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Background
Spatial transcriptomics has recently gained extensive attention from the scientific com-
munity. Different technologies have enabled high resolution measurements of how gene 
regulation is spatially organized across a tissue or thousands of single cells [1]. Analyses 
of these data have the potential to reveal spatial regulatory relationships between genes. 
However, current analysis pipelines often treat each pixel in an expression matrix as an 
independent feature, thus losing spatial information. For example, the seqFISH+ technique 
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can fluorescently detect 10,000 mRNAs in situ at single cell resolution, and there are often 
groups of cells that have correlated gene expression with their neighbors to make up larger 
structures. However, the original report analyzed these expression patterns using PCA and 
hierarchical clustering, treating each cell as an independent feature, rather than preserv-
ing spatial positions of cell neighbors [2]. Slide-seq similarly produces high-throughput 
spatially resolved transcription information, using sequencing rather than fluorescence. 
Previous analyses of Slide-seq data first identified spatially non-random gene expression, 
but then looked for genes expressed in similar patterns using pixel-level overlap analysis 
rather than according to spatial features [3]. Existing algorithms for analysis of spatial tran-
scriptomics are based on statistical modeling and primarily propose to distinguish spatially 
expressing or variable (SE or SV) genes from random spatial expression noise. For example, 
both SpatialDE and SPARK analysis approaches estimate how significant the spatial pattern 
of a gene is [4, 5]. SpatialDE further builds in an unsupervised pattern detection algorithm 
to cluster significant SE genes into different groups which have certain spatial patterns in 
collective. SPARK, in contrast, was designed only for finding SE genes. To examine spa-
tial relationships between genes, this method still relies on hierarchical clustering that uses 
individual pixels as features. Therefore, even though SPARK can identify genes with signifi-
cant spatial patterns, the latter part of the SPARK analysis decouples the expression from 
its original spatial context. Thus far, existing spatial transcriptomics analyses involve either 
multi-step complex feature engineering for spatial quantification or human-imposed rigid 
or statistical modeling-based screening of candidate SE genes. In the existing methods, 
the similarity of expression pattern between two genes is either binary- whether or not the 
genes cluster together- or is quantified based on pixel-level correlation.

In this work, we propose an approach inspired by computer vision and image classifi-
cation to find relationships between spatial expression patterns of different genes while 
preserving the full spatial context (Fig.  1a). Our goal is to find quantitative comparisons 
between gene expression patterns in a way that preserves spatial relationships between 
neighboring cells and tissue regions. We aim for a method that will recognize an overall 
similar shape of expression, even if certain sets of pixels are not exactly overlapping. This 
is conceptually similar to image recognition in computer vision tasks. The use of convo-
lutional neural networks brought a success of deep learning in computer vision and have 
demonstrated a wide range of applications, including image classification and object rec-
ognition. A few groups have proposed different approaches to use convolutional neural 
networks (ConvNet) in unsupervised learning [6–8]. Thus, here, we adopt an unsupervised 
ConvNet learning strategy for Spatial Transcriptomics Analysis (CoSTA). With simulated 
data, we show that CoSTA can correctly classify a variety of different spatial patterns and 
that the patterns CoSTA is detecting depend on spatial groupings rather than individual 
pixels. Then, we apply CoSTA to published MERFISH and Slide-seq data and show that 
CoSTA sometimes identifies smaller sets of genes with significant spatial relationships, but 
these identified relationships are biologically relevant.

Results
CoSTA architecture: training a ConvNet with pseudo‑labels generated by GMM clustering

Though there are many unsupervised learning strategies, we chose to apply the workflow 
of DeepCluster, because it is straightforward and easy to implement [6]. Our CoSTA 
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approach consists of two main parts: clustering by Gaussian mixture model (GMM) and 
weight updating as commonly performed in training neural networks (Fig. 1a and see 
Methods for detailed description). Our inputs are sets of gene expression images, where 
each image is the matrix recording the expression levels of one gene at each position in 
space and all images belong to the same biological space. We first initialize a ConvNet 
randomly and then forward these gene expression matrices through the ConvNet. Our 
ConvNet consists of three convolutional layers, and each convolutional layer is followed 
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Fig. 1  CoSTA model approach and motivation. A Overall CoSTA pipeline. Inputs are gene matrices from 
spatial transcriptomic experiments. ConvNet stage forwards images through 3 convolutional layers and 
then flattens the output into a spatial representation vector. UMAP reduces dimensionality of the spatial 
representations from the ConvNet stage before these gene representations are used to cluster genes with 
GMM. Each gene is then assigned cluster probabilities based on distances to cluster centroids, which are 
transformed to an auxiliary target distribution that can be minimized by reducing bi-tempered logistic loss 
and/or center loss. Gradients are backpropagated through a fully connected layer to ConvNet. The process is 
repeated until the model converges, at which point the output from the ConvNet is used as the final spatial 
representation (red arrow). B Biologically-inspired example in which overlap does not capture all aspects 
of spatial pattern similarity. Rectangles represent an epithelial cell layer while ovals represent stromal cells. 
By overlap comparison, Gene 1 has the same similarity to both Gene 2 and Gene 3 (40% overlap). However, 
the biologically relevant expression along the epithelial layer is only shared between Gene 1 and Gene 2. 
Detecting this shape similarity requires learning a spatial representation. C Performance of CoSTA in synthetic 
datasets. Left panel: 5 real expression patterns in mouse olfactory bulb data replicate 11. We generated 2,000 
simulated gene expression matrices for each pattern with different levels of noise. Right panel: learning 
curves of CoSTA classifying simulated genes belonging to these 5 patterns with different noise levels. 
Normalized Mutual Information (NMI) values quantify the similarity between clustering labels assigned by 
CoSTA and the true class label across all 5 patterns
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by a batch normalization layer and a max pooling layer. We flatten the matrix output 
from the last max pooling layer into a vector that captures the spatial features of the 
gene expression data. The size of this vector will vary depending on the image size from 
a given spatial transcriptomics technique. We then apply L2-normalization across fea-
tures and reduce dimensionality by UMAP before we perform GMM clustering of genes. 
UMAP can preserve global and local structures during dimension reduction and previ-
ously showed better performance in image clustering than other dimension-reduction 
methods such as Isomap and t-SNE [7, 9]. The purpose of this clustering is to generate 
labels so that we can update the ConvNet as in other common supervised neural net-
work training approaches. When the ConvNet is randomly initialized, features extracted 
by this ConvNet are weak. However, using them to generate labels can still guide the 
ConvNet to learn more discriminative features. Indeed, Caron et al. showed DeepClus-
ter can learn from weak signal to bootstrap the discriminative power of a ConvNet [6]. 
Instead of giving each gene a single cluster label, we assign an auxiliary target distri-
bution as a soft assignment. This approach emphasizes genes with high confidence in 
the clustering task and discounts noisy labels persisting from the random initialization 
of ConvNet. Doing this can also lead to more stable target values for training the neu-
ral network [8]. Finally, we use these soft assignments to train the ConvNet. We add a 
fully connected layer after the ConvNet that produces probabilities for each gene being 
assigned to each label. Thus, we can optimize the model by minimizing bi-tempered 
logistic loss based on Bregman Divergences between the soft assignments from GMM 
clustering and the probabilities from the fully connected layer [10]. In summary, the 
CoSTA approach uses a ConvNet clustering architecture which repeats (1) generating 
features by ConvNet, (2) generating soft assignments by GMM clustering, and (3) using 
soft assignments to update ConvNet. Once we finish training, we only retain the trained 
ConvNet for the purpose of feature extraction. Since the ConvNet mainly consists of 
convolutional layers, the final vector for each gene extracted by ConvNet should be a 
spatial representation. Using this spatial representation, we can then quantify the rela-
tionship between any two genes within one spatial transcriptomics dataset, visualize all 
SE genes in this dataset by UMAP, and assign patterns through common clustering algo-
rithms. Further details about the rationale of this learning architecture can be found in 
Methods.

Rationale for using spatial patterns rather than exact pixel overlap

To demonstrate the spatial information lost by overlap analysis and why a spatial repre-
sentation approach such as CoSTA is useful, we present a simplified biologically-inspired 
conceptual example (Fig. 1b). In biological tissue sections, we commonly observe struc-
tures such as a tightly connected epithelial layer of cells (rectangles in the cartoon) 
adjacent to a collection of stromal cells (circles). In this example, the spatial expression 
patterns of three genes are shown. Comparing gene expression patterns by overlap only, 
we observe that Gene 1 and 2 have the same amount of overlap as Gene 1 and 3 (40%). 
Thus, an overlap approach to measure gene pattern similarity, like the one used in previ-
ous Slide-seq analysis, would report that Gene 1 is equally similar to both Gene 2 and 
Gene 3 [3]. However, biologically, it is relevant that Gene 1 and Gene 2 are expressed 
primarily in the epithelial layer while Gene 3 is expressed in the stroma. This biological 
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difference is not detected by strict overlap, but instead requires a spatial representation 
that would detect the vertical stripe of epithelial layer expression as a salient pattern. In 
computer vision, filters are commonly used to find this kind of local correlation, and the 
success of ConvNet in pattern recognition also relies in the use of filters for identify-
ing local correlations. Using signals of how these 3 genes respond to the same filters, a 
ConvNet approach will identify Gene 1 and 2 as more similar and Gene 3 as less similar. 
Therefore, we are motivated to use our ConvNet clustering based CoSTA approach to 
prioritize similar shape more than overlap for biological cases where layers of cells and 
the overall patterns of groups of cells matter more than independent individual cell iden-
tities [11].

Tests on synthetic data show CoSTA’s high specificity, reliance on spatial relationships, 

and ability to distinguish signal from noise

As a first test of CoSTA’s ability to detect correlated spatial patterns in the absence of 
exact overlap, we use the MNIST handwritten digit image data [12]. When the aim is 
to find which digits have correlated handwritten patterns to the digit 3, CoSTA identi-
fies only other instances of digit 3 as correlated (100% specificity). In contrast, overlap 
analysis finds some samples of all other digits as correlated digits of 3 (58% specificity) 
(Additional file 1: Fig. S1). Meanwhile, CoSTA identifies a smaller subset of the digit 3 s 
as correlated (35% sensitivity) while overlap analysis captures more correlated digits 
overall (65% sensitivity) in its less specific set (Additional file 1: Fig. S1). As shown below, 
this increased specificity but possibly decreased sensitivity of CoSTA compared to other 
techniques appears to hold true in biological data as well.

Before applying CoSTA to real spatial transcriptomics data, we next tested its perfor-
mance on 5 synthetic datasets, simulated based on real expression patterns from mouse 
olfactory bulb, following the simulation method in SPARK (Fig.  1c left panel) [5, 13]. 
We generated 2000 fake gene expression matrices for each pattern, to mimic data for 
10,000 total genes. To simulate noise and variability for each gene, we added residual 
errors onto each spatial coordinate independently based on a normal distribution with 
mean of zero and variance ranging from 0.2 to 0.6. We then evaluated whether CoSTA 
could assign each simulated noisy gene to the correct pattern. To compare the CoSTA-
derived cluster assignments to the true labels, we use the well-established cluster com-
parison metric Normalized Mutual Information (NMI) [14]. The NMI approaches a 
value of 1 as the assignment of genes to the 5 patterns becomes more and more accurate. 
When CoSTA was initialized, the NMI ranged from 0.27 to 0.57 (Fig.  1c right panel). 
As training proceeded, CoSTA learned discriminative features to distinguish the 5 pat-
terns, eventually achieving NMIs from 0.85 to 0.98 against the true class label (Fig. 1c 
right panel, Additional file 13: Table S1). For the highest noise level (0.6) we found that 
combining both center loss (CL) and bi-tempered logistic loss during CoSTA training 
substantially improved CoSTA’s accuracy (NMI increased from 0.52 to 0.91). However, 
CL pushes samples toward the 5 centroids and is only applicable when the final number 
of patterns is known. Thus, we do not include CL for true biological situations.

To demonstrate that CoSTA learns spatial rather than pixel-level patterns from 
these synthetic datasets, we shuffled the pixel positions in these synthetic datasets. 
Shuffling all the gene matrices exactly the same way keeps the pixelwise overlap 



Page 6 of 26Xu and McCord ﻿BMC Bioinformatics          (2021) 22:397 

information identical while disrupting correlations between neighboring pixels, 
thus destroying the spatial pattern (see Methods for details). If a pattern detection 
method is successfully using spatial relationships between neighboring pixels, its 
ability to classify patterns should be disrupted by this kind of shuffling. Indeed, we 
found that CoSTA cannot distinguish the genes into correct pattern labels as well 
with shuffled data (NMI ranges from 0.32 to 0.89), demonstrating that CoSTA is 
detecting spatial features that depend on the positions of neighboring pixels, rather 
than features that can be captured by a set of single pixels (Additional file 2: Fig. S2 
and Additional file 13: Table S1). When we applied the CoSTA model trained at 0.4 
noise level to progressively more shuffled images, we found that the ability to clas-
sify genes into groups declined proportional to the amount of shuffling (Additional 
file  3: Figure S3A). We also tested SpatialDE on these true and shuffled synthetic 
datasets. SpatialDE performed very well on the true datasets, as expected. However, 
shuffling the data did not usually change the performance of SpatialDE (Additional 
file 13: Table S1), indicating an important difference between CoSTA and SpatialDE: 
SpatialDE is more likely to detect patterns of individual pixels while CoSTA empha-
sizes the spatial positions of these pixels relative to each other and overall shapes of 
patterns.

Using this same synthetic data, we next performed a disruption test to demon-
strate a disadvantage of using individual pixels as features to analyze spatial tran-
scriptomics data. For half of the simulated gene matrices, we masked a certain 
region of the pattern, and the masked region doesn’t change expression pattern visu-
ally (Additional file  3: Fig. S3b). This mimics a situation in which a certain region 
is obscured or not sampled well for technical reasons experimentally. Using pixel 
overlap to identify patterns, in this case, assigns masked and unmasked genes into 
separate groups, even though they otherwise belong to the same pattern. In contrast, 
CoSTA is resistant to this disruption (Additional file 3: Fig. S3b).

In real spatial transcriptomics data, not all genes will belong to a clear spatial pat-
tern—some genes that are not relevant to the given tissue or condition may only 
yield random noise or be fairly uniformly expressed. To mimic this situation, we fur-
ther followed the simulation approach in SPARK to generate synthetic datasets that 
have 5 spatial patterns and have mixed SE (spatially expressed) and non-SE genes 
(Additional file 4: Fig. S4). We trained CoSTA on these data with different ratios of 
SE and non-SE genes, from 90:10 to 10:90. We found that the representation of SE 
genes by CoSTA is distinct from non-SE genes, even when CoSTA was trained with 
a high percentage of non-SE genes. Meanwhile, CoSTA demonstrates the capacity 
to distinguish different patterns of SE genes even when non-SE genes exist (Addi-
tional file 4: Fig. S4). Further, CoSTA does not separate even a large number of non-
SE genes into separate categories, showing that it does not create false signal out 
of noise. Here, we also note that a strength of CoSTA compared to methods like 
SpatialDE is that the output feature vector enables visualization, as is presented 
throughout these simulation results. While Spatial DE can classify genes into cat-
egories, it does not produce a result that can visualize how SE and non-SE genes are 
separated as we did here for CoSTA. Overall, the performance of CoSTA with syn-
thetic data demonstrates that CoSTA can learn discriminating spatial features.
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CoSTA classifies genes by cell type and identifies quantitative relationships between genes 

in MERFISH data

To extend the application of CoSTA to real spatial transcriptomics data, we first applied 
it to reanalyze a MERFISH dataset (see MERFISH Analysis in Methods for complete 
details) [15]. In order to compare with published analyses using the SPARK approach, 
we focused on the same slice of the mouse hypothalamus (Bregma + 0.11 mm from ani-
mal 18) [5]. The expression patterns of a set of 155 genes expected to be spatially vari-
able were measured with MERFISH for this slice, along with 5 blank control genes. We 
first initialized a ConvNet and forwarded the MERFISH spatial gene expression matrices 
through it to obtain gene feature vectors. Then we clustered the 155 spatially variable 
genes with the 5 blank genes and with 9 cell type-specific expression patterns defined 
by the original publication through a combination of MERFISH and scRNA-seq data. 
We clustered these genes, controls, and cell type patterns into 10 groups and visualized 
them by UMAP. Without training, SE genes, control genes, and cell types are spread 
across the 2-dimensional UMAP space and boundaries between groups are not dis-
tinctively defined (Fig. 2a). Next, we trained the CoSTA model to obtain refined feature 
vectors. After training, SE genes, control genes and cell types formed distinct groups 
that have clearer boundaries in the 2D visualization (Fig. 2b) and refined cluster mem-
berships that reproducibly and quantitatively form tighter clusters according to a linear 
intrinsic dimensionality (LID) estimator (Fig. 2c) [16].

From this MERFISH data, SPARK identified 145 SE genes including one blank con-
trol, and SpatialDE found 139 SE genes with one blank control [5]. CoSTA is designed 
primarily to detect similarities between spatial gene expression patterns, rather than to 
estimate spatial relevance (identify SE genes). So, to define which genes are called SE by 
CoSTA, we examined which genes CoSTA identified as highly correlated to one of the 9 
pre-defined cell type specific expression patterns. We found a correlation threshold at 
which CoSTA identified 133 SE genes associated with one of the different cell type pat-
terns, while none of the blank controls were called associated with a pattern (Additional 
file 14: Table S2). Thus, CoSTA’s sensitivity is slightly lower than SPARK and SpatialDE, 
but with higher specificity (no blank controls detected). However, CoSTA’s result is both 
more sensitive and more specific than the Trensceek approach, which only identified 108 
SE genes and one blank control [17].

Three genes in this MERFISH dataset, Avpr1a, Chat, and Nup62cl, were highlighted 
by Sun et al., because they were only identified as SE by SPARK [5]. CoSTA is able to 
identify the spatial expression patterns of these genes, but also reveals by quantita-
tive similarity that these genes are more distantly related to cell type expression pat-
terns than other genes. We examined both the significantly similar groups determined 
by CoSTA and used the spatial representation learned by CoSTA to measure Euclidean 
distances of these genes to each other and to cell type expression patterns (Fig. 2D, E 
and Additional file 14: Table S2). For example, CoSTA identifies genes such as Nnat and 
Cd24a as significantly similar to the Ependymal cell type pattern (Dotted lines, Fig. 2D). 
Avpr1a is quantified as more distant from this Ependymal pattern (Fig. 2E), though it 
does show some similarity to Nnat and Cd24a (Fig. 2D). Similarly, Mbp and Opalin are 
significantly correlated to the Mature OD cell type pattern (Fig.  2D, E and Additional 
file 14: Table S2). Nup62cl is more distant from the Mature OD than Opalin and Mbp, 
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but is related to the expression patterns of Mbp and Opalin. Visual inspection of Avpr1a 
and Nup62cl confirms that these patterns are quite noisy and less similar to the key cell 
type pattern (Fig. 2d). Thus, by quantifying relationships between patterns rather than 
reporting uniform sets of SE genes, CoSTA clarifies that these genes are likely identified 
by SPARK and no other method because they are in fact less spatially similar to key cell 
type patterns. CoSTA’s ability to quantify relationships between genes, rather than only 
categorizing genes, is important in biological situations, where there is often going to be 
a range of relative similarity that would be oversimplified by strict categorization.

CoSTA learns spatial pattern‑dependent representations of Slide‑seq data

We next expand our application of CoSTA to Slide-seq data. Slide-seq takes advantage 
of high-throughput single cell RNA sequencing and barcoding. Therefore, it enables spa-
tial gene expression measurement for all genes in the genome [3]. As a first demonstra-
tion that CoSTA can be applied to this type of high-throughput spatial transcriptomics 
data, we performed an experiment-mixing test to evaluate whether CoSTA can separate 
different spatial patterns. Due to the unavailability of a “gold standard” for positive and 
negative spatial similarity of gene expression, we mixed gene matrices from four differ-
ent spatial transcriptomics experiments by Slide-seq and tested the ability of CoSTA to 
deconvolve them [3]. Each overall experiment is performed on an independent brain 
slice of a different mouse, so the shapes and spatial features of each experimental sample 
overall constitute a large difference between experiments. Each gene within each experi-
ment will have a somewhat different pattern (and it will be our next goal to distinguish 
those differences and similarities), but we first tested whether genes within the same 
experiment could be classified together based on their overall spatial features. We imple-
mented training as above and then clustered the mixed experiment gene matrices into 
4 clusters. The confusion matrix shows clustering labels are largely consistent with true 
experimental labels (Additional file 15: Table S3).

We next performed a shuffling test on gene matrices from one Slide-seq experiment, 
to break correlated patterns of neighboring regions in the way described for the shuffling 
of synthetic data above (see Methods for shuffling details). We trained a new model and 
examined model-reported similarity among expression patterns of ten random genes. 
If CoSTA successfully learned spatial features that distinguish the expression of these 
genes, the distances between two genes should change when spatial patterns and rela-
tionships between neighboring pixels are disrupted. We randomly selected Prdx5 as the 
reference gene and calculated Euclidean distances of 9 other genes with it. We order 
these ten genes based on their distances to Prdx5. Then, we shuffled gene matrices 100 
times, passed the shuffled matrices through the trained ConvNet, and recalculate paired 
distances with Prdx5 (Fig. 3a). We find that in 5 of 9 comparisons, distances decreased 
upon shuffling, as the distinctive patterns captured by CoSTA were removed by shuf-
fling, converting the matrices into generic, more similar patterns. In 4 of 9 comparisons, 
distances increased with shuffling, likely indicating that key similarities between the 
spatial patterns became disrupted during shuffling (Fig. 3b). In contrast, the similarity 
measured by overlap analysis would not change after shuffling since individual pixels 
were shuffled identically. This result again suggests, this time using real biological data, 
that the learned features by CoSTA are strongly tied to the spatial expression pattern.
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Ensemble learning identifies stable relationships between spatial gene expression patterns

We next applied CoSTA to reanalyze two spatial transcriptomics datasets measured by 
Slide-seq [3]. These datasets are derived from two biological conditions: 3  days after 
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Fig. 3  CoSTA Analysis of Slide-seq data. A Shuffling test to disrupt spatial patterns. Left panel: The first row 
shows the three original spatial expression patterns of three example genes. Images in the second row are 
spatial patterns after shuffling (all images shuffled in the same way so that pixel-level overlap is preserved 
while spatial neighbor relationships are broken- see Methods and Additional file 12: Fig. S12 for shuffling 
approach details). Right panel: CoSTA-derived distances between 9 randomly selected genes and Prdx5. Genes 
are ordered based on how close they are to Prdx5 using spatial features extracted by CoSTA from true gene 
matrices (left to right: closest to farthest). Shuffled gene matrices are forwarded through CoSTA, and distances 
between gene pairs are subtracted from the unshuffled distances. Each point represents distance change for 
one shuffling (100 shufflings total). Red line at 0 indicates no change in distance would be observed using 
overlap calculations. B The number of overlapped gene neighbors of Vim, Ctsd, and Gfap before and after 
each weight updating across all training epochs (30 nearest neighbors considered, see Additional file 5: Fig. S5 
for different size neighbor sets). Results shown for two experiments: 3 days (blue) or 2 weeks (red) after brain 
injury. C Overlap of CoSTA, Spatial DE and SPARK genes called SE and correlated with Vim, Ctsd, and Gfap in the 
2 weeks after injury dataset. Yellow = SPARK correlated genes also SE by CoSTA. Blue = SPARK correlated genes 
not SE by CoSTA. Red cross-hatching = Proportion of each category also identified by SpatialDE. Below, Gene 
Ontology enrichment (Panther) of genes that overlap between SPARK, SpatialDE AND CoSTA (left) and those 
that overlap between SPARK and Spatial DE but NOT CoSTA (Right). D GO term enrichment in the 2 weeks after 
injury Vim, Ctsd, and Gfap correlated gene sets from different approaches for biologically relevant functions 
identified by the original Slide-seq analysis. Quantified along the axis is the fraction of genes in each method’s 
correlated gene list that are annotated with the given GO term
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brain injury (“3  days”) and 2  weeks after brain injury (“2  weeks”). In the first investi-
gation of these two datasets in Slide-seq, Rodriques et  al. primarily focused on genes 
that were spatially correlated with Vim, Ctsd and Gfap at both 3 days and 2 weeks after 
brain injury [3]. For comparison, we also examined genes correlated with Vim, Ctsd and 
Gfap from our CoSTA results. One property of our approach is that features of each 
gene change every epoch when weights are updated. This may result in changes to the 
nearest neighbors of a gene during model training and can be used to infer how strong 
and stable the inferred spatial relationships are in a given condition. We measured the 
overlap between detected Vim, Ctsd, and Gfap neighbor genes before and after weight 
updating across training epochs, and we found neighbors tend to be more stable for the 
2 weeks dataset than for the 3 days dataset (Fig. 3b and Additional file 5: Fig. S5). This 
may indicate that in the acute phase after injury, genes related to Vim, Ctsd and Gfap are 
more variable and less spatially patterned, but these patterns become stronger at 2-week 
time point after injury.

To screen significantly spatially patterned genes out from noise, we use ensemble 
learning. Briefly, we initialized 5 ConvNets and trained them separately. We then cal-
culated the nearest neighbors for every gene in the same dataset, at neighbor set sizes 
of 5, 10, 15, 20, 25, 30, 40, 50, and 100. We use a broad range of neighboring levels 
because different genes may form different sizes of communities. Next, we calculated 
Jaccard similarities across the 5 CoSTA models and keep genes that have an aver-
aged Jaccard similarity larger than 0.2 at least in one level. We call genes that pass 
the threshold “stable”, and genes that are filtered out as “unstable”. We propose that 
the percentage of stable vs. unstable genes represents the degree of spatial patterning 
in the experiment set. Overall, a smaller proportion of genes were considered stable 
at 3  days, consistent with the more variable gene neighbors observed for the 3-day 
condition above. These ‘stable’ genes can also be considered a CoSTA-derived set of 
‘spatially expressed’ (SE) genes for comparison to SE genes identified by SPARK. The 
majority of CoSTA-SE genes are also called SE by SPARK (86% at 3 days and 78% at 
2 weeks, Additional file 6: Fig. S6a). Vim, Ctsd, and Gfap are considered SE by CoSTA 
in the 2-week data but not in the 3-day dataset. Notably, Vim, Ctsd, and Gfap are also 
not present in the 3 days SE gene list identified by SPARK, and only Ctsd and Gfap 
were identified as SE genes by SPARK in the 2 weeks data. We note that less strongly 
patterned genes could reflect actively variable biological regulation (such as might 
happen during acute response to injury), not only technique noise. We are unable to 
definitively distinguish a weak spatial pattern from inherent noise, because of lack of 
“ground truth” for pattern matching. However, we can, as above, disrupt spatial pat-
terns by shuffling the true datasets, maintaining pixelwise correlations between genes 
but removing spatial information (see Methods for shuffling approach details). We 
shuffled a whole set of gene matrices from 3 days and 2 weeks and applied CoSTA to 
these datasets. As when we shuffled simulated data in Additional file 2: Figure S2, we 
find that this shuffled dataset has overall lower NMI than its original dataset during 
training (Additional file 6: Fig. S6b; see Methods for details of NMI use). Further, sub-
stantially fewer SE genes are identified in the 2 week randomized data as compared 
to the real data (Additional file  6: Fig. S6c). This again demonstrates that CoSTA 
captures spatial features that are distinct from individual pixel information. For true 
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3-day and shuffled 3-day data, there is not a clear difference in the number of identi-
fied SE genes (Additional file 6: Fig. S6c). This again suggests that the spatial patterns 
are much less strong within the 3-day dataset. Indeed, few patterns are visually obvi-
ous for example gene matrices from 3 days (Additional file 7: Fig. S7a).

CoSTA identifies smaller, but specific and biologically relevant, sets of spatially correlated 

genes compared to SPARK and SpatialDE

We focused our further analysis on the 2-week data. We applied SpatialDE and SPARK 
to this dataset for comparison to CoSTA. The original Slide-seq publication previously 
identified 843 genes that are correlated with Vim, Ctsd, and Gfap via overlap analysis 
[3]. However, CoSTA, with a rigid neighbor similarity stability threshold, identified 
many fewer correlated genes (63 with z-scores <  − 2.325), and only 19 genes matched 
the original Slide-seq set (Additional file  8: Fig. S8a). SPARK first identified 1294 sig-
nificantly SE genes and then clustered them into 10 groups by hierarchical clustering 
with individual pixels as features. Our CoSTA correlated gene list only has 5 gene over-
laps with genes that are grouped with Vim, Ctsd, and Gfap by SPARK. We also used 
SpatialDE to find significant SE genes. Surprisingly, the whole dataset passed the Spa-
tialDE test for significant spatial expression. Then, we applied the unsupervised pattern 
detection algorithm built in SpatialDE to cluster genes into 10 groups. This resulted in a 
large number of genes grouped with Vim, Ctsd, and Gfap. A majority of our CoSTA set 
(41 genes) overlaps with genes identified by SpatialDE (Additional file 8: Fig. S8a). The 
set of correlated genes identified by CoSTA is much smaller than sets identified by the 
other 3 methods. This is in part because CoSTA requires stable relationships between 
neighboring genes to be classified as an SE gene at all, and only SE genes can then be 
identified as highly similar to the genes of interest. Indeed, out of 350 genes identified by 
SPARK as correlated with Vim, Ctsd, and Gfap, only 28 are even classified as SE genes by 
CoSTA. However, we observe evidence that this CoSTA-identified SE subset is reliable 
and meaningful. First, 75% of these CoSTA-SE genes identified by SPARK are also identi-
fied as correlated by SpatialDE, while in the remaining non CoSTA-SE set, there is only 
a 15% overlap between SPARK and SpatialDE (Fig. 3c). Further, the genes overlapping 
between SPARK, SpatialDE, and CoSTA have biologically relevant function enrichment 
(such as ion transport and exocytosis) while the genes overlapping between SPARK 
and SpatialDE but not identified as SE by CoSTA show no function enrichment at all 
(Fig. 3c). We also observe visible evidence of spatial pattern similarity to the 3 genes of 
interest among genes considered SE and highly correlated by CoSTA and less evidence 
of similarity for genes identified only by SPARK (Additional file 8: Fig. S8b).

Further, we find that the 63 genes identified by CoSTA as significantly correlated 
to Vim, Gfap, and Ctsd are highly enriched for meaningful biological function. In the 
original study, Rodriques et  al. highlighted that genes correlated with Vim, Ctsd, and 
Gfap are enriched for functions in immune response, gliogenesis and oligodendrocyte 
development—all functions that are biologically expected in response to injury [3]. We 
found that the correlated genes identified by CoSTA have higher enrichment in immune 
response and gliogenesis than the genes identified by SpatialDE, SPARK and this original 
Slide-seq report (Fig. 3d). However, none of genes fall into category of oligodendrocyte 
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development. When we visually inspected expression patterns of genes in the cat-
egory of oligodendrocyte development, their individual and collective patterns do not 
have similarities to expression patterns of Vim, Ctsd, and Gfap. They are either noisy 
or expressed globally (Additional file 7: Fig. S7b). From results above, we conclude that 
CoSTA returns a reduced, stringent set of correlated genes that are more enriched for 
biological significance than the larger sets returned by other methods.

As noted earlier, one key difference between CoSTA and these other methods is that 
CoSTA provides not only sets of similar genes, but also quantitative pairwise compari-
sons between all genes. Thus, we can extract from CoSTA a ranked list of how similar 
each CoSTA-SE gene is to Vim, Ctsd, and Gfap (Additional file 16: Table S4). This ena-
bles us to search for enriched biological functions using similarity rankings rather than 
an arbitrary cutoff using the GOrilla enrichment tool [18]. Using the whole ranked list, 
we find novel enriched functions such as collagen metabolism, astrocyte differentiation, 
and vascular endothelial growth factor signaling that may be relevant to damage repair 
(Additional file 8: Fig. S8c). Pixelwise correlation can also be used to create a ranked sim-
ilarity list. When these two approaches are compared, we observe some highly ranked 
genes shared by both approaches with clear pattern overlap to the query genes. Where 
the two approaches differ widely in gene ranking, CoSTA-specific genes tend to have the 
key patterns of expression as contiguous patterns superimposed on a generic weak back-
ground while pixel-specific genes tend to have isolated pixels overlapping the key areas 
(Additional file 8: Fig. S8d).

To avoid observation bias by only looking at a few example genes that are classified dif-
ferently by different approaches, we next globally compared the types of spatial patterns 
detected uniquely by CoSTA and other previous methods. For each method (CoSTA, 
SpatialDE, SPARK, and the original Slide-seq overlap approach), we consider the list of 
genes classified as spatially correlated with Vim, Ctsd, and Gfap as described above. The 
average expression pattern of genes detected as correlated to these query genes varies 
somewhat according to approach. Notably, the average CoSTA pattern is more localized 
to the upper right region, where the damage was induced (Fig. 4a). In contrast, SPARK, 
SpatialDE, and Slide-seq each identify so many correlated genes that their average pat-
tern looks very much like the average pattern of all genes in the dataset (compare Fig. 4a 
with Additional file 9: Fig. S9) rather than distinctive. This again emphasizes the smaller, 
but perhaps more specific, set of genes identified as correlated by CoSTA. When we 
compare genes identified as correlated by CoSTA and not certain other techniques, we 
can see that CoSTA-unique genes have certain local patterns that were not captured as 
much by other methods (Fig. 4b). In contrast, again, genes detected by other methods 
and not CoSTA look more similar on average to the average gene expression of the entire 
gene set (Fig. 4c).

Finally, rather than using a significant correlation threshold, we clustered all 
CoSTA-determined SE genes at the 2-week time point into 6 groups using the learned 
spatial representation. The cluster that contains Vim, Ctsd, and Gfap (cluster 3) is 
composed of 89 genes expressed in a distinct pattern (Fig. 4d and Additional file 17: 
Table  S5). Other clusters also successfully identify distinctive spatial patterns of 
expression (Fig. 4d and Additional file 9: Fig. S9). We also used SpatialDE to cluster 
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SE genes identified by CoSTA into 6 clusters. We found that the two methods share 
many commonalities in detecting patterns, with some disagreements (Additional 
file 9: Fig. S9). Notably, when only the narrower set of SE genes identified by CoSTA 
is used, the cluster of genes identified by SpatialDE containing Vim, Gfap, and Ctsd 
(cluster 2, Additional file 9: Fig. S9) has a much more specific, localized pattern than 
when SpatialDE default settings are used to classify all genes. This again suggests that 
CoSTA provides a meaningful increase in specificity by identifying genes with stable 
spatial relationships.
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Discussion
We have shown that our CoSTA approach can successfully implement deep learning 
ideas from computer vision to infer spatial gene expression relationships. This approach 
can be applied to any technology that outputs an image-type matrix of gene expres-
sion information for each gene, including not only Slide-seq [3, 19] and MERFISH [20] 
explored here, but also STARmap [21], 10 × Visium (10 × Genomics), and HDST [22] 
approaches. Identifying spatial patterns from high-throughput spatial transcriptom-
ics data is still challenging, however. We often do not have a clear ground truth answer 
for what should be detected as a pattern vs. noise and what similarities in patterns are 
most biologically relevant. Different approaches will have different strengths and weak-
nesses depending on the types of patterns and relationships to be detected. The very first 
step in any approach to analyzing spatial transcriptomics data is estimating significant 
SE genes. To identify SE genes, SpatialDE relies on the assumption that spatial expres-
sion of a given gene follows a multivariate normal distribution across spatial coordinates 
[4]. However, this assumption leads all genes in a Slide-seq dataset to be identified as 
SE genes by SpatialDE. This may occur because noisy signals generated by the Slide-seq 
experiment may also follow or are confounded within the multivariate normal distribu-
tion. Therefore, a multivariate normal model will not be able to distinguish spatial pat-
terns from noise in certain types of experimental data. Different from SpatialDE, both 
SPARK and CoSTA make use of kernels to identify SE genes. SPARK defined 5 peri-
odic and 5 gaussian kernels to cover a range of possible spatial patterns that the authors 
believe are observed in common biological datasets [5]. Therefore, identifying SE genes 
involves a statistical evaluation of how well kernels match spatial patterns of interest. 
This SPARK approach is very valuable if an experimental dataset is accompanied by 
prior knowledge about relevant spatial patterns. Kernels in CoSTA also serve a similar 
purpose but are not predefined. Instead, kernels in CoSTA are learned through training 
a neural network. To identify SE genes, we rely on the idea that a true spatial pattern 
should be collective, which means a group of genes should share a spatial pattern. There-
fore, when we apply kernels learned independently from 5 ConvNets, genes in the same 
group should have similar responses to these kernels. Conversely, a noisy gene expres-
sion pattern would respond to the 5 sets of ConvNet kernels differently, clustered with 
different groups of genes each time. Indeed, we showed that this kernel approach helps 
identify a more focused set SE genes in Slide-seq data without requiring an a priori defi-
nition of relevant patterns that SPARK requires. We have shown by various measures 
that the SE genes identified by CoSTA are a much smaller set, but with high enrichment 
for meaningful biological function, and more likely to be also detected by multiple other 
methods, increasing confidence in this set.

Identification of SE genes is just the beginning of extracting biological meaning from 
spatial gene expression. Careful analysis of the spatial relationships between genes is also 
necessary. Often, as in overlap analysis, studying gene relationships is based on vector-
izing gene expression patterns and measuring their similarities in a latent space with-
out considering spatial information such as the position of neighboring datapoints. One 
key motivation for CoSTA, therefore, is to preserve a spatial and shape representation 
of gene expression patterns. In comparison, SPARK does not have a pattern detection 
function, but can be combined with hierarchical clustering with pixels as features to 
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assign each gene a pattern label. SpatialDE implements a clustering model based on a 
spatial Gaussian-process-based (GP) prior [4]. This clustering model is an extension of 
GMM with the addition of a spatial prior on cluster centroids. Therefore, pattern detec-
tion by SpatialDE goes beyond the pixel level. In our method, we define the key goal 
as learning a spatial representation for each gene. We have demonstrated that features 
learned by CoSTA are not isolated to individual pixels, while SpatialDE responds more 
to individual pixel information in our simulations. Because of use of convolutional lay-
ers, spatial features learned by our method represent local patterns and multiple local 
patterns together form the global pattern for the gene matrix. Finally, vectorizing gene 
matrices allows us not only to find different spatial patterns within a dataset by cluster-
ing but also to study spatial relationships of pairs of genes. Such a pairwise examination, 
in contrast, is not implemented in SpatialDE.

Not only in detection of a narrower set of SE genes, but also in identifying relation-
ships between genes, our results consistently suggest that CoSTA provides more specific 
though less sensitive results than other methods. Throughout our analyses, we find that 
overlap approaches, as well as SPARK and SpatialDE tend to group together larger sets 
of genes that are more distant in their spatial pattern relationships, while CoSTA cap-
tures a narrower and more specific set of genes. This was observed in our analysis of 
digit image data as well as in applications to Slide-Seq and, to a lesser extent, MERFISH. 
This difference in outcomes again demonstrates the different advantages and disadvan-
tages of different approaches. CoSTA would likely be more useful in a case where users 
want to narrow their set of candidate related genes for future experiments. We also note 
throughout the Methods section alterations to parameters of CoSTA that could allow for 
detection of more general patterns.

Again, depending on the biological reality underlying the data, different approaches 
will have different advantages. The CoSTA approach will have advantages in cases where 
overall pattern shape is important, while direct overlap calculations may perform better 
when exact cell to cell correlation is more biologically relevant. The CoSTA approach 
may also have future applications to datasets in which images of different genes are not 
from the identical biological section, but instead from neighboring tissue slices, as is 
common in traditional histology. If a pattern or shape of expression is maintained while 
exact overlap is lost, as we demonstrated with our simulated masking approach, CoSTA 
could still detect such a pattern similarity where an overlap approach would not.

Conclusions
In this study, we demonstrated that our deep learning CoSTA approach provides a dif-
ferent angle to spatial transcriptomics analysis by focusing on the shape of expression 
patterns. CoSTA includes more information about the positions of neighboring pixels 
than does an overlap or individual pixel correlation approach. CoSTA can be applied 
to any form of spatial transcriptomics data that are represented in matrix form to find 
genes expressed in similar patterns as well as to evaluate the strength of the spatial pat-
terning of each gene. We find that CoSTA captures more focused groups of spatially 
related genes while still detecting the biological function information found by other 
approaches that report larger sets of related genes.
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Methods
Resizing gene images and normalization

The Slide-seq data was obtained from: https://​porta​ls.​broad​insti​tute.​org/​single_​cell/​
study/​slide-​seq-​study. The raw images of Slide-seq consist of over 1,000,000 pixels, 
which makes computation difficult. Therefore, we first binned 100 pixels into one pixel 
and resized matrices from different experiments into the same 48X48 image size. This 
results in a lower resolution, which may obscure small-scale fine details, but large scale 
global features of expression patterns of genes are preserved. CoSTA can be applied to 
any spatial transcriptomics dataset at any resolution, as long as the user has sufficient 
computational resources available. To avoid extreme computational burden, we recom-
mend that users interested in high resolution features zoom into regions of interest and 
crop images in that region to efficiently apply CoSTA to their data. After binning, we 
normalized gene matrices as described in Svensson et al. [4]. This normalization involves 
finding the total gene expression counts for each pixel across all gene matrices and then 
normalizing each pixel of each matrix by the log total counts across all matrices for this 
pixel. If this normalization is not performed, the expression of a gene could be over or 
undercounted at certain spatial locations where expression levels were systematically 
high or low for all genes. Normalization by total counts at each pixel ensures that our 
approach captures the spatial covariance for each gene beyond this potential artifac-
tual effect. For visualization of expression patterns, we instead use averaged raw count 
values, and scale values from 0 to 1 divided by the maximum value. Thus, expression 
images in all figures are in 0 to 1 scale. This allows a more direct visual inspection of the 
raw data.

CoSTA architecture

1.	 ConvNet

The ConvNet stage of CoSTA consists of 3 convolutional layers for Slide-seq and 
MERFISH analysis. Inputs are sets of spatial gene expression images (matrices) as 
described above. We first initialize a ConvNet randomly and then forward these gene 
expression matrices through the ConvNet. All weights in convolutional layers are ini-
tialized on a Xavier uniform distribution. Each convolutional layer is activated by a 
rectified linear unit function and is followed by a batch normalization layer and a max 
pooling layer to reduce the size of the output. To produce a feature vector for each 
gene, we flatten the matrix output from the last max pooling layer by concatenating 
all matrix columns into a single column. One fully connected layer is added to the 
model after the last max pooling layer with a customized softmax activation to pro-
duce outputs as probabilities (See 4. Loss Function). The fully connected layer is only 
used during training, when we need gradients to pass backwards through the model. 
Once trained, this fully connected layer will be discarded, and we use L2-normalized 
outputs as the spatial representations. Specific parameters used in ConvNet, such as 
the number and size of filters in each convolutional layer, can be found in python 
code. We note that different numbers of convolutional layers have been used for 

https://portals.broadinstitute.org/single_cell/study/slide-seq-study
https://portals.broadinstitute.org/single_cell/study/slide-seq-study


Page 18 of 26Xu and McCord ﻿BMC Bioinformatics          (2021) 22:397 

different image classification tasks. We recommend that users start with a 3-convolu-
tional-layer network for initial data exploration. However, if a dataset has a larger size 
of gene matrices, outputs from the 3-convolutional-layer network will be very long 
vectors. Therefore, users can increase the number of convolutional layers to decrease 
the dimensions of outputs if needed.

2.	 UMAP and clustering

The flattened spatial representation vector output from the three convolutional layers 
is reduced by UMAP before GMM clustering. We implemented UMAP using the origi-
nal python source code [9]. We set up “n_neighbors = 20” and “min_dist = 0”, while using 
UMAP for dimension reduction. To cluster samples into N clusters, a user can reduce 
dimensions to N UMAP-dimensions. In this study, we reduce all samples to 30 UMAP-
dimensions and cluster all samples into 30 clusters by GMM. While 30 clusters are used 
here for the model training purpose, once the model is trained, the user can use the final 
output vector of spatial features to cluster genes into any number of groups desired. To 
test the influence of the initial choice of number of clusters, we tested 10, 20, and 30, 50, 
75, and 100 clusters in 2-week Slide-seq data. Using larger numbers of clusters leads to 
the identification of fewer SE genes (Additional file 10: Fig. S10a). Our model can con-
verge no matter how many clusters are used for training (Additional file 10: Fig. S10b). 
For a purpose of comparison, we called the 15 nearest genes of Vim, Ctsd, and Gfap 
individually, and total 45 genes in one test as correlated genes were used for compar-
ing effects of the number of clusters. The choice of the number of clusters will influ-
ence the scale of correlated expression pattern detected (Additional file 10: Fig. S10c). 
More global pattern differences will be detected using smaller numbers of clusters while 
finer scale pattern distinctions are detected with larger numbers of clusters (Additional 
file  10: Fig. S10c). Increasing the number of clusters will also bring a disadvantage of 
larger computational cost and longer training time (Additional file 18: Table S6). In this 
case, 30 clusters show good specificity, and the detected spatial pattern is not further 
refined with increasing cluster numbers (Additional file 10: Fig. S10c). Without ground 
truth for a dataset, the number of clusters must be chosen based on the scale of patterns 
desired to be detected for a particular biological application and the results inspected 
visually.

3.	 Auxiliary target distribution as soft assignment

After clustering, we calculate centroids by averaging samples in the same cluster 
(Eq. 1).

where ci is the centroid for the ith cluster, Mi is the total number of samples in this clus-
ter, and xi,j is a reduced UMAP vector for the jth sample in the ith cluster.

Then, each sample is assigned probabilities based on Euclidean distances to cluster 
centroids (Eq. 2).

(1)ci =
1

Mi

Mi
∑

j=1

xij
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where di is the Euclidean distance of sample x to the centroid ci , and N  is the total num-
ber of clusters.

Next, we transform probabilities of each sample to an auxiliary target distribution 
using Eq. (3).

where fi =
M
∑

j=1

pij . i denotes the ith cluster and j denotes the jth sample, pij is probability 

that the jth sample belongs to the ith that we get through Eq. (2). qij is the auxiliary tar-
get probability that the jth sample belongs to the ith cluster. This transformation was 
proposed by Xie et al., which is raising pij to the second power and then normalizing by 
frequency per cluster [23]. The use of power 2 is to highlight samples that have high con-
fidence in the clustering task and discount samples for which the model is uncertain 
about cluster assignment.

4.	 Loss function

To optimize the neural network, we use bi-tempered logistic loss based on Bregman 
Divergences as the primary loss function. Bi-tempered logistic loss was proposed by 
Amid et al. and showed advantage of making supervised learning robust to noise [10]. To 
achieve the robustness, they devised tempered softmax function and tempered logistic 
loss and gave detailed mathematical reasons behind (Eq. 4, 5). We reason that training 
CoSTA also faces the problem of unknown noise within the data, because clustering will 
assign wrong labels to samples. This is even true when clustering is based on the Con-
vNet that is randomly initialized. Therefore, use of bi-tempered logistic loss is to deal 
with wrong or uncertain labels generated by clustering. In the equation below, t1 and 
t2 are two temperature parameters proposed in the original work. t1 controls the log-
transformation of input values, while t2 controls the exponential function of activated 
input values. When both t1 and t2 are equal to 1, bi-tempered logistic loss is the common 
KL-divergence loss with softmax activation.

where logt1(x) can approximate to 1
1−t1

(

x1−t1 − 1
)

 . yi is the target value and ŷi is the pre-
dicted value out of the fully connected layer.

where α̂i is linear activation of output of the fully connected layer for the ith cluster, and 
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Center loss is an optional setting in our model. Center loss was first proposed to assist 
models to learn discriminative representations in supervised learning [24]. Optimizing 
models with center loss is equal to minimizing intra-class variation defined by Eq. (6).

where ci is the centroid of ith cluster, and xj is the hidden features of jth sample in this 
cluster.

Because lowering center loss will push samples closer to the cluster center, the learned 
representations will be more discriminative in the hidden space. Though we did not use 
center loss to train models for Slide-seq data, we found that adding center loss during 
training can substantially improve accuracy in Fashion image data (Additional file  11: 
Fig. S11) and the synthetic data with variance as 0.6. If a user has a biological dataset 
with some degree of known ground truth for comparison, initial data exploration should 
explore whether combining center loss and bi-tempered logistic loss is more appropriate 
to capture the known spatial features of the data.

5.	 Normalized mutual information

Unlike supervised learning, we do not have ground truth for training in the CoSTA 
approach. To monitor how well training proceeds, we use normalized mutual informa-
tion (NMI) to compare clustering labels before and after weight updating across training 
epochs. Increase of NMI during training indicates a decreased changing of clustering 
labels and thus suggests convergence of model. We cannot hold aside a validation set 
during CoSTA training. Therefore, NMI also serves as a metric of overfitting. Once we 
do not observe a large jump of NMI in consecutive epochs, we consider that the model 
has converged. For tests with synthetic data, we also use NMI to quantify how well the 
CoSTA-assigned labels match the true labels.

6.	 Experiments with common image datasets

MNIST handwritten, USPS-digit, and Fashion image datasets were downloaded from: 
http://​yann.​lecun.​com/​exdb/​mnist/, https://​www.​kaggle.​com/​bista​umanga/​usps-​datas​
et and https://​www.​kaggle.​com/​zalan​do-​resea​rch/​fashi​onmni​st. These datasets come 
with true labels, and we noticed that the CoSTA approach can learn to predict more 
true labels than the model that is just initialized and exceeds UMAP + GMM with pixel 
values as features (Additional file 11: Fig. S11). For the Fashion image dataset, CoSTA 
was greatly improved after we add center loss with bi-tempered logistic loss as a whole 
loss function. However, the learning ability of CoSTA with these datasets is less than 
with supervised learning approaches (typically > 95% accuracy). The highest accuracy we 
got is 0.961 (MNIST handwritten), 0.931 (USPS-digit) and 0.686 (Fashion), as measured 
by NMI between the clustering label and true class label. NMIs achieved with CoSTA 
applied to the MNIST and Fashion datasets are higher than for all other deep learn-
ing clustering methods, and the CoSTA NMI for USPS scores second in the ranking of 
deep learning approach performance [7]. We also tested whether SpatialDE can identify 

(6)Lc =
1

2

Mi
∑

j=1

�xi − cj�
2

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/zalando-research/fashionmnist
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patterns in these three image datasets. We used the automatic histology pattern detec-
tion implemented in SpatialDE to cluster images in MNIST handwritten, USPS-digit, 
and Fashion into 10 groups, and SpatialDE achieved 0.532 (MNIST handwritten), 0.658 
(USPS-digit), and 0.568 (Fashion) NMIs, which are even lower than UMAP + GMM 
clustering with pixels (Additional file 11: Fig. S11).

Simulation datasets

1.	 Simulation of synthetic data with 5 patterns

We followed the simulation approach in SPARK to generate 10,000 fake genes that can 
be assigned into 5 distinct patterns [5]. We added residual errors onto each spatial coor-
dinate independently based on a normal distribution with mean of zero and variance 
ranging from 0.2 to 0.6, resulting in 5 synthetic datasets with different noise levels. The 
simulation code can be found at https://​github.​com/​xzhou​lab/​SPARK.

2.	 Synthetic data with mask

We selected synthetic data with variance as 0.4 for this test. We arbitrarily selected a 
region to mask, a region in the blue circle of Additional file 3: Fig. S3b. Though it is an 
arbitrary selection, we intentionally avoid any region that is crucial for each expression 
pattern. Therefore, the mask region will not disrupt spatial patterns visually. For each 
pattern, we randomly chose half of the simulated genes and added the mask by suppress-
ing expression in that region to zero. The other half of the simulated genes remain intact. 
Thus, we have 5,000 genes each with and without masks.

3.	 Mimic real spatial transcriptomic data by mixing SE and non-SE genes

We still focus on synthetic data with variance of 0.4. We further introduced non-SE 
genes to build more synthetic datasets that have different ratios of SE and non-SE genes. 
Code to generate non-SE genes can also be found at https://​github.​com/​xzhou​lab/​
SPARK. In this test, we generated 5 synthetic datasets with SE and non-SE ratios ranging 
from 90:10 to 10:90.

Shuffling approach to disrupt spatial information but not pixel correlation

To evaluate the degree to which CoSTA and other methods detect patterns in space vs. 
pixelwise information, we used a data shuffling approach that would preserve the pixel-
by-pixel correlation between different gene image matrices but disrupt the neighboring 
pixel spatial pattern (Additional file 12: Fig. S12). Each gene matrix (expression image) 
was flattened into a single vector by concatenating all rows of the matrix into a single 
row. Then, the positions of individual elements in these vectors were shuffled identically 
for all gene expression images. That is, for all images, the data at position 2 might now be 
at position 10, while position 10 would now be at position 3, etc. Then, the vectors were 
reformed into a matrix and these identically shuffled gene matrices were passed through 
a given analysis tool. Thus, any methods (such as pixel overlap or correlation) that 
depend only on the one-to-one relationship between pixels between two gene images 

https://github.com/xzhoulab/SPARK
https://github.com/xzhoulab/SPARK
https://github.com/xzhoulab/SPARK
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will perform exactly the same on the shuffled and original data. In contrast, methods 
that capture information about shared patterns between neighboring pixels (such as a 
broader patch of high gene expression) would perform differently on the shuffled data 
when this previously existing broader pattern is disrupted.

SE gene calling

To call out SE genes, we use an approach of ensemble learning. Simply put, we train 5 
CoSTA models independently. We then calculate a set of nearest neighbors for every 
gene in the same dataset, using neighbor set sizes of 5, 10, 15, 20, 25, 30, 40, 50, and 100. 
This is because different genes with their neighbors may form a community with differ-
ent sizes. Using a broad range of neighboring set sizes can enable us to include SE genes 
that only form a small community with a few genes as well as SE genes that fall into 
a large gene group. Next, we calculated Jaccard similarities across the 5 ConvNets and 
keep genes that have averaged Jaccard similarity larger than 0.2 at least in one level of 
neighbor set sizes: 5, 10, 15, 20, 25, 30, 40, 50, or 100.

Correlated gene calling

To find significant correlated genes, we use the learned features from one of 5 CoSTA 
models to calculate Euclidean distance pairwise between all genes. For example, to get 
significant correlated genes with Vim, we calculated distances of all other SE genes to 
Vim based on the learned features. Then, we used these distances to create a null distri-
bution. Distances that have Z-scores lower than − 2.323 (p < 0.01) are considered signifi-
cant, and genes that have significant distances would be called out as correlated genes 
to Vim. Because we trained 5 independent models, we obtain 5 sets of correlated genes 
for each SE gene in the data. Then, we keep correlated genes that show up in at least in 3 
models.

MERFISH analysis

We obtained the MERFISH dataset collected on the mouse preoptic region of the hypo-
thalamus from Dryad [15] (https://​datad​ryad.​org/​stash/​datas​et/​doi:​10.​5061/​dryad.​8t8s2​
48), and we used the slice at Bregma + 0.11  mm from animal 18 for analysis as used 
for SPARK analysis [5]. We reduced the image resolution tenfold and resized images 
to 85X85 matrices. Next, we directly applied a customized CoSTA model to the MER-
FISH dataset. This customized approach has the same general architecture that defines 
CoSTA, as described above. The customized ConvNet also has three convolutional layers 
but each convolutional layer has a larger filter, to reduce the overall size of the output. To 
compare with results from SPARK, we created null distributions for correlated gene call-
ing by permuting images 100 times. Permuted images are forwarded through CoSTA to 
get permuted spatial features. Then we calculated their Euclidean distances with the spa-
tial features of the true image, and these distances serve as the null distribution. Because 
the 9 defined cell type expression patterns are known, significantly correlated genes to 
these 9 expression patterns were called SE genes. For each gene in this MERFISH data-
set, including the 5 blank controls, we calculated its Euclidean distances and its 100-time 
shuffled distances to the 9 expression patterns. If the true Euclidean distance of one gene 
to one cell type pattern are lower than Z-score − 2.323, we call this gene an SE gene that 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248
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is correlated to the expression pattern typical of this particular cell type. To visualize the 
training process, we project the feature vectors of each gene onto the first two UMAP 
dimensions and label each gene according to clusters defined using the whole feature 
vector. We use a linear intrinsic dimensionality (LID) estimator to quantify the change 
in cluster distinctness before and after training. This estimator mainly measures a ratio 
between distance of each datapoint to its the second closest datapoint and distance to its 
closest datapoint. Ratios are ordered from low to high and it fits a line that crosses the 
origin. The slope of this line represents the LID of this data in the latent space. Simply 
put, the lower LID, the more clustered datapoints are in the latent space. Indeed, among 
10 different runs, spatial representations after training show lower LIDs than without 
training.

Analysis of slide‑seq with SPARK and SpatialDE

Analysis of Slide-seq with SPARK and SpatialDE follows the standard analysis pipelines 
proposed by these two methods, with default parameters. Code of analysis can be found 
at the GitHub repository (https://​github.​com/​rpmcc​ordlab/​CoSTA).

Abbreviations
ConvNet: Convolutional neural network; SE or SV gene: Spatially expressed or spatially variable gene; CoSTA: Unsuper-
vised ConvNet learning strategy for spatial transcriptomics analysis.
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Additional file 1. Supplementary Fig. 1: Comparison of CoSTA and overlap analysis performance in finding cor-
related digits to digit 3. 1000 images are sampled from the full MNIST dataset, and each digit contains 100 samples. 
CoSTA (red bars) uniquely calls samples of digit 3 as correlated to digit 3. However, overlap analysis (blue bars) 
identifies some instances of all digits as showing some overlap with digit 3. CoSTA is more specific, but less sensitive: 
CoSTA reports a smaller number of correlated digit 3 images (bottom right) while overlap analysis reports a greater 
number of correlated digits overall.

Additional file 2. Supplementary Fig. 2: Learning curves of CoSTA using true and shuffled synthetic datasets.  
2,000 simulated gene matrices were used for each pattern, as in Fig. 1, with different levels of noise added (“vari-
ance”). Shuffling for each pattern and each simulated gene was performed identically so that pixelwise correlations 
were preserved but spatial relationships between neighbors were disrupted. (see Methods and Fig. S12 for shuffling 
approach details) NMI compares the clustering labels generated by CoSTA against the true class label.

Additional file 3. Supplementary Fig. 3: Performance of CoSTA using synthetic datasets with perturbations. A) 
Left: the same initial spatial patterns as in Fig. 1 were used.  CoSTA was applied to classify 2,000 simulated genes for 
each pattern from the original patterns (top), half shuffled (middle), and fully shuffled (bottom) patterns. Applying 
trained CoSTA representations of simulated genes are visualized by using spatial representation in 2D UMAP. Genes 
are colored based on the true synthetic pattern from which they are derived. Silhouette scores quantify how well 
the representation distinguishes different patterns. (Closer to 1 = more distinguishable patterns are recovered). B) 
Disruption test through masking. Half of the simulated genes from each pattern have a masked region, simulating 
experimental missing data. The masked region is circled in blue in the upper panel. Representation of simulated 
genes based on pixelwise values (left) and features extracted by CoSTA (right) are visualized in 2D UMAP, and genes 
are colored based on pattern type from which they were generated (upper panel) or according to whether they 
belonged to the masked or unmasked set (lower panel).

Additional file 4. Supplementary Fig. 4: Training CoSTA with different ratios of SE and non-SE genes. (A) To simu-
late non-SE genes, five patterns without clear spatial features were used.  (B) Simulated non-SE genes were mixed 
with SE genes simulated from the 5 patterns in Figure 1 in different ratios from 90:10 to 10:90. CoSTA representations 
of these gene mixtures are visualized in 2D UMAP.  Genes are colored based on pattern membership (top) or SE type 
(bottom). (C) Silhouette scores quantify how well the representation distinguishes different patterns for SE and non-
SE genes across different mixture ratios.

Additional file 5. Supplementary Fig. 5: The number of overlapped neighbors of Vim, Ctsd, and Gfap before and 
after each weight updating across all epochs, considering either 10 nearest neighbors (left), 20 nearest neighbors 
(center), or 50 nearest neighbors (right).

https://github.com/rpmccordlab/CoSTA
https://doi.org/10.1186/s12859-021-04314-1
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Additional file 6. Supplementary Fig. 6: The number of SE genes after 3 days and 2 weeks brain injury. (A) Overlap 
of SE genes identified by SPARK or CoSTA. (B) Learning curve of CoSTA with original and shuffled data. (see Methods 
and Fig. S12 for shuffling approach details) Y-axis shows NMI calculated between cluster labels at training epoch t 
and cluster labels at previous epoch t-1. X-axis shows training epoch t. (C) Percent of all measured genes that are 
called SE genes by the 3 approaches.

Additional file 7. Supplementary Fig. 7: Expression patterns of Vim, Ctsd, and Gfap 3 days and 2 weeks after brain 
injury. (A) Expression patterns of Vim, Ctsd, and Gfap 3 days after brain injury. (B) Expression patterns of Vim, Ctsd, 
Gfap and genes involved in oligodendrocyte development (bottom row) 2 weeks after brain injury. Patterns that are 
visibly similar between Vim, Gfap, and Ctsd (small red boxes) are not strikingly visible in oligodendrocyte develop-
ment genes.

Additional file 8. Supplementary Fig. 8: Comparison of SPARK, SpatialDE, CoSTA, and pixel overlap results. (A) 
Overlap of gene lists correlated with Vim, Ctsd, and Gfap at 2 weeks after injury identified by CoSTA, SPARK, SpatialDE, 
and overlap analysis (“Slide-seq”). (B) Examples of gene expression images for genes detected as similar to Vim, Gfap, 
and Ctsd by SPARK and also by CoSTA (left) or SPARK and not CoSTA (right). Numbers below images indicate the rank 
of the given gene in the list of correlated genes. See Figure S7 for expression patterns of the query genes. All images 
are scaled between 0 and 1 for visualization purposes. Key visible regions of high expression in Vim, Gfap, and Ctsd 
are circled in red for cross comparison of all images. (C) Gene Ontology term enrichment evaluated by Gorilla using 
the ranked correlated gene list produced by CoSTA (see Table S4). (D) Examples of gene expression images for genes 
highly ranked by CoSTA only (left), pixel only (middle), and both (right) as similar to Vim, Gfap, and Ctsd. Annotations 
next to gene names indicate rankings in CoSTA “C” and Pixel “P”.

Additional file 9. Supplementary Fig. 9: Expression patterns of SE genes identified by CoSTA 2 weeks after brain 
injury. SE genes were clustered into 6 groups by SpatialDE and CoSTA.  CoSTA cluster numbers correspond to 
Figure 4d and the most similar SpatialDE cluster is placed below the most closely corresponding CoSTA cluster when 
possible. The SpatialDE cluster containing Vim, Gfap, and Ctsd is cluster 2. Average expression pattern in 3rd row 
shows the overall pattern of all genes combined in the 2-week dataset.

Additional file 10. Supplementary Fig. 10: Effect of cluster number on CoSTA results with 2-week post injury 
Slide-seq data. a, SE genes identified by CoSTA with 10-100 clusters. b, CoSTA learning curve with 10-100 clusters. 
Y-axis shows NMI calculated between cluster labels at training epoch t and cluster labels at previous epoch t-1. 
X-axis shows training epoch t. c, Mean expression pattern of genes found to be correlated with Vim, Gfap and Ctsd 
identified by CoSTA with cluster numbers ranging from 10-100. Raw count values are scaled from 0 to 1 for these 
visualizations.

Additional file 11. Supplementary Fig. 11: CoSTA approach applied to clustering USPS, MNIST and Fashion data-
sets. Left panels: Models were trained for 10 epochs. After each weight updating, we clustered images into 10 clus-
ters and directly compared them to true class labels through NMI. The grey line indicates clustering by UMAP+GMM 
with pixel values as features. The black line indicates clustering by SpatialDE. The orange line represents learning with 
combined center loss and bi-tempered logistic loss in Fashion dataset. Right panels: NMIs between clustering at the 
tth updating and the previous (t-1)th updating.

Additional file 12. Supplementary Fig. 12: Shuffling approach to preserve pixel correlation but disrupt spatial 
information. (A) Cartoon representing shuffling approach.  Right: two initial 4x4 gene matrices (dimensions are small 
for example purposes). Each matrix shows a certain pattern of expression where a cluster of neighboring pixels show 
similar gene expression. Pixels are numbered so their positions can be tracked through the shuffling process.  Mid-
dle: the 4x4 matrix is flattened into a single vector and then the positions of pixels are shuffled in the same way for 
Gene1 and Gene2 (orange arrows show a few example pixel rearrangements). The pixel ordering within each image 
is disrupted but each gene shares the same pixel ordering with other genes. This preserves individual pixel correla-
tions across images from different genes but disrupts the spatial ordering and relationships between neighboring 
pixels. Right: shuffled vectors are reformed into a 4x4 matrix.   (B) Example of shuffling result for 2 example Slide-seq 
gene matrices.  Left: original gene expression image matrices. Shuffling is applied identically to the two genes as 
shown in A.  Right: Resulting shuffled matrices. Visible spatial patterns are gone, but the pixel correlation of the two 
images would remain the same.

Additional file 13. Supplementary Table 1:. Comparison of CoSTA and SpatialDE classification of 10,000 simulated 
genes belonging to 5 spatial patterns (see Fig. 1). Normalized Mutual Information is used to measure the similarity 
between CoSTA or SpatialDE-derived cluster assignments and true cluster assignments (values closer to 1 indicate 
a higher concordance between true and predicted cluster memberships). At noise level 0.6, CoSTA performs bet-
ter with the addition of center loss (0.91 vs. 0.52). For shuffled data, each gene matrix was identically shuffled as 
described in Fig. S12 and in the Methods.  This shuffling preserves pixel correlations between genes but disrupts 
overall spatial patterns, allowing an evaluation of whether the tested analysis detects pixelwise or spatial information.

Additional file 14. Supplementary Table 2: Clusters of SE genes identified by CoSTA in the MERFISH dataset (cell 
type patterns are included in clusters).

Additional file 15. Supplementary Table 3: CoSTA was applied to gene images from 4 different Slide-seq experi-
ments and evaluated for whether it could separate gene images correctly into which original tissue slice (overall 
pattern) they came from.  The table shows the confusion matrix of clustering labels derived from CoSTA results 
compared to the original known experimental label.

Additional file 16. Supplementary Table 4: All CoSTA SE genes in Slide-seq data 2 days after injury ranked accord-
ing to their similarity to query genes Vim, Ctsd, and Gfap.  Ranking according to CoSTA feature vectors as well as by 
pixel correlation are shown. Columns 4 and 5 indicate whether each gene was found to be correlated to these query 
genes by SPARK or SpatialDE.
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Additional file 17. Supplementary Table 5: List of genes in each cluster derived by CoSTA from the 2-week Slide-
seq data, as shown in Figure 4D.

Additional file 18. Supplementary Table 6: Runtime of CoSTA for 3-day and 2-week Slide-seq data. Runtimes are 
measured in minutes and under different numbers of clusters being assigned during training.

Acknowledgements
We thank Tian Hong, Tongye Shen, and Amir Sadovnik for insightful discussion.

Authors’ contributions
YX conceived the project, developed the computational approach, and performed analyses. RPM supervised the project, 
performed some analyses and prepared some figures, and YX and RPM wrote the manuscript. All authors have read and 
approved the final manuscript.

Funding
This research was supported in part by NIH NIGMS grant R35GM133557 to R.P.M. The funding body played no role in the 
design of the study nor in the collection, analysis, and interpretation of data, nor in writing the manuscript.

Availability of data and materials
The processed Slide-seq datasets were retrieved from https://​singl​ecell.​broad​insti​tute.​org/​single_​cell/​study/​SCP354/​
slide-​seq-​study. We also deposited processed MERFISH and Slide-seq data and scripts for all analyses in this study at the 
GitHub repository (https://​github.​com/​rpmcc​ordlab/​CoSTA) under an Open Source Initiative compliant MIT license. The 
version of the code used in the manuscript is available at https://​doi.​org/​10.​5281/​zenodo.​39487​11.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 UT‑ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA. 2 Depart-
ment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. 

Received: 14 June 2021   Accepted: 2 August 2021

References
	1.	 Burgess DJ. Spatial transcriptomics coming of age. Nat Rev Genet. 2019;20(6):317.
	2.	 Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G-C, et al. Transcriptome-scale 

super-resolved imaging in tissues by RNA seqFISH. Nature. 2019;568(7751):235.
	3.	 Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko 

EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 
2019;363(6434):1463–7.

	4.	 Valentine S, Sarah AT, Oliver S. SpatialDE: identification of spatially variable genes. Nat Methods. 2018;15(5):343–6.
	5.	 Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. 

Nat Methods. 2020;17(2):193–200.
	6.	 Caron M, Bojanowski P, Joulin A, Douze M. Deep clustering for unsupervised learning of visual features. 2018. arXiv:​

1807.​05520​v2.
	7.	 McConville R, Santos-Rodriguez R, Piechocki RJ, Craddock I. N2D: (Not Too) deep clustering via clustering the local 

manifold of an autoencoded embedding. 2019. arxiv:​1908.​05968​v6.
	8.	 Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis. In: Proceedings of the 33rd Inter-

national Conference on International Conference on Machine Learning. Vol 48, 2016; pp. 478–87. New York, NY, USA.
	9.	 McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. 2018. 

arxiv:​1802.​03426​v2.
	10.	 Amid E, Warmuth MK, Anil R, Koren T. Robust bi-tempered logistic loss based on bregman divergences. 2019. arxiv:​

1906.​03361​v3
	11.	 Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell identity switching regulated by retinoic acid signaling maintains 

homogeneous segments in the hindbrain. Dev Cell. 2018;45(5):606-620.e603.
	12.	 Li D. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal 

Process Mag. 2012;29(6):141–2.
	13.	 Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, 

et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (Am Assoc 
Adv Sci). 2016;353(6294):78–82.

https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study
https://github.com/rpmccordlab/CoSTA
https://doi.org/10.5281/zenodo.3948711
https://arxiv.org/abs/1807.05520v2
https://arxiv.org/abs/1807.05520v2
https://arxiv.org/abs/1908.05968v6
https://arxiv.org/abs/1802.03426v2
https://arxiv.org/abs/1906.03361v3
https://arxiv.org/abs/1906.03361v3


Page 26 of 26Xu and McCord ﻿BMC Bioinformatics          (2021) 22:397 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	14.	 Vinh NX, Epps J, Bailey J. Information theoretic measures for clusterings comparison: variants, properties, normaliza-
tion and correction for chance. J Mach Learn Res. 2010;11:2837–54.

	15.	 Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulac 
C, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 
2018;362(6416):eaau5324.

	16.	 Facco E, d’Errico M, Rodriguez A, Laio A. Estimating the intrinsic dimension of datasets by a minimal neighborhood 
information. Sci Rep. 2017;7(1):12140–8.

	17.	 Edsgärd D, Johnsson P, Sandberg R. Identification of spatial expression trends in single-cell gene expression data. 
Nat Methods. 2018;15(5):339–42.

	18.	 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms 
in ranked gene lists. BMC Bioinform. 2009;10(1):48–48.

	19.	 Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, Arlotta P, Macosko EZ, Chen F. Highly sensitive spatial 
transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2021;39(3):313–9.

	20.	 Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single 
cells. Science. 2015;348(6233):aaa6090.

	21.	 Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, et al. Three-
dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018;361(6400):eaat5691.

	22.	 Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, Schapiro D, Äijö T, Bonneau R, Bergenstråhle L, Navarro JF, 
et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019;16(10):987–90.

	23.	 Yang J, Parikh D, Batra D. Joint unsupervised learning of deep representations and image clusters. 2016. arxiv:​1604.​
03628​v3.

	24.	 Wen Y, Zhang K, Li Z, Qiao Y. A discriminative feature learning approach for deep face recognition. In: Computer 
vision—ECCV 2016: 2016. Cham: Springer; 2016. pp. 499–515.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1604.03628v3
https://arxiv.org/abs/1604.03628v3

	CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	CoSTA architecture: training a ConvNet with pseudo-labels generated by GMM clustering
	Rationale for using spatial patterns rather than exact pixel overlap
	Tests on synthetic data show CoSTA’s high specificity, reliance on spatial relationships, and ability to distinguish signal from noise
	CoSTA classifies genes by cell type and identifies quantitative relationships between genes in MERFISH data
	CoSTA learns spatial pattern-dependent representations of Slide-seq data
	Ensemble learning identifies stable relationships between spatial gene expression patterns
	CoSTA identifies smaller, but specific and biologically relevant, sets of spatially correlated genes compared to SPARK and SpatialDE

	Discussion
	Conclusions
	Methods
	Resizing gene images and normalization
	CoSTA architecture
	Simulation datasets
	Shuffling approach to disrupt spatial information but not pixel correlation
	SE gene calling
	Correlated gene calling
	MERFISH analysis
	Analysis of slide-seq with SPARK and SpatialDE

	Acknowledgements
	References


