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Abstract 

Background:  With the advancements of Next Generation Techniques, a tremendous 
amount of genomic information has been made available to be analyzed by means of 
computational methods. Bioinformatics Tertiary Analysis is a complex multidisciplinary 
process that represents the final step of the whole bioinformatics analysis pipeline. 
Despite the popularity of the subject, the Bioinformatics Tertiary Analysis process has 
not yet been specified in a systematic way. The lack of a reference model results into 
a plethora of technological tools that are designed mostly on the data and not on the 
human process involved in Tertiary Analysis, making such systems difficult to use and 
to integrate.

Methods:  To address this problem, we propose a conceptual model that captures the 
salient characteristics of the research methods and human tasks involved in Bioinfor-
matics Tertiary Analysis. The model is grounded on a user study that involved bioinfor-
matics specialists for the elicitation of a hierarchical task tree representing the Tertiary 
Analysis process. The outcome was refined and validated using the results of a vast 
survey of the literature reporting examples of Bioinformatics Tertiary Analysis activities.

Results:  The final hierarchical task tree was then converted into an ontological repre-
sentation using an ontology standard formalism. The results of our research provides a 
reference process model for Tertiary Analysis that can be used both to analyze and to 
compare existing tools, or to design new tools.

Conclusions:  To highlight the potential of our approach and to exemplify its concrete 
applications, we describe a new bioinformatics tool and how the proposed process 
model informed its design.

Keywords:  Bioinformatics, Tertiary analysis, Hierarchical task tree, Research 
methodology, User study
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Background
Introduction

Bioinformatics Tertiary Analysis is defined as the use of complex computer science 
methods, algorithms and tools to understand and analyze the sequencing results 
extracted from raw genomic data [1, 2]. Tertiary Analysis activities represent the last 
mile of the bioinformatics pipeline that begins with the identification of raw data and 
the generation of sequencing reads (primary analysis) and their alignment (secondary 
analysis) [2, 3].

Since the introduction of Next Generation Sequencing techniques [4], bioinformat-
ics Tertiary Analysis experienced a rapid growth given the increasingly large availabil-
ity of genetic material to analyze. As a consequence, many tools have been developed 
to support researchers in this process.

As Bolchini stated in [5], the usability of bioinformatics tools is a severe problem 
that weakens their power to support bioinformatics research and their potential for 
adoption. Even if these applications were developed to support the bioinformatics 
activities and mitigate the difficulties that are intrinsic in the subject, many of these 
tools are perceived as very complex to learn and to use. If the user is not an expert in 
both biology and computer science, managing them requires a significant cognitive 
effort which should instead be devoted to answer research questions. This problem is 
more accentuated when biological data and operations increase in complexity. They 
require advanced algorithms and computer science methods that are often under-
stood only by machine learning engines or data mining experts.

To the best of our knowledge, most bioinformatics applications were developed 
using a “system-centric” approach, i.e., focusing more on technological requirements 
than on the user needs and the characteristics of the human processes involved. To 
make these applications more usable and more useful, a more “user-centric” approach 
could be needed to take into consideration the bioinformatics researcher’s perspec-
tive since the very beginning of the technology design process. In particular, tools 
dedicated to bioinformatics research should require more concern about (i) the char-
acteristics of the pipeline that is going to be used, (ii) the inputs available to the users, 
(iii) the preferred/required outputs, (iv) the existing relations among the process’ 
elements.

To address the above issues, our approach employs process models that are progres-
sively refined to represent and make clear all the steps that are commonly taken by a 
bioinformatician in a typical Tertiary Analysis activity.

To elicit our process models, we first performed an exploratory user study involving 
eight bioinformaticians; they identified the tasks involved in Tertiary Analysis, con-
ceptualized the process, and represented it as a hierarchical task tree using a well-
known method called hierarchical task analysis [6] agreed among all participants. 
Then we refined and validated the process model using the outcomes of a survey of 
the literature reporting examples of bioinformatics Tertiary Analysis. At the end, we 
translated the final hierarchical task tree into an ontology-based representation using 
OWL—a typical formalism for ontologies.

Our main contributions are: 
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1.	 A tree-like conceptual representation of the steps of a Tertiary Analysis that is: (i) 
elicited from an initial set of domain experts; (ii) validated by means of a vast review 
of the literature; (iii) supported by a set of examples that show its completeness.

2.	 A rigorous ontological representation of the resulting process specifications; such 
ontology, described in a standard notation, provides a reference process model for 
bioinformatics Tertiary Analysis that can be used both to analyze and to compare 
existing tools, or to design new tools for bioinformaticians

3.	 An approach to elicit and model bioinformatics processes that could be general-
ized to scopes beyond Tertiary Analysis: it could be applied for technology design in 
many contexts, particularly those involving cognitively complex cognitive activities 
that need to be precisely defined starting from the discovery of non-explicit expertise 
of the main actors.

This paper improves and extends the work reported in [7]. With respect to the previ-
ous publication, here we present a novel validation of the user study results, mapping 
more than 35 research works found in the literature on the elicited process model, 
and describes the translation of the Hierarchical Task Tree into an ontology-based 
formalism.

Tools for bioinformatics

Tertiary bioinformatics analysis is probably the most challenging phase in the whole bio-
informatics pipeline, it consists of defining and implementing machine learning, data 
mining and statistical algorithms to inspect, examine, and interpret sequencing results 
[3].

The first bioinformatics tools for tertiary analysis were scripts or programs executable 
through the command line. As soon as research interest grew on the topic, tools with a 
Graphical User Interface (GUI) started to be developed. GUI-based tools can be divided 
into two main categories: tools to perform a specific operation and tools that support 
the creation of research pipelines. Some examples of the first category are BEDTools 
[8], Bioconductor [9], Integrated Genome Browser [10]. Whereas, in the second family, 
the most famous are OrangeBioLab [11], UCSC Xena [12], Globus Genomics [13], and 
GenePattern [14].

BEDTools [8] is a toolset for genome arithmetic, i.e., set theory on the genome.
Bioconductor [9] uses the R statistical programming language to provide tools for the 

analysis and comprehension of high-throughput genomic data.
Integrated Genome Browser [10] is a visualization tool to explore and visually analyze 

biologically-interesting patterns in genomic datasets.
OrangeBioLab [11] is a visual tool for data visualization and analysis. Once the data 

have been uploaded, users can compose their workflow through a block interface. The 
platform provides modules for data mining, machine learning, feature scoring, predic-
tive modeling, and data visualization.

UCSC Xena [12] interface allows researchers to visualize and compare data along mul-
tiple dimensions. Users can add or remove visualizations and interact with them. The 
columns-based layout allows us to see at a glance how the observed dimensions change 
between different samples.
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Globus Genomics [13] environment has been developed to create graphical workflows 
for the analysis of genomic data. It provides tools for both data analysis and manage-
ment, focusing on the possibility of sharing works among collaborators. Globus’s visual 
programming environment is based on Galaxy framework [15], a compelling environ-
ment for bioinformatics, but with a major focus on secondary analysis.

GenePattern [14] is a modular system that provides hundreds of genomic analy-
sis tools through a visual interface. Its modules can be accessed through a block-based 
environment via browser or executed through code, inside Python Notebooks, or via 
command line. Everything in the system is highly customizable to adapt the tools to the 
specific problem.

New advancements in conversational technologies brought to the development of new 
dialogue-based interfaces for data retrieval, exploration, and analysis in recent years. 
These new tools exploit the power of Natural Language Understanding and Artificial 
Intelligence algorithms to create interfaces that minimize the learning barrier. Users can 
interact with written conversational agents (i.e., chatbots) to express the operation using 
natural language. The interfaces guide them through the process and transform users’ 
utterances into operations to be performed on data. Some examples are Iris [16] and Ava 
[17] for general data science, Maggie [18], BioGraphBot [19], and Ok DNA! [20] in the 
bioinformatics domain.

Ava [17] chatbot guides the user through a predefined analysis pipeline. Through the 
conversation, the method and parameters can be selected. Users do not need to know 
programming languages since the conversation produces executable code. The opera-
tions sequence, though, is fixed. Users can not modify it. The output of the process is a 
Python Notebook that can be executed to reproduce the experiment without the need to 
repeat the conversation.

Iris [16], instead, leaves users free to compose operations as preferred. Conversational 
units act as a wrapper for python functions that can be nested as desired, as long as the 
composition’s syntax is correct. Also in this system, the dialogue is converted into an 
executable Python Notebook, built step by step while the conversation evolves.

Maggie [18] focuses on bioinformatics data retrieval. In fact, it allows extracting data 
from BioCatalog through a conversational interface. The user, though, is not actively 
supported during the process by the conversational agent.

BioGraphBot [19], instead, translates users’ utterances into Gremlin Queries, to 
extract data from BioGraphDB. In this case, the user must know the structure of the 
underlying database to be able to use the chatbot.

Ok DNA! [20] actively supports users in data retrieval from genomic databases, 
removing the requirements of knowing the database structure. Users are actively guided 
until the query is complete so that also biologists and clinicians can use it even without a 
great computer science expertise.

Elicitation and modeling of tasks requirements

The design of useful and efficient systems requires an in-depth knowledge of the 
user tasks that must be supported, as observed in a dated—but still very relevant—
reference [21]. For this reason, before designing a new platform, it is essential to 
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elicit all the tasks that the user will perform. Gaining such knowledge is a process 
called Task Model Elicitation in Human–Computer Interaction [22].

Over the years, many methodological frameworks have been produced with this 
aim. One of the most famous and adopted is GOMS framework [23]. GOMS states 
four fundamental elements at the base of every task, i.e., Goals, Operators, Methods, 
and Section Rules. According to the model, each task can be described according to a 
composition of those elements. Indeed, tasks are not atomic but are built from sub-
tasks that is in turn derived from other smaller sub-tasks. This results in a hierarchy 
or elements that is intrinsically represented as a tree.

This tree-like representation is advantageous for its simplicity and because it 
allows us to make the comparison among different models elicited for the same task. 
Since a tree is made of nodes and edges and has a well-defined structure, the com-
parisons among the different sub-tasks, their type, or the number of steps required 
to reach a leaf node come naturally.

GOMS has been declined in many variants through the years. Other widely used 
frameworks are MECANO [24], MOBI-B [25], TRIDENT [26] and TADEUS [27]. 
However, these formulations do not model the user knowledge as part of the task 
[22].

Another popular tree-based framework is ConcurTaskTree [28]. It considers not 
only the structural relationships among tasks (i.e., part of relationship), but also 
their temporal relationships.

Using ontologies to describe phenomena is a widely-adopted practice in computer 
science. An ontology is a formal description of a set of concepts within a domain and 
the relationships between them. Ontologies have been developed to describe many 
domains; they have been used as a mechanism to provide applications with domain 
knowledge and to facilitate the sharing of information [29], that are exploited par-
ticularly in biology and bioinformatics domains [30]. Within the bioinformatics 
community, the relevance of ontologies has been recognized, and work has begun on 
designing and sharing biomolecular ontologies [31].

BioPortal is the biggest portal that collects ontologies in Biomedical and Bioin-
formatics domains. Among those, the Ontology for Biomedical Investigations (OBI) 
[32] models the research processes from the samples’ acquisition to their processing 
and transformation into genomic data. OBI has been developed to provide a com-
mon lexicon to describe the research process and support interoperability between 
different data sources. It is based on OWL2 language specification, and it comprises 
more than 3,600 classes put in relation through more than 100 properties. At an 
upper level, it is composed by four types of classes, processes, material entity, and 
role and processes, inherited by the Basic Formal Ontology (BFO) [33], and informa-
tion content entities from the Information Artifact Ontology (IAO) [34].

To the best of our knowledge, there have been no studies centered on eliciting the 
full bioinformatics tertiary analysis process, even if many researchers recognized the 
importance of basing the design of bioinformatics tools on models such as ontolo-
gies of the method [35, 36].



Page 6 of 27Pidò et al. BMC Bioinformatics  2021, 22(Suppl 13):452

Methods
We describe how we generated a tree-based model of Bioinformatics Tertiary Analy-
sis process starting from the users’ interviews, as depicted in Fig. 1. We started from 
eight semi-structured interviews with skilled bioinformaticians, asking them to 
describe their vision of the bioinformatics research process. Starting from their expe-
rience, each person interviewed defined a typical flow of their research activity, to 
build a hierarchical task tree, representing their own idea of bioinformatics tertiary 
research process. Subsequently, we combined these trees to generate a single one that 
is our starting model for the definition of a general bioinformatics tertiary analysis. 
Starting from the interviews’ results, the hierarchical task tree was the best method 
we found to illustrate the bioinformatics research process. Finally, we refined and val-
idated it through the analysis of literature works, to assess its descriptive capabilities.

User study

Population. To perform the study, we recruited eight expert bioinformaticians on a 
volunteer basis. Participants had heterogeneous academic roles: three Ph.D. students, 
two research assistants, two postdoctoral researchers, and one assistant professor.

Setting. Due to the current pandemic emergency outbreak, the user study was con-
ducted in two different settings. During the first interviews, both the bioinformatician 
and the interviewer were in a room equipped with a table and a big whiteboard with 
sticky notes. With the advent of the lockdown, the interviews were carried out online 
during the quarantine through video conferencing software using the same protocol.

Protocol. Each individual interview was split into three main parts, as shown in 
Fig.  2. We provided the volunteer a whiteboard, either physical or virtual, both to 
help the interviewed person and to help us with a visual perspective. At the end of 
each phase we took a picture of the board, to be able to reconstruct the interview 

Fig. 1  The three phases of users’ interviews. First, they had to describe their research process as they wanted. 
Then, we asked them to classify the steps according to their abstraction level by moving the sticky note 
accordingly. Finally, they had to complete the description of the tree adding the missing nodes
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process during the results analysis. All the participants signed a consent form in 
which the study was explained in detail, including the guaranty on the anonymity of 
data collected.

The interview started with the Definition of the pipeline. We asked the participants 
to describe their typical research process step by step and invited them to use a sticky 
note for each step. No other constraints were given neither on the granularity of the 
steps nor on their number. We gave them as much freedom as possible during this 
first phase, and we interrupted their explanation only to ask for clarification.

The second phase was the Classification of the pipeline. Participants were required 
to classify their process elements according to the abstraction level. To do so, they 
use the board to organize their notes in layers according to their abstraction level. 
Since no granularity constraints on tasks was imposed during the prevous phase, 
the pipeline was always quite heterogeneous concerning the abstraction level of the 
description.

In the third and last phase, the Definition of the Hierarchical-tree, the participants were 
asked to build a hierarchical task tree of their typical research process: starting from the 
results of the first and the second phases of the interview, they connected one another to 
complete the whole tree.

Fig. 2  Methodology used for creating the model of the bioinformatics tertiary analysis process. We 
interviewed 8 bioinformatics experts. Each interview produced a hierarchical task tree. These were then 
merged in a single model. We validated the tree trying to map published research work on it. Finally, we 
modelled the ontology on the base of the tree
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Results. All the volunteers completed the elicitation of their hierarchical model suc-
cessfully. The results of the first phases seemed very similar. Looking at the research flow 
and the larger granularity level, the comparison shows similar actions were considered in 
the same order even if the pipelines were different, and each one had its own abstraction 
level. Indeed, we were able to retrieve four typical macro-phases from all the processes 
immediately. These are also the typical phases of a data analysis pipeline: Data Retrieval, 
Data Exploration, Data Analysis and finally Results Validation. However, looking more 
carefully at the different results, we noticed that each participant focused on a different 
process step. This allowed us to retrieve a complementary perspective on the tertiary 
bioinformatics analysis and have a complete definition of each step.

We then evaluated the results of the second phase, i.e., the classification. Since each 
participant has its own abstraction level, the results were heterogeneous. Each partici-
pant had its own steps and sub-steps. However, we noticed that the interviewed attrib-
uted similar abstraction levels to similar operations. Almost every participant used three 
or four different abstraction levels in the classification process.

Finally, we studied the generated trees, reported in the Additional files 1–7. This analy-
sis was divided into three main steps. The first one was the study of the topologies of the 
produced trees. Regarding the main backbone, it was similar among the whole interview 
set. However, particularly in the deepest nodes, the topologies of the trees were diverse. 
This because each participant’s focus was on a different workflow phase. Then, we com-
pared the trees’ nodes and tried to produce a single tree with all the common nodes and 
the complementary ones. This comparison resulted in almost no conflicts. The few con-
flicts were in the leaf nodes of the tree. This allows us to point out that the researchers 
agree implicitly on how a tertiary bioinformatics analysis is usually carried out. As the 
last step, we accurately compared the produced tree with single ones. We analyzed the 
remaining nodes in the interviews’ trees. Even if they were few, we tried to adapt them to 
the new structure and, in case of compatibility, we added them.

Hierarchical task tree

The described procedure leads to the creation of a description of the bioinformatics ter-
tiary research analysis process in the form of a hierarchical task tree. To elicit the model, 
we integrated the trees resulting by the participants’ interviews in a unique structure. 
Some conflicts were present in their descriptions. In those cases, we opted for the solu-
tion adopted by the majority of the participants. When the same number of participants 
were supporting the contrasting opinions, we asked an expert bioinformatician who had 
not been interviewed to resolve the conflict, providing his perspective.

This representation is functional for several reasons. First, the tree presents the 
description of the process at many levels of abstraction, providing the right granu-
larity for the specific problem. For this reason, the same model can be used to 
describe systems that work at different levels. At the same time, the tree embeds the 
part of relationship between parent nodes and children, providing the requirements 
necessary for the elicitation of all the operations that a tool must provide. Indeed, 
a tool developed for task A must support all the operations described by A’s chil-
dren nodes. Even if there are more powerful tools to describe tasks, such as Con-
curTask Trees [28], we decided to adopt hierarchical task trees because they are the 
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most similar representation of the users’ responses we collected in the interviews. In 
addition, this is not the final model, but only a transitional representation before the 
adoption of the ontology formalism, as described later in this document.

The resulting tree is shown in Fig. 3. All the people agreed that the tertiary analysis 
process could be divided into four main phases, typical in most data science appli-
cations: Objective Definition, Data Extraction, Data Analysis, and Results Analysis. 
Domain-specific distinctive traits emerge while going in-depth in the structure, that 
is, looking at the process at a finer granularity.

Participants agreed that the bioinformatics research process starts from the Objec-
tive Definition, i.e., the delineation of what a researcher want to find and obtain from 

Fig. 3  Hierarchical task tree retrieved from the empirical study and the literature research. It represents the 
typical pipeline of a bioinformatics research using different abstraction levels. Particularly, it is composed 
of four main-phases: Objective Definition, Data Extraction, Data Analysis and Result Analysis. Each of these is 
composed of many children that allows to better specify and clarify the steps that are usually computed
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that analysis. Three sub-tasks compose this task: Research Question Definition, State 
of the Art Analysis, and Deliverables Definition, corresponding to the definition of the 
question the researcher wants to answer, an analysis of the related works to that ques-
tion and a definition of the results the researcher would like to show at the end of the 
pipeline. The last phase is usually performed together with the domain experts that 
will evaluate the results from the biological perspective. The output of the deliver-
able definition is a list of tables, plots, or a set of data necessary to verify the research 
hypothesis elicited in the Research Question Definition phase.

Once the purpose of the research has been defined, Data Extraction process begins. 
Also this task is divided in three parts: Data Retrieval, Data Exploration, and Data Inte-
gration. Data Retrieval begins with the Research of Publicly Available Datasets, in order 
to understand which, among the available data, can be used to answer the research ques-
tion. This phase is concluded with the Dataset Selection. Data Exploration is the first 
phase in which the scientist gets in touch with the selected data. At first, a Preliminary 
Analysis is carried out for a first understanding of the data. This analysis is performed 
through a Literature Research on the Data, a Data Assessment phase, and finally a For-
mat Check. Then, Data Pre-processing is performed to try to remove the noise from data. 
An initial phase of Quality Assessment is then carried out to understand noisy data. At 
that point, the Quality Correction and Data Cleaning process starts. It consists of three 
steps: Bad Data Discard, Missing Data Imputation, and Trimming to exclude extreme 
values and/or outliers. The pre-processing phase terminates with the Data Normali-
zation, divided into Metrics and Normalization Methods Identification and the Values 
Normalization. During the exploration of the dataset, Data Visualization is essential to 
understand the nature of the data in the analysis. This phase is divided in two parts: Vis-
ualization Method Identification and Visualization Creation. The extraction phases con-
cludes with Data Integration. In this phase, heterogeneous data are integrated to have a 
unique dataset on which to perform the analysis. Integration is the result of three sub-
sequent processes: a Literature Research on Integration Methods, the Integration Method 
Identification, and finally the Integration Method Application.

Then, Data Analysis begins. This is the core of the project, data are analyzed through 
statistical and computational algorithms to extract information from them. Three phases 
compose the analysis: Algorithm Selection, Data Preparation, and Algorithm Execution. 
During Algorithm Selection, the most suitable algorithm is chosen. This process is sup-
ported by a Literature Research on the Algorithm to understand which is the current 
state of the art in similar works, Preliminary Analysis on Data and Algorithms to access 
the compatibility of the dataset and the selected algorithm(s), and finally the Algorithm 
Implementation. The Data Preparation phase is necessary to transform the dataset to be 
able to run the selected algorithm on it. To do that, first, there is the Data Adaptation 
to the Algorithm, followed by the Data Split in Training and Testing Set. The last step is 
fundamental to be able to evaluate the trained algorithms correctly. Finally, there is the 
Algorithm Execution. The operations performed in these phases vary a lot according to 
the algorithm. Accordingly, they can be grouped into three processes: Hyper Parameter 
and Parameter Tuning, Algorithm Parameters Check, and Optimization.

The fourth and last phase of the bioinformatics tertiary research process is Results 
Analysis. Here, the information extracted through the algorithms is converted into 
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knowledge. To do that, first a Computational Results Evaluation is necessary to see if 
they are significant and therefore if they can be considered valid. The computational val-
idation consists of Performance Evaluation, Robustness Evaluation, Comparative Analy-
sis, and Testing. Then, Biological Results Evaluation is done to understand if the results 
can find an explanation from a biological perspective. Biological Results Evaluation com-
prises three tasks: Biological Validation, that is divided into Enrichment Analysis and 
Literature Research on Biological Domain, Relevant Features Extraction, and Functional 
Genomic Analysis.

Validation

We run a literature-based analysis to validate the Hierarchical Task tree (Fig. 3). In par-
ticular, we want to assess its descriptive capabilities, and understand which are the prop-
erties of the research works that this model highlights.

We selected systematically 30 research and methodology papers in the field of bio-
informatics tertiary analysis from two sources: the works from Genomic Computing 
Group (http://​www.​bioin​forma​tics.​deib.​polimi.​it/​geco), given the direct contact with 
the authors in case of need for clarifications, and the most recent work published on 
BMC Bioinformatics journal. Papers were selected considering the title and the abstract. 
Particularly, we considered the most recent methodology or research articles dealing 
with tertiary bioinformatics analysis. We excluded all the software articles, in addition 
to those, we also excluded all the papers that did not use secondary analysis results as a 
starting point. Then, the papers were read extensively and mapped into the 36 leaves of 
the tree. A task had to be explicitly described to be considered in the paper. Two exam-
ples of this process are described in “Appendix” and represented in Fig. 4. Tables 1 and 2 
show the results.

Figure 5 shows the aggregates values, i.e., the frequencies of presence between tasks 
and papers. We were able to map every operation described in the paper to a task in 
the tree, proving the completeness of the model. On average, the number of tasks men-
tioned is around half of the 36 tasks, more precisely the average is 18.9. Whereas, the 
standard deviation is 3.0. The low standard deviation shows how the number of tasks is 
homogeneous in the description.

The same reasoning does not apply to the tasks: the distribution of number of mentions 
of the tasks is highly irregular. Indeed, the average is lower, i.e. 16.4, while the standard 
deviation is higher, i.e. 10.3. 10 tasks are present in all the papers analyzed (Research 
Question Definition, State of the Art Analysis, Dataset Selection, Literature Research on 
the Data, Data Assessment, and Data Format Check, Literature Research on the Algo-
rithms, Preliminary Analysis on Data and Algorithms, Algorithm Implementation and 
Data Adaptation to the Algorithm), highlighting their importance in the description of 
the tertiary bioinformatics process. Among the most mentioned tasks there are Public 
Available Data Research (28/30) and Performance Evaluation (26/30). These steps are 
extremely important as well; the only two papers that do not consider public data are 
based on the dataset from a previous work [37, 38], whereas the other manuscripts that 
do not mention the performance evaluation validate their results with other techniques 
such as a Comparative Analysis [39, 40] or Robustness Evaluation [37, 39].

http://www.bioinformatics.deib.polimi.it/geco
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Not all tasks share the same popularity: five tasks are mentioned tree times or less 
(Missing Data Imputation, Robustness Evaluation, Testing). In particular, the Deliver-
able Definition is never described in the papers considered. The reason is that even if 
this phase is crucial for the success of a research project, often it is implicit and not 
clearly stated. Also in the interview process it was subtended most of the times (7/8). 
The only researcher who mentioned it explained that this step is crucial when the 
results are validated by non-computer scientists.

Present in [17]
Present in [21]

Present in [17,21]

Fig. 4  Example of the validation process on papers [46, 47]. The dotted pink rectangles are the tasks 
mentioned only by [47]; the slashed blue lines the ones mentioned only by [46]; the purple mixed lines the 
ones mentioned in both the papers. “Appendix” describes the mapping in details
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Fig. 5  Barplots representing the validation step. a Represents the number of tasks present in each paper, i.e., 
the sum of the columns in Tables 1 and 2, b represents the number of papers that contains each task, i.e., the 
sum of the rows in Tables 1 and 2
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Looking at how the tasks appears, only 36 tasks out of 503 appear isolated, i.e., with-
out the adjacent tasks being described. Moreover, the isolated tasks are not equally dis-
tributed, but all belong to Quality correction and Data Cleaning and Results Analysis 
sub-tasks. The motivation lies in the different nature of the tasks: quality correction and 
data analysis operations are independent and not consecutive steps of a unique process. 
In results analysis this tendency is even stronger; indeed, only a few papers apply more 
types of validation in the same branch of the tree.

A more attentive analysis shows that some adjacent rows (i.e., tasks) appear always 
coupled: Visualization Method Identification and Visualization Creation, Metrics and 
Normalization Methods Identification and Values Normalization, and the triple Lit-
erature Research on Integration Methods, Integration Method Identification, Integra-
tion Method Application. Also in this case the semantics of the operations justifies this 
behavior: the first task of the couples is the preliminary and necessary task for the cor-
rect execution of the second one, like in the case of understanding how to visualize data 
before plotting them.

Lastly, an interesting relationship emerges between Data Pre-processing operations 
and Biological Results Evaluation. The number of sub-tasks mentioned by the papers 
in the two branches is strongly correlated: the Pearson correlation value between the 
two values is 0.8417 with a p-value of 5.6166e−09 . This relationship is justified by the 
nature of the papers. Indeed, the interest in pre-processing the data is typical in works 
that want to draw biological conclusions on those data. From this consideration we can 
identify two main categories of works: the computational contributions that focus the 
research on a new algorithmic solution for tertiary analysis, and biological ones, that aim 
at finding not only computational methods but also new biological advancements from 
the biological perspective. We find that the number of tasks in Data Pre-processing and 
in Biological Results Evaluation is a good indicator of the category in which the manu-
script falls: if the manuscript has only a computational scope, we can notice that the 
Data Pre-processing steps are almost always skipped, otherwise, at least one of them is 
almost always performed and the Biological Results Evaluation is present.

Results
Even if the Hierarchical Task Analysis produced a detailed description of the Bioinfor-
matics Tertiary Research Process, this model had some limitations. The part of relation 
was not sufficient to describe the process adequately in detail. The tree-based descrip-
tion does not provide any information on the output of the tasks. On top of that, the 
hierarchical structure is not flexible enough to describe the precedence among tasks. 
In fact, for most siblings, the precedence order is strictly given by order of appearance 
in the tree. However, in some part of the process, there is not such a strict precedence 
order, like in the case of Literature Research on the Data and its siblings, making a depth-
first visit algorithm not sufficient to determine the task precedence. Finally, the hierar-
chical task tree is not declared with the typical declarative languages used for ontologies, 
preventing it from being integrated and used with other models and from using tools for 
their exploitation and analysis.

To translate the model we used Web-protege [41], a web-based graphical user inter-
face to model OWL-based ontologies. A graphical representation of the results and a 
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detail are shown in Fig. 6. The most recent version of the model is available at this link: 
https://​github.​com/​peempi/​btap

For these reasons, we evolved our model adopting the formalism of OWL2 Web 
Ontology Language [42]. We chose OWL over OBO [43] format since it provides wider 
support on the semantics. Our model inherits the Resource Description Framework 
(RDF) [44] representation of data, according to which the model is coded through triples 
representing subject-predicate-object. This representation implicitly creates a directed 
graph of the ontology, as shown in the Fig. 6. Finally, OWL builds its language on the 
RDF Schema [45], providing an expressive manner to describe the elements in the ontol-
ogy and their relations. The result is a decidable fragment of first-order logic. In other 
words, we can build OWL reasoners that can answer questions on the model in a finite 
time and number of steps.

The resulting representation counts 70 classes and 3 relations. The upper level con-
sists of OBI classes Information Content Entity and Planned Process. Planned processes 
are processes performed typically by a researcher and produce an output in the form of 
an Information Content Entity. Information Content Entities represent knowledge, data, 
and results created by the successful execution of a planned process. Note that a suc-
cessful execution does not imply a positive outcome. We refer to processes as successful 

Fig. 6  a Graphical representation of the model. Particularly, it represents the relations that exist among the 
different classes. To interactively explore the model, the reader can upload the file .owl n the supplementary 
material on an ontology visualization tool, such as http://​www.​visua​ldata​web.​de/​webvo​wl. b Graphical 
representation of a section of the model. Particularly, it represents the path from the Tertiary Analysis to Data 
Pre-processing with all its leaves nodes

https://github.com/peempi/btap
http://www.visualdataweb.de/webvowl
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when their procedure is executed correctly, and some output is produced, no matter if it 
confirms o denies the research hypothesis. Among Information Content Entities, there 
is the Results subclass that is the parent of all the Information Entities that produce new 
knowledge on the research topic.

Classes are related by the three relations:

•	 Has Part relation defines which sub-processes define a process. This relation is 
equivalent to the parent-children relations in the hierarchical task tree. Differently 
from the tree representation, a sub-process common to more processes can be the 
object of multiple relations, removing the duplicates that the tree suffered from (e.g., 
Data Visualization). Any process can have zero or more Has Part.

•	 Has Specified Output describes the output for a process. For this reason, in such a 
relation, the subject must be a Planned Process, whereas the object is an Information 
Content Entity. A Planned Process can be the subject of zero or more Has Specified 
Output, and an Information Content Entity can be the object of one or many Has 
Specified Output Planned Processes. The following property holds: given A and B 
Planned Processes objects and C being an Information Content Entity, if (A has part 
B) and (B has specified output C), then (A has specified output C). These inferred 
properties are not explicitly reported in the ontology.

•	 Precedes relation express the temporal constraint in the process. Both the subject 
and the object must be Planned Processes. Intuitively, if A and B are Planned Process 
and (A precedes B) holds, then the output of A is necessary for the correct execution 
of B. Precedes relation is transitive: if A, B, and C are planned processes, if A precedes 
B) and (B precedes C), then A precedes C. Finally, the Precedes relation is specified 
explicitly only between siblings. The following property holds: if A, AA, B, and BB are 
planned processes, (A has part AA), (B has part BB), and (A precedes B), then (AA 
precedes B).

•	 Requires relation models the necessity of preliminary operations for the execution 
of the task. Intuitively, if A and B are Planned Processes and (B requires A), if an 
instance of process presents B, then it must present A as well.

Discussion
This representation has many potential uses and applications. The first and more imme-
diate one is the possibility of using a unified terminology to describe terminology, as 
we already showed while validating the hierarchical task tree through literature works. 
Bioinformaticians can use the model presented as a reference to be guided through the 
process, having a detailed step-by-step guide of all the procedure. In the same way, work 
groups can coordinate the project, having a schematic representation of the research 
pipeline to use as a reference. Finally, software engineers can exploit the model to design 
new tools to support bioinformatics, these tools are more usable and predisposed for the 
integration in the research pipeline. The formalism adopted makes the process model 
machine readable: not only tools can be modelled on it, but they can exploit the rep-
resentation to embed the knowledge of the process and use it as a base for creating the 
operation pipeline, or to check on the operations requested from the users.



Page 21 of 27Pidò et al. BMC Bioinformatics  2021, 22(Suppl 13):452	

Using the model to design new tools

We can now provide an example of how the model can be used as a reference for 
the design of new bioinformatics tools. We will exemplify the procedure by design-
ing a Conversational Agent that guides bioinformaticians and biologists in extracting 
genomic data from a database according to the process in the hierarchical task tree. 
The task we want to illustrate corresponds to the Data Extraction.

The development of a tool requires a profound knowledge of the task to be sup-
ported. In particular, a Conversational Agent requires a process on which to base 
the dialogue. Thus, the ontology-based representation helps in the definition of this 
flow. The ontology-based representation immediately provides the sub-tasks to be 
supported by the application: Data Retrieval, Data Exploration, and, if necessary, 
Data Integration. Consequently, such a dialogic interface must support three main 
moments that are mapped into three tasks. Reasoning in the same way, we can itera-
tively define the requirements of the conversation until we reach the tasks that do not 
include any sub-tasks. This means that, for example, for the Data Retrieval phase, 
the CA must support a conversation that keeps into consideration two sub-tasks, i.e., 
Public Available Data Research and Dataset Selection. These two tasks are leaves of 
the hierarchical task tree, thus, they are not expanded further. The conversation is 
built upon these leaves nodes. The outcome of this initial phase is a precise descrip-
tion of all the moments that the conversation must support according to the step in 
the hierarchical task tree.

Thanks to the ontology-based representation of the bioinformatics tertiary process, 
we were able to define the main steps the interaction has to touch during the process. 
The next step is to design the conversation: for each sub-task, we can define a portion 
of the dialogue to guide the user accomplishing that step. In parallel, we will define 
the back-end operation required to handle the user input and elaborate the data.

The result is a Conversational Agent that guides the user step by step in the data 
extraction. The session will start by asking which datasets to select from the publicly 
available data. Then, users can refine their research by applying filtering operations 
to improve the research results. At this point, the Retrieval phase is complete, and 
the agent proceeds to the exploration task by showing the users the meaning of the 
selected data and their format. The conversation must now guide researchers into the 
quality assessment, data cleaning, and normalization of the data. At every step, the 
agent will illustrate the possible options, for example, by asking the users whether 
they want to impute missing data or which metrics they want to use for normalizing 
the data. Graphs and visualization must be implemented to support the whole explo-
ration phase. Finally, if the data come from multiple sources, the conversational agent 
will guide the researchers through the integration procedure.

The conversation will end with the download of the datasets to be used for the analy-
sis. The ontology-based representation of the tertiary analysis allows obtaining a model 
for the process the CA has to follow. The model provides a basis on which the conver-
sational agent translates users’ utterances into an operational workflow for the datasets 
creation. In addition, knowing the operation workflow, the system can proactively sup-
port researchers during the interaction, for example, by suggesting the most common 
operations or providing personalized recommendations based on the specific session.



Page 22 of 27Pidò et al. BMC Bioinformatics  2021, 22(Suppl 13):452

Furthermore, with the ontology-based representation, it is easy to map inputs and out-
puts for each phase of the process. This possibility of dealing with the definition of input 
and output formats of the tool is another advantage of exploiting the model in the design 
phases. In fact, thinking of the new application not as a stand-alone product but as an 
element of a broader pipeline allows designers and developers to create a product that 
can be easily integrated within the research workflow. This means that the tool should 
accept as input the results of the former phase and produce something compatible with 
the main Data Analysis tools. In the case of this example, the Data Extraction task is 
positioned between Objectives Definition and Data Analysis. Objective Definition out-
puts are a Research Question and Deliverable Requirements; the conversational agents 
should be able to acquire this kind of information and suggest data accordingly. Data 
Analysis takes a dataset as input. Therefore the designed tools should produce a dataset 
in one of the most common data formats (e.g., .csv).

Conclusions
In this paper, we presented the work that, starting from an empirical study, leads to the 
creation of a model to describe the bioinformatics tertiary research process. Our model 
is the result of a task analysis that originates from the expertise of bioinformaticians, 
gathered through interviews, and is validated through a systematic analysis of the works 
in the literature. Finally, we provide some examples of how the proposed model can be 
used in practice to analyze research processes and design new tools.

Our work fills a gap in the current literature, providing a reference to describe bioin-
formatics tertiary research process in a single framework. Our model is thought to unify 
the jargon in this discipline, to create a standard terminology to be used in bioinformat-
ics research. Our model is not complete, and probably it will never be: bioinformatics is 
an arising discipline in continuous evolution. In the future, we aim at further expanding 
the process model and at integrating it to improve its soundness.

Differently from task modeling frameworks, such as ConcurTaskTree [28], the ontol-
ogy-like formalism allows the representation not only of the temporal precedence of 
the tasks, but also of other kinds of information, such as the nature of the tasks, their 
outputs, and their similarities. As shown, the power of our ontology-based represen-
tation is not limited to its descriptive capabilities: such a formalism is an expressive 
framework that enables developers to design tools intended to be integrated within the 
research pipeline. Contrarily to major bioinformatics ontologies, our work models the 
bioinformatics tertiary analysis process: an emerging field that exploits the data gathered 
through procedures modeled in ontologies such as [32]. For this reason, our model is 
thought not to replace existing ontologies, but to complement them providing an initial 
formal description of the new frontiers of bioinformatics research: our ontology-like for-
malism allows the integration within the well-established ontologies in bioinformatics 
domain, as we aim to do in the future.

In this perspective, our research paves the way to a new era of bioinformatics, where 
tools are not only designed to be effective, but also integrated and easy-to-use, there-
fore allowing the domain experts (such as clinicians and biologists) to approach the full 
potentialities of the discipline.
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Appendix: Examples of validation process
Here we provide two simple examples of the mapping between the tree and two different 
research articles and how they help us confirm and improve our predefined tree. Fig-
ure 4 presents the validation of the hierarchical task tree highlighting the mapping with 
the papers that follow.

In the study made by [46], the authors explain their research question, i.e., using deep 
approaches to model non-linear relationships to prove useful for breast cancer subtyp-
ing. The definition of the research question is the first leaf in our tree, as Fig. 3 shows. 
After the State of the Art Analysis, the second step in our hierarchical task tree, in which 
they analysed existing ways for analyzing and study BRCA (i.e., breast invasive carci-
noma) biomarkers, they studied the available data. Particularly, as suggested by the Data 
Retrieval path, they selected data from TCGA and ARCHS4. They selected gene expres-
sions, miRNA expressions, and CNA data. Following the paper, they modified and fil-
tered the data according to what they wanted. This is the Data Pre-processing step. From 
reading the paper, it seems that they do not need any integration step. Thus, they con-
tinued their analysis with the Algorithm Selection and Algorithm Implementation. During 
the explanation of the methods, they referenced already used algorithms. This proves 
the performed Literature Research on the Algorithm. Furthermore, it comes out from the 
article that they split the data into training and test sets (Data Split in Training and Test-
ing Sets is in Data Preparation branch) and that they applied Hyper-Parameter Tuning 
(as in Algorithm Execution branch). Finally, they explained the validation method used. 
Using the names in the hierarchical task tree, they evaluate the results using a Perfor-
mance Evaluation. In addition to that, they applied an Extraction of Relevant Features. 
Thus, this study confirms many of the steps included in our tree. Particularly on 57 
nodes of the tree, we could count at least 44 in the paper. It was clear from the analy-
sis that some nodes were not needed, like all the nodes in the Data Integration branch. 
Whereas other nodes are not clearly stated from the paper, thus we could not assess if 
they were performed or not. However, even if not all tree nodes are in the research, all 
the steps present in the paper are also present in the tree. Moreover, this analysis helps 
us to confirm the Algorithm Implementation node that was in a doubt position due to 
the interviews. In addition to that, a first comparison shows that the order of the applied 
process in5 [46] is very similar to our hierarchical tree, giving another confirmation of 
the validity of the defined pipeline. As we expected, not all the nodes were present in the 
study, and it was not possible to define all the positions. Indeed, the order with which 
some tasks were computed was not as clear as in the tree.

The second example is taken from [47]. It is interesting because it shows complemen-
tary aspects with respect to the previous one. In the introduction, the research question 
the authors want to solve is clear, i.e. discover novel drug-protein target interactions, 
new drug annotations, and new drug-disease associations through an innovative method 
employing shortest paths in Non-negative Matrix Tri-Factorization (NMTF). After the 
Research Question Definition, the State of the Art Analysis is explained. It is not clear from 
the paper if they defined the deliverables or if this step was skipped. The next Section is 
regarding the algorithm, and only the next one explains the data used. However, even if 
in the paper the two branches Data Extraction and Data Analysis, are switched, it is clear 
that the description on the paper does not reflect the actual order in which operations 
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have been executed. This is interesting since it highlights the differences between the 
real pipeline of bioinformatics research and how the pipeline is told in an article’s narra-
tive. Thus, it strengthens the necessity of having a well-defined ontology to represent it. 
Going on in the paper, we can find the data extracted for the Dataset Selection, they used 
DrugBank, Reactome, Therapeutic Target Database, and BioGrid.

In the method Section, the authors explain how they structure the Data Integration 
protocol. The description of this task is of particular interest since it validates a section 
of the tree described by only two of the interviewed people. Then, the implementation 
of the algorithm is explained. Also, in this article Literature Research on the Algorithm is 
implied, but it can be retrieved from all the cited articles used to implement the method. 
Given the nature of the work, different from the previous paper, they do not adopt either 
Data Split in Training and Testing Sets or Hyperparameter Tuning. However, they directly 
pass to the Algorithm Execution, and they apply some Optimization on the algorithms.

For the Computational Results Evaluation, they applied the Performance Evaluation 
using Average Precision Score, False Positive Rate, and Area Under the Curve. To further 
validate the results, they also computed a Comparative Analysis, explained in Section 
“Computational Validation Methods and Prediction Performances”. For the Biological 
Results Evaluation, they use only Literature Research on Biological Domain.

As in the previous paper, some of the steps are not explicitly reported, and others are 
not clearly stated. However, we were able to match 33 nodes of the tree. Also this article 
proves the validity of the elicited tree: all the operations described in the document were 
classifiable in one node of the tree.
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