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Background
The emergence of single-cell RNA-sequencing (scRNA-seq) technologies in the last dec-
ade have provided the scientific community with high-throughput gene expression of 
individual cells within a tissue. This has been fundamental for revealing the molecular 
and cellular complexity of tissues. With these techniques, novel cell types and develop-
mental pathways have been described and have quickly become a standard approach in 
molecular biology [1]. However, the lack of spatial information in scRNA-seq data has 
prompted the rapid development of an increasing number of spatially resolved tran-
scriptomic techniques that aim to characterize cells in situ. Thus far, these approaches 
have aimed to complement single-cell sequencing, but are now starting to be used to 
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answer data driven biological questions. A wide variety of spatially resolved RNA-
based techniques have been developed in recent years using both multiplexed targeted 
approaches as well as unbiased transcriptome wide approaches [2–7]. Due to this diver-
sity, every technique has focused on developing their own analytical tools [8–14] that, 
despite being powerful in performing in depth analysis of certain datasets, are not flex-
ible enough to perform wide data-driven analysis.

Among image-based approaches, in situ sequencing (ISS) [7] has proved to be a pow-
erful targeted approach for capturing the expression profiles of large tissues with subcel-
lular resolution, and has been applied to study a range of biological questions [15–18]. 
The second iteration of ISS, Hybridization-based ISS (HybISS) [19] allows for more ver-
satility and multiplexing capacity further increasing the need for user-friendly tools to 
fit a wider audience. The high-throughput nature of ISS enables the analysis of many 
samples together, adding another level of complexity in terms of cross-sample variation 
analysis and comparisons. As a consequence of the variety of biological questions that 
can be addressed with ISS, diverse analytical tools are required to extract relevant con-
clusions. Although different specific analytical functionalities have been developed to 
explore and visualize ISS datasets [20–24], there is a need for a standardized analysis 
tool that can be used to analyze any kind of ISS dataset. In order to address this need, we 
here describe the MATLAB-based Analysis Toolbox for ISS Expression maps (Matisse). 
Matisse is a user-friendly toolbox designed to facilitate the analysis and interpretation of 
ISS datasets. It includes a wide number of tools that can be tuned and modified in order 
to create personalized and versatile analysis pipelines, able to perform simple analysis to 
more refined approaches.

Implementation
As with most image-based techniques, preprocessed decoded data comes in the form 
of a spot table containing 2-dimensional coordinates for each decoded spot, assigned 
to a specific gene. The input for Matisse requires these positions, and additionally, a 
nuclear staining can be provided to guide cellular segmentation if desired. This input 
will be formatted into a customized MatisseMOD object, which will be used as an input 
in all the functionalities developed in Matisse (Fig. 1). The use of the same object while 
analyzing the data ensures consistency between the analysis and increases the versatil-
ity of the toolbox. A wide number of different analysis can be performed with Matisse, 
including colocalization analysis, Kernel Density Estimation (KDE), and the explora-
tion of gradients for unsegmented datasets, as well as, for example, de novo clustering, 
dimensional reduction, low dimensional RGB representation, probabilistic cell typing 
(pciSeq) [20] and gene co-expression for segmented datasets. Several simple segmen-
tation approaches are also implemented to fit the particularities of each dataset. Some 
of the tools implemented in this toolbox require functions from a previously available 
repository [https://​github.​com/​Moldia/​iss-​analy​sis] which have been incorporated into 
Matisse’s main repository to facilitate its installation.

https://github.com/Moldia/iss-analysis
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Spot quantification

To easily study the amount of reads found in a specific tissue analyzed, the function Plot-
TotalCounts is implemented. Both total counts and relative counts are calculated for all 
samples/region of interest (ROI) studied by counting the number of reads of a specific 
gene found in a sample. The count and frequency matrix are represented in bar plots 
and heat maps, facilitating the interpretation of the results when multiple samples are 
analyzed at a time. This function was implemented based on the code from a previously 
available repository [https://​github.​com/​Moldia/​iss-​analy​sis].

Gene density representation

The expression density of a specific gene can be estimated using the function GeneD-
ensity. Using the location of the reads detected for a gene, Kernel Density Estimation 
(KDE) is used to estimate the expression density of a specific gene through the tissue 
analyzed. The resulting map is represented as a heat map in order to distinguish the dif-
ferent levels of expression found in the sample. This function can be used to analyze 
several genes at a time. On top of that, the function OverlayTwoDensities can be used 
to overlay the density distribution of different genes. These functions are modifications 
from previously available utilities [https://​github.​com/​Moldia/​iss-​analy​sis].

Fig. 1  Schematic representation of the main analysis workflow proposed described in MATISSE. The 
Cartesian coordinates of all reads found in the section analyzed is used to create the initial Matisse object. 
Several functionalities including KDE plots, colocalization analysis, gene quantification and gradient 
identification and analysis can be applied using this object as an input. Data can also be segmented, based 
on the cell boundaries, the location of individual spots or using a grid equally distributed along the section. 
Its output, stored in a second Matisse object, can be used for cell typing and clustering the data, among 
others

https://github.com/Moldia/iss-analysis
https://github.com/Moldia/iss-analysis
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Colocalization

The function Colocalization is used to study the colocalization of genes within a sample 
using a neighborhood enrichment test, similar to the algorithm used to identify proximal 
or interacting cell types used by Dries et al. [25]. For this, a net linking each gene to its 
closest neighbors is created and the number of connections between genes is calculated. 
Depending on the characteristics of the dataset, different numbers of neighbors can be 
specified. To define enrichment or depletion of colocalization, the connections found in 
the experimental data sets are compared to a set of randomized datasets, containing the 
same number of reads and positions as the real data but with shuffled read identities. A 
Z-score will be computed for each pair of genes, computed as follows:

Therefore, for a given gene i, its Z-score will be computed by subtracting the mean 
number of connections found in the simulated datasets to number of connections found 
in the real dataset and dividing the resulting value by the standard deviation of the num-
ber of connections found in the randomized datasets. Using this method, connections 
enriched in the real dataset have a positive Z-score, whereas connections depleted in our 
dataset have a negative Z-score.

Gradient finder

The function Find_gradients is used to identify the main expression gradients found 
in 2D-expression maps. In order to do this, we calculate the kernel density estimation 
(KDE) [26] for every gene in the panel assuming a Gaussian kernel and given a specific 
bandwidth. After that, evenly distributed reference points are positioned through the 
2D-dataset. In order to find the higher variations between the different reference points, 
we calculate both the variation for every spot in the 2 dimensions of the data using:

In this case, the change in expression in one of the axes (G) in a specific spot (x) is the 
summation of the local variation of the n genes analyzed on that specific axis. This varia-
tion is the absolute value obtained by calculating the difference in density (d) of a certain 
gene in two spots oppositely situated at a specified distance (b) from the spot analyzed. 
This will be computed for both the x axis and the y axis, obtaining two values for each 
spot analyzed. These two values will be used to generate a quiver or vector plot, showing 
the direction and intensity of gradients found within the sample.

Gradient analysis

One dimensional gene expression gradients are analyzed using the function gradients. 
Customizable gradients can be studied using this function. Once the function is called, 
we define the origin coordinates of the gradient to consider within the image, as well as 
the size of the region studied. The function calculates the minimum distance of every 
spot to the origin coordinates, distributing all the reads to a 1-dimensional axis, as it 
follows:

Zi =
xi − µ

σ

Gx =

n
∑

i=1

∣

∣dx−b − dx+b

∣

∣
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Therefore, the distance of every read (i) will be the minimum Euclidean distance 
between the analyzed read and any of the reference spots (r). KDE [26] is performed 
based on the location of every gene’s reads in order to obtain the expression density of 
genes studied along the gradient. A heat map showing distance of each spot to the origin 
coordinates and a 1D density plot for the expression density of individual genes is also 
returned as an output.

Data segmentation

Different two-dimensional segmentation strategies are used in order to explore the 
datasets analyzed. Dapi_segmentation, adapted from previously available repositories 
[https://​github.​com/​Moldia/​iss-​analy​sis], can be used to segment individual cells using 
a watershed-based algorithm on a background DAPI image or similar nuclear staining 
image. A top-hat filter is applied to the image to remove the background and enhance 
the nuclei, followed by an intensity threshold that will identify the nuclei. Finally, a 
watershed segmentation is applied, defining individual cells by identifying and expand-
ing the detected nuclear signal. As an output a new mask containing the location and 
identity of all the cells in the tissue is returned. This mask will consider the parts between 
cells as unassigned space and reads located within won’t be assigned to a cell. The func-
tion OverlappingBins is used in order to segment by defining equally distributed bins 
through the 2-dimensional space analyzed and assigning all reads to the bins they were 
in. Finally, the function SpotEnvBin can be used in order to explore the environment of 
each read analyzed by defining a bin around each specific read in the dataset summariz-
ing the number of reads found for each gene in within a certain area.

Principal component analysis and feature selection

Principal components in the dataset are studied using the function principal_compo-
nents, which performs principal component analysis in the desired segmented data-
set. Different cell maps representing the scores of the top 20 principal components 
are created, as well as a heat map representing the loading of gene to those principal 
components. The variation captured in the main principal components is used to per-
form dimensionality reduction by selecting those principal components that one finds 
relevant.

Low dimensional RGB representation

Low dimensional RGB representation is performed by calling the customized function 
LowDimensionalRGB. Different dimensionality reduction approaches are implemented 
within the function, including principal component analysis (PCA), t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Pro-
jection (UMAP). Both PCA and t-SNE are functions implemented in MATLAB, while 
UMAP’s implementation was adapted from Meehan et al. [27]. All dimensionality reduc-
tion implementations need a cell/gene expression matrix as input, including cells found 
in all samples, and returns the loadings of the new dimensions regarding each gene, and 
the score of every cell for the dimensions found. The score of each cell for the three most 

di = min(

√

(xi − xr)2 + (yi − yr)2)

https://github.com/Moldia/iss-analysis
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important dimensions is adjusted to fit into an RGB scale. Individual cells/bins are rep-
resented in a spatial map according to their RGB value.

De novo clustering

De novo clustering requires an initial normalization of the expression matrix obtained 
after segmenting the dataset. This matrix, containing the number of reads of each 
gene in each specific cell, is normalized by the total abundance of each gene, remov-
ing the effect caused by the high expressers in the clustering. Clustering is performed 
using the function Clustering and requires the specification of the number of clusters 
desired. Three different clustering algorithms are implemented, including K-means, 
Hierarchical clustering and DBSCAN [27], returning in all the cases the cluster each 
cell in the dataset has been assigned to. Further analysis of the clusters found can be 
done by representing the mean expression of each cluster, using heatmap_cluster, or 
the expression of all the cells assigned to a certain cluster, using expression_clusters.

Probabilistic cell typing

Performing probabilistic cell typing requires the formatting of the reference scRNA-
seq data in order to obtain the mean expression of each cell type analyzed for the 
genes included in the analysis. This data is incorporated in a matisseMOD object 
using the function load_scRNAseq. Probabilistic cell typing by in  situ sequencing 
(pciSeq), implemented in the function pciseq, requires as an input the matisseMOD 
object summarizing the single cell data and the matisseMOD object containing the 
segmented dataset to cell type. This implementation is adapted from the algorithm 
described in Qian et  al. [16] [https://​github.​com/​kdhar​ris101/​iss] and returns as 
an output the cell type map of the sample analyzed, the probabilities of each cell to 
belong to all cell types, and the gene counts of each cell.

Results
Spatial expression analysis

In order to demonstrate the capacity of Matisse, we reanalyzed the published HybISS 
dataset of a mouse coronal section [15]. A subset of 17 genes, out of the 119 present 
in the original data, were selected for a comprehensive, read-based analysis, of their 
spatial expression in the primary visual cortex (Visp). A main outer-inner gradient 
was found de novo by analyzing the KDE expression profiles of these genes together 
[see Additional file 1], in agreement with the well-known layer-based structure of the 
whole mouse cortex [28] and, in particular, within the Visp. This one-dimensional 
study of the gradient reveals gene expression changes through the different cortical 
layers, with different profiles, from layer-specific markers such as Rorb to general 
excitatory markers spanning all layers such as Slc17a7 (Fig. 2A). Gene colocalization 
can also been explored, showing for example correlations between inhibitory mark-
ers, such as Gad1 and Lhx6, and mutually exclusive expression patterns for excitatory 
and inhibitory markers, like Slc17a7 and Gad1, respectively (Fig. 2B, C).

https://github.com/kdharris101/iss
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Segmented datasets

Matisse includes different segmentation strategies that can be applied to ISS expression 
maps depending on the question addressed and the quality of the data. These strategies 
have been evaluated using the gene expression maps for all the 119 genes in the HybISS 
dataset. To find region-specific expression patterns within tissue sections, adjustable 
bins can be used for segmentation. Here, equally distributed bins with a radius of 250 
pixels and 50 pixels between them were created. Bins outside a range of expression were 
excluded from the analysis as well as low expressed genes that could bias the results [see 
Additional file  2, 3]. The RGB representation of the 3 first UMAP dimensions of the 
dataset revealed main expression differences between the cortex and the hippocampus 
compared to the thalamus (Fig.  2C), as well as a gradual change of expression in the 
outer-inner axis of the cortex. To further study the main expression differences shown in 
different regions of the tissue, PCA was performed, here identifying additional expres-
sion-unique regions [see Additional file 2, 3]. Hierarchical clustering can be performed 
on the binned data to spatially define de novo expression specific regions. As exempli-
fied by using the 119 gene dataset, this resulted in 15 different expression areas (Fig. 2E). 
Main anatomical regions of the brain could be differentiated by their expression, includ-
ing different specific regions within the thalamus; CA1-3 in the hippocampus and dif-
ferent layers within the cortex. Most of the regions defined presented specific markers 
within the panel (Fig. 2F). Regions defined were found conserved between the two hemi-
spheres of the section in most cases, suggesting the relevance of the regions defined.

Integration of single‑cell RNA‑sequencing data

Segmentation of individual cells was performed by DAPI nuclear staining in order to 
explore the cellular diversity. Leveraging scRNA-seq data, pciSeq [20] was applied to the 
dataset in order to spatially map the main cell classes present in the sample, based on the 
expression patterns of the classes described in Zeisel et al. [29]. 14 different classes were 
found in the section analyzed (Fig. 3A). Different relative abundances of the defined cell 
types were found among the spatial domains described in Fig. 2E, varying from close to 
domain-specific classes, like Vascular and Leptomeningeal cells, with a high frequency in 
domain 29 only; to widely spread classes, like telencephalon and mesencephalon excita-
tory neurons. The inclusion of these functionalities, and coupling them in Matisse allows 

Fig. 2  Analysis of the expression of 17 genes in the mouse cortex. A One dimensional KDE estimation of the 
expression of the 17 genes along the dorso-ventral axis of the cortex. Genes are randomly divided in two 
line plots to facilitate their comprehension. B Heat map representing the colocalization between the genes 
analyzed. Positive Z-scores (red) represent colocalization of the genes and negative Z-score (blue) represent 
mutually exclusive expression. C KDE of the expression of several different genes, represented pairwise. 
Different co-expression patterns are represented including mutually exclusive genes (top,left),colocalizing 
genes (down,left), partially colocalizing genes (top,right) and genes with non-related expression patterns 
(down,right). D Two-dimensional map of the bins generated when segmenting the mouse coronal section. 
Color code corresponds to the RGB loadings of each bin’s score on the top three UMAP components found 
when doing dimensionality reduction analysis. Different colors, indicating different loadings for each of 
components are found in different areas of the brain, highlighting the difference in expression found for the 
genes included in the panel. E Two-dimensional map of the bins generated previously, where each color 
represents one of the 15 clusters defined by performing hierarchical clustering on the segmented dataset. F 
Mean expression of each of the clusters defined in E for all the genes included in the analysis. The colors of 
each cluster, on the Y axis, correspond to the colors used in E for each cluster

(See figure on next page.)
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Fig. 3  Probabilistic cell typing of individual cells in a mouse coronal section. A Map of the most probable cell 
type predicted for each cell segmented in the mouse coronal section analyzed. Cells have been classified in 
14 different major classes defined by Zeisel et al. [29] based on the expression levels of all the genes analyzed 
in the ISS experiment. B Heat map representing the mean expression of each gene for the cells assigned 
to each specific class by probabilistic cell typing (pciSeq) normalized the total expression of each gene. 
Differentially enriched genes are found for each of the cell classed identified. C Relative distribution of the 
classes assigned on A for each of the domains defined in Fig. 2E. Domain colors correspond to the colors 
used in Fig. 2E to visualize the domain on each class and cell class colors correspond to the ones used in A to 
represent the most probable cell class assigned to each cell
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the user not only to place the cell types identified by scRNA-seq in a spatial context, but 
also to identify supra-cellular spatial domains with a specific cellular composition.

Integration of datasets from other spatial technologies

To prove that Matisse is able to integrate samples from different image-based spa-
tially resolved transcriptomic technologies, we used cell maps created using osmFISH, 
described in Codeluppi et al. [6] We performed dimensionality reduction on the osm-
FISH dataset, representing each spot with the composite color obtained from transform-
ing their 3 dimensional UMAP scores to RGB (Fig. 4A). We then performed hierarchical 
clustering, identifying a set of 20 clusters (Fig. 4B). Each cluster found exhibited a spe-
cific expression signature and corresponded to specific cell types identified by Codeluppi 
et al. [6] (Fig. 4C, D). We also used Matisse to represent the location of some of the clus-
ters along the dorso-ventral axis of the cortex, identifying different spatial patterns for 
the different clusters along this axis (Fig. 4E, F).

Discussion
Here we describe Matisse, a Matlab toolbox specifically designed for a comprehensive 
initial analysis of ISS datasets. As an example, we have used its main analytical tools to 
better describe the 2-dimensional expression pattern of 119 genes in the whole mouse 
coronal section from Gyllborg et  al. [30]. In addition, we have proved the capacity of 
Matisse to integrate other spatial transcriptomic datasets by analyzing datasets from 
osmFISH.

Matisse summarizes in a toolbox the most important analytical methods applied so 
far to 2-dimensional ISS datasets, and adds to these some new functionalities such as 
colocalization, co-expression, dimensional reduction, feature selection and quality con-
trol tools, that can help in the interpretation of spatial datasets. In contrast with the rest 
of the available packages, Matisse can be used to analyze both segmented and unseg-
mented datasets. This can be extremely useful for tissues where cell segmentation can-
not be achieved, or in sparse datasets, where the number of reads/cell obtained is low, 
and the study of individual cells can be driven by stochastic effects. In the case of func-
tions for segmentation failing to segment individual cells, such as in cell dense rich 
areas, they can be used to identify spatial domains and molecular signatures present in 
the datasets analyzed.

The toolbox also includes some of the most common clustering approaches used for 
the analysis of single-cell datasets, although it lacks other widely used algorithms, such 

Fig. 4  Integration of different spatial technologies to undercover biological patterns using Matisse. A Spatial 
map of the osmFISH dataset, where every cell is colored by an RGB representation of 3 first dimensions of a 
UMAP representation. B Spatial map of the osmFISH dataset, where every cell has been assigned to a cluster 
found by hierarchical clustering. C Mean expression of every gene in the 20 clusters found de novo in the 
osmFISH dataset. D Correspondance between the predicted de novo clusters and cell types assigned to each 
cell in Codeluppi et al. [6]. E Gradient defined in the osmFISH dataset, where the white line represents the 
origin of the gradient and cells are colored depending on the minimum distance from itself to the origin line. 
Blue colors represent smaller distances, whereas yellow colors represent bigger distances. F Kernel density 
estimation of the frequency of 4 specific clusters (4,8,11 and 13) along the one-dimensional axis defined in E 

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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as Leiden or Louvain [31] since they lack an implementation in MATLAB. However, the 
different algorithms included are suitable for an initial exploration of the data. In addi-
tion, we added pciSeq as a supervised cell typing algorithm, which uses the expression of 
cell types characterized via scRNA-seq to classify the cells within a section.

An interesting capacity included in Matisse is the possibility to process several sam-
ples at the same time. Since ISS can be used with low magnification objectives, one can 
interrogate multiple samples in the same experiment in a cost and time-efficient man-
ner. Therefore, tools designed to process ISS datasets should be able to integrate multi-
ple samples in the same analysis. As with other -omic approaches, technical variation is 
expected to occur between samples, due to the origin of the samples, their RNA qual-
ity, or differences in their processing. In this case, harmonization would be required to 
remove the technical variability to resolve cross sample similarities and differences. Due 
to the lack of statistical tools specifically designed for spatially-resolved transcriptomics 
datasets, methods originally designed for other -omics technologies have been adopted 
by the field, especially for comparing spatial-based and scRNA-seq datsets [32]. Within 
Matisse, we have implemented Combat [33], which is a known method designed for 
batch effect correction of RNA sequencing datasets and that, therefore, should be suf-
ficient to correct the batch effects between datasets produced by the same technology 
with similar detection efficiencies of each gene but varying RNA quality. However, using 
algorithms designed for other -omic technologies within spatially resolved approaches 
misses on a key aspect which is the spatial distribution of individual transcripts. It is 
therefore vital for the development of new analytical tools that are specific for image-
based spatial technologies to compare multiple sample datasets.

Despite the increasing amount of analytical tools designed for the exploration of spa-
tially resolved transcriptomics datasets, most of them have been created with the aim 
of performing specific analysis in a precise manner [10], usually compromising the time 
and the versatility of it. Since the number of laboratories using spatially-resolved meth-
ods are increasing rapidly, we believe that apart from specific tools, there is a need for 
fast, versatile, comprehensive and easy to use tools. Therefore, the tools implemented in 
the toolbox presented can be tuned to either run fast and preliminary or for more pre-
cise analysis, intending to help the user to obtain the biologically relevant information 
efficiently.

Matisse has been designed to consider the specific requirements of ISS analysis, such 
as handling large sample areas, processing multiple datasets and dealing with gene pan-
els containing from 50 to 200 genes, its application in the analysis of other kind of data-
sets is also possible, with the only condition of having as an input the position of the 
reads decoded, or the position and expression of individual cells/bins. Despite being 
generated with different chemistries, the nature of all image-based spatially resolved 
transcriptomics methods, resolving individual spots in a spatial context, facilitates their 
convergence on the analysis side. In this sense, the community is moving towards the 
development of tools able to integrate datasets from different sources, both in the pre-
processing [34] and downstream analysis side [25]. This is essential to maximize the 
variety of analytical tools available to analyze these datasets and to minimize the devel-
opment of already existent tools.
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Conclusions
Matisse provides a user-friendly and versatile toolbox to explore ISS datasets which 
can help new users to understand the main biological information captured in an ISS 
experiment. This tool allows the analysis of both unsegmented and segmented datasets, 
exploring different levels of complexity within a dataset in a consistent manner. In addi-
tion, several datasets can be integrated into the same analysis in a comprehensive man-
ner, opening the possibility, thanks to harmonization strategies, of combining spatially 
resolved transcriptomics technologies into the same analysis.

Availability and requirements
Project name: Matisse.
Project home page: https://​github.​com/​Moldia/​Matis​se
Operating system(s): Windows, Linux, Mac OS.
Programming language: MATLAB. Implemented in MATLAB 2019b.
Other requirements: MATISSE requires different MATLAB add-ons, including the 
Bioinformatics and Image Processing Toolbox.
License: GNU.
Any restrictions to use by non-academics: No.

Abbreviations
HybISS: Hybridization-based in situ sequencing; ISS: In situ sequencing; KDE: Kernel density estimation; Matisse: MATLAB 
analysis toolbox for In Situ Sequencing Expression maps; scRNA-seq: Single Cell RNA sequencing; osmFISH: Ouroboros 
single molecule FISH; PCA: Principal component analysis; pciSeq: Probabilistic cell typing by in situ sequencing; tSNE: 
T-distributed stochastic neighbor embedding; UMAP: Uniform Manifold Approximation and Projection.
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Additional file 1:  Coronal brain region selected for analysis and KDE plots. A. Regions of interest (ROI) analyzed 
in Figure 2A (blue) and Figure 2.B-C/Additional file 1.D (yellow) displayed over the DAPI staining from the mouse 
coronal section explored in Gyllborg et al30. B. Regional localization of mouse brain coronal section, indicating the 
approximate location of the regions of interest (ROI) analyzed in Figure 2A (blue) and Figure 2B-C/Additional file 1.D 
(yellow). Image credit: Allen Brain Institute. C. Main gradient found de novo in the mouse coronal cortex ROI  (blue 
square in Additional file 1A), which indicates the different gene expression found between the different layers of the 
mouse cortex. D. KDE plots of 14 of the genes studied in detail in yellow ROI defined in Additional File 1. A grayscale 
color map is used to represent the level of expression of the different genes, where white represents high expression 
while black represents lack of expression.

Additional file 2:  Quality control and principal component analysis of bins in the mouse section. A. Distribution of 
the number of reads found on each bin. Dashed red line indicates the minimum number of reads/cell required and 
dashed green line indicates the maximum number of reads accepted. B. Distribution of the number reads found for 
each gene in the sample analyzed. The dashed red line indicates the minimum number of reads required for a gene 
to be included in further analysis. C. Percentage of variable explained by each principal component found when 
performing PCA on the bins accomplishing the QC requirements from Additional file 2A and Additional file 2B. D. 
Score of each of the bins for the top 10 principal components found in the binned dataset. Red indicates high score 
in a specific bin and blue indicates low score. Differentially expressed regions are found when exploring each of the 
10 principal components.

Additional file 3:  Correlation between the expression of genes and principal components. A. Heat map repre-
senting the correlation between the expression of every gene and the top 10 principal components’ scores bins 
described in Figure 2D-E. Low correlations are labeled in blue while high correlations are shown in white, as shown 
in the color bar found in the right of the heat map.
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