data sets (tens or hun-
dreds of training examples) with small models. The layers and architectures of the mod-
els presented here are much smaller than those typically used in large machine vision 
projects for example. Yet the small models remain useful and have predictive power, 
indicating a definite role for deep learning approaches in the work of bioinformaticians 
without truly massive datasets.

Training the models proved to be computationally expensive, the architectures used 
have a large number of parameters and hyperparameters to be optimised (see Additional 
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file 1: Table S4 for a breakdown) and although only a small fraction of the possible hyper-
parameter and parameter space was explored we compared 3000 models, at a run time 
of around 144 minutes for CNN-LSTM, 57.2 minutes for CNN-GRU, and 45 minutes 
for both GRU Embedding and LSTM Embedding. For these relatively small data sets, a 
significant amount of specialised GPU compute power was required.

The models we created performed exceptionally on the PHI-Base hold-out validation 
data set of phytopathogenic effector sequences. The greater than 80% classification accu-
racy for the fungal and oomycete models is an excellent accuracy on such sequences and 
our models outperformed the other classifiers tested by large margins on the PHI-Base 
fungal, no other machine learning method has been reported to have performed as well 
on phytopathogen sequences. The greater than 97% accuracy we observed in our model 
trained on bacterial phytopathogen effectors is also exceptional and similar to what Xue 
et al.  [17] showed in human bacterial pathogen effectors. When we evaluated the pro-
portion of effectors each of our and other classifiers could find in data used to create the 
other classifiers, we found that our bacterial model outperformed the bacterial models 
again. A slightly different picture emerged when we compared our method with Effec-
torP 1 and 2 on fungal data. Both versions of Effector P outperformed our model on 
training data used to create Effector P in the first instance but identical predictions were 
made by all fungal classifiers on the validation set provided by Effector P 2. This was 
coincident with a large drop in accuracy from training to validation data by Effector P 
1 and 2. Combined with observations on our PHI-Base data on higher numbers of false 
positives from Effector P, we conclude that Effector P is over-fitted slightly on its training 
data and that our model is likely to be more generally accurate. We expect that the tools 
used in concert will provide very good classification and prediction of fungal effectors. 
Our model also performed worse on the data used to test the untrained heuristic oomy-
cete RXLR sequence detector EffectR, finding three of six, relative to EffectR’s five of six. 
This is likely due to the six test sequences being exclusively RXLR and our model being 
trained on effectors in general, the presence of RXLR not being diagnostic of effector-
ness in our model means Researchers hoping to find exclusively RXLR containing pro-
teins would be advised to use EffectR, those hoping to find effectors beyond RXLRs may 
find utility with our oomycete model.

In developing a negative training data set that contained secreted non-effector pro-
teins we hoped to decouple the identification of effector from identification of secreted 
protein as a proxy for effector. We believe that we have been succesful at this, the models 
we developed do identify effectors against a background of secreted proteins, indicating 
that they have some internal representation of what makes an effector different from a 
secreted peptide. By examining the activation maps of the CNN models, we learned that 
the maximum activations in the models remains in the N-terminus of the proteins, coin-
cident with the expected positions of secretions signals and is relatively narrow (about 25 
amino acids. We also noted that there is no typical primary sequence motif that can be 
identified, the identity of the amino acids themselves does not seem important. We did 
find that various categories of amino acid were enriched or depleted significantly in the 
narrow activation region of effectors, relative to the same area of non-effector secreted 
proteins. A favouring of functional properties of the amino acids of the effector over 
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the actual identity may be reflective of the many functional types origins of effectors. It 
may be that the N-terminal activation region in the effectors represents non-canonical 
secretion-compatible signal in the effector proteins. In order to evolve towards a useful 
secretion signal from an arbitrary point it may be enough to have a region that satisfies 
some chemical property that makes it secretable, yet is different enough in effectors to 
separate them from the secreted proteins by a deep learning algorithm.

Finally, we have made our models available in an R package deepredeff - from ‘deep 
learning prediction of effector’. This can be obtained from GitHub as shown in methods, 
installation and usage instructions are available in the documentation provided there. 
The R package allows the user to run the sequences from various sequence format files 
against a selected model and obtain a p value that each sequence is an effector according 
to the model. Various summaries and plots are provided for the user when working on 
large numbers of sequences. The package integrates well with Bioconductor. For those 
wishing to use Python to make use of our models, we provide the models as HDF5 files 
from TensorFlow that can be use in that toolkit.

Conclusions
We used ensemble deep learning models based on convolutional neural networks to 
predict effectors of any class in bacteria, fungi and oomycetes more accurately than any 
previous method. The power of the models in classification comes from a highly-accu-
rate curated dataset of positive effectors and the ability of the neural networks to work 
without feature selection. By not selecting which features we believe would be useful to 
classify upon we have relieved the models from being limited by potentially erroneous 
suppositions by the experimenter. Doing so allowed the models to find patterns in the 
protein sequence that are related to the state of being an effector and classify using them. 
Although the patterns could not be clearly extracted from the internal representations 
of the models our analysis showed that the classifiable segments were primarily in the 
N-terminal 25 most residues of the effector proteins. The resulting tool we developed to 
allow use of the models deepredeff currently outperforms the most widely used effector 
prediction tools on the high quality training data we provided and the data that was used 
to train and assess those other tools.

Availability and requirements

Project name: deepredeff
Project home page: https://​ruthkr.​github.​io/​deepr​edeff
Operating system(s): Platform independent
Programming language: R
Other requirements: None
License: MIT
Any restrictions to use by non-academics: None

https://ruthkr.github.io/deepredeff
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