
OVarFlow: a resource optimized GATK 4 
based Open source Variant calling workFlow
Jochen Bathke* and Gesine Lühken 

Abstract 

Background:  The advent of next generation sequencing has opened new avenues 
for basic and applied research. One application is the discovery of sequence vari-
ants causative of a phenotypic trait or a disease pathology. The computational task 
of detecting and annotating sequence differences of a target dataset between a 
reference genome is known as "variant calling". Typically, this task is computationally 
involved, often combining a complex chain of linked software tools. A major player in 
this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a com-
monly referred recipe for variant calling. However, current computational recommen-
dations on variant calling predominantly focus on human sequencing data and ignore 
ever-changing demands of high-throughput sequencing developments. Furthermore, 
frequent updates to such recommendations are counterintuitive to the goal of offering 
a standard workflow and hamper reproducibility over time.

Results:  A workflow for automated detection of single nucleotide polymorphisms 
and insertion-deletions offers a wide range of applications in sequence annotation of 
model and non-model organisms. The introduced workflow builds on the GATK Best 
Practices, while enabling reproducibility over time and offering an open, generalized 
computational architecture. The workflow achieves parallelized data evaluation and 
maximizes performance of individual computational tasks. Optimized Java garbage 
collection and heap size settings for the GATK applications SortSam, MarkDuplicates, 
HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half.

Conclusions:  The demand for variant calling, efficient computational processing, 
and standardized workflows is growing. The Open source Variant calling workFlow 
(OVarFlow) offers automation and reproducibility for a computationally optimized vari-
ant calling task. By reducing usage of computational resources, the workflow removes 
prior existing entry barriers to the variant calling field and enables standardized variant 
calling.

Keywords:  Variant calling, SNP, indel, GATK, Next generation sequencing, 
Reproducibility, Data parallelization, Benchmarking, Java

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402  
https://doi.org/10.1186/s12859-021-04317-y

*Correspondence:   
jochen.bathke@agrar.uni-
giessen.de 
Institute of Animal 
Breeding and Genetics, 
Justus Liebig University 
Gießen, Ludwigstraße 21, 
35390 Gießen, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04317-y&domain=pdf


Page 2 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

Background
Evolution, and thus the diversity of life, is based on genetic variability. This may arise 
from small changes in the nucleotide sequence of an organism, from larger rearrange-
ments, from recombination of homologous chromosomes during chromosomal cross-
over, or from chromosome reshuffling during meiosis and sexual reproduction [1–3]. 
As a result, new phenotypic traits may be realized within an individual. Identifying the 
genetic basis of such phenotypic traits is a pivotal point of genetic studies. In particular, 
the advent of next generation sequencing (NGS) technologies has ushered in a new era 
of sequencing based genetic variant identification [4, 5]. Continuous improvements in 
second and third generation sequencing technologies promoted permanently declining 
sequencing costs and even surpassed the technological advances in the semiconductor 
industry described by Moore’s law [6]. This paved the way for new applications of NGS 
methods and a broader application thereof. In this regard, NGS even challenges SNP 
genotyping arrays for various genome analysis applications [7]. Whole genome (WGS) 
as well as whole exome sequencing (WES) are now commonly used for variant discov-
ery, with a trend towards WGS [8], even though WES is still relevant [9]. Genome-wide 
association studies (GWAS), previously the domain of SNP genotyping arrays [10], are 
increasingly conducted using WGS [11, 12].

Generating the sequencing data is only the first step in any related research project. 
Major steps in subsequent analyses include read mapping, variant calling, variant filtra-
tion and functional annotation of the variants [13, 14]. Over the last decade a plethora 
of variant callers have been developed [15]. The Genome Analysis Toolkit (GATK) is 
among the most widely used applications [16] and GATK Best Practices workflows are 
considered a kind of gold standard in the field [17–19]. The GATK includes hundreds of 
different tools and the GATK Best Practices are intended to guide users through their 
application [13, 17]. Therefore, it has become customary to simply cite the GATK Best 
Practices in method sections of publications, while supplying a link to the GATK web-
site [20–22]. The problems resulting from this routine are twofold. Firstly, the GATK 
Best Practices are a dynamic document in which command lines, arguments, and tool 
choices can become obsolete. Years after the initial publication, it might become elu-
sive what the GATK Best Practices were by that time. Secondly, simply citing the GATK 
Best Practices is used as a shortcut to write method sections. This has also been noticed 
by the developers of the GATK, therefore stating on their website: “Lots of workflows 
that people call GATK Best Practices diverge significantly from our recommendations 
[23].” Reproducibility of the actual data evaluation is thus obscured, which relates to the 
fact that the “Best Practices workflows […] are designed specifically for human genome 
research [23]” even though the GATK has successfully been used to analyze various spe-
cies [20, 22, 24, 25].

Much scientific work is unnecessarily protracted by the lack of reproducibility due to 
unclear methods [26]. Reproducibility is as much a concern in computational biology as 
it is in laboratory work [27]. In particular, complex workflows such as variant calling and 
software stacks such as the GATK constitute a challenge to small scientific groups and 
newcomers to the field.

The rapidly growing adaptation of NGS-based variant calling, the widespread use of 
the GATK, and the need for reproducible data analysis highlight a demand for broadly 



Page 3 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

applicable, well documented, and readily usable GATK-based variant calling workflows. 
We therefore developed OVarFlow, an open source, highly optimized, full-fledged vari-
ant calling workflow that generates functionally annotated variants. The workflow is 
highly automated and reproducible, requiring minimal user interaction. Only short read 
sequencing data (e.g. Illumina), a reference genome, as well as annotation need to be 
provided.

Implementation
The analysis of sequencing data is highly dependent on software tools, where usability, 
installability, and archival stability are key aspects for the usefulness of software tools 
[28]. A systematic analysis has shown that a large proportion of published tools cannot 
be readily installed due to implementation issues [28].

To circumvent such nuisance, OVarFlow comes with a comprehensive documentation 
and builds upon established technologies. These include Conda [29] and Bioconda [30] 
as an environment and package manager, allowing for easy installation of the required 
software components. Snakemake is utilized as a workflow management engine to 
orchestrate the various data processing steps [31]. Alternatively, all required software 
components come bundled via container virtualization as Docker [32] or Singularity 
[33] containers, if manual intervention during setup is not desirable. Data processing 
itself is primarily relying on the GATK [16].

The complexity of computational methods is ever-growing. We are therefore con-
vinced that a thorough documentation is essential for the usability of any software. For 
this reason, comprehensive documentation is an integral part of OVarFlow. It is available 
at “Read the Docs”, explaining in detail the setup, usage, resource requirements, and the 
individual steps of the workflow.

Overview of the workflow

A flowchart of the actual variant calling workflow is depicted in Fig. 1. The entire work-
flow consists of two separate branches. The basic variant calling workflow can already 
stand on its own, while an optional second, extended workflow allows for further refine-
ment of the called variants via base quality score recalibration (BQSR), if desired.

The basic workflow requires a reference genome in fasta format (.fa.gz, optionally com-
pressed) and reference annotation in general feature format (.gff.gz, also compressed). 
Finally, second generation sequencing (SGS) data have to be provided in fastq format 
(.fastq.gz). By providing these data, a complete set of functionally annotated variants is 
generated. Each step of the analysis is depicted in a rounded box, naming the analysis 
performed, the application used, and the primary input and output data types. Sequenc-
ing data of several individuals can be processed in parallel and are then consolidated into 
a single cohort, resulting in a genomics variant call format (VCF) file (g.vcf.gz). Hard-fil-
tering is then employed to minimize the number of false positive variants. Finally, SnpEff 
performs a functional annotation of the called variants [34].

A second workflow can be executed in succession to the first one. Thereby the 
called variants can be further refined by BQSR, as initially shown by DePristo et al. 
[17]. Basically, BQSR tries to improve the quality scores generated by the sequencer. 



Page 4 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

However, depending on the given data set, the improvements obtained by BQSR may 
be marginal while incurring high computational cost [35]. Therefore, BQSR has been 
included as an optional step that might be applied to low-coverage data or poorly 
calibrated base quality [35].

Fig. 1  Flowchart of the variant calling workflow. The variant calling workflow consists of two separate 
branches. A basic workflow already generates a set of usable, functionally annotated variants (SNPs and 
indels). A second, optional workflow, uses the previously called variants to perform Base Quality Score 
Recalibration (BQSR) to improve initial base calls of the fastq files. Processing of each individuals fastq files can 
be performed in parallel. Also various steps of the workflow can be parallelized, e.g. base calling on genomic 
intervals by the GATK HaplotypeCaller, as indicated by overlapping boxes. Each box includes a description of 
the step (light gray), the name of the used application (medium gray) and the primary input and output data 
formats (dark gray)



Page 5 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

Optimized parallelization of the workflow

Variant calling is a computationally demanding task. To speed up the analysis, paral-
lelization has been enabled wherever possible. Firstly, fastq files of various individuals 
can be processed in parallel, up to the point where variants are consolidated into a single 
genomics VCF file (.g.vcf.gz). Also filtering of SNPs and insertion-deletions (indels) is 
performed in parallel. The two most demanding steps of the workflow are mapping via 
the maximal exact matches (mem) algorithm of the Burrows–Wheeler aligner (bwa) [36] 
and variant calling via the GATK HaplotypeCaller. Mapping via bwa can easily be paral-
lelized and uses six threads in OVarFlow by default (configurable). The HaplotypeCaller, 
on the other hand, used to be parallelizable by means of command line switches (-nct 
and -nc), but these options where abandoned with GATK 4. As an alternative, the GATK 
team introduced Spark for multithreading [37]. At the time of writing, HaplotypeCall-
erSpark (version 4.2.0 and below) “is still under development and should not be used 
for production work”, as stated by the developers [38]. OVarFlow reintroduces paralleli-
zation to the HaplotypeCaller by splitting the reference genome into several intervals 
on which variant calling is performed in parallel. This approach is also called “scatter 
gather”. The amount of intervals processed in parallel is configurable, but defaults to 
four. A python script that is part of the workflow, splits the reference genome between 
individual fasta sequences (contigs or scaffolds) into intervals. Individual sequences are 
not split. Furthermore, we examined the resource consumption of the HaplotypeCaller 
depending on the particular setting for its native pair hidden Markov model (HMM) 
implementation (command-line option–native-pair-hmm-threads; see results). While 
four native pairHMM threads gave the best runtime for the individual Haplotype-
Caller process, more processes could be executed in parallel when only a single native 
pairHMM thread was enabled. This was made configurable in the workflow, while 
defaulting to four native pairHMM threads. Finally, the entire analysis scales with the 
given hardware. Here, Snakemake helps to achieve optimized resource utilization and 
parallelization from high-end desktops to server to cluster usage [31].

Pitfalls when working with the GATK

The GATK is a very complex framework with hundreds of applications related to vari-
ant calling. Many of those show some very intricate and subtle usability issues that are 
challenging for both new and expert users. One of those pitfalls involves hard filtering, 
which is often employed to remove false positive variants [13, 39]. Often, hard filter-
ing is applied by concatenating several filtering expressions using the logical or-operator 
“||” [25]. This may be due to a 2013 publication by the authors of GATK in which this 
was suggested [13]. This approach has changed. As of today, the GATK team states, “it 
is strongly recommended that such expressions be provided as individual arguments … 
[to] ensures that all of the individual expression are applied to each variant” [40]. There-
fore, OVarFlow applies a separate filter to each filtration threshold (for SNPs: QD < 2.0, 
QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, MQRankSum < -12.5, ReadPosRank-
Sum < -8.0; for INDELs: QD < 2.0, QUAL < 30.0, FS > 200.0, ReadPosRankSum < -20.0).

Another potential pitfall is the CPU instruction set. Performance of the GATK 4 has 
been optimized in an collaboration between Intel and the Broad Institute. This includes 
the use of advanced vector extensions (AVX) for the HaplotypeCaller [41, 42]. The 



Page 6 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

absence of AVX results in a drastic slowdown of the HaplotypeCaller (personal esti-
mates are about 5 times longer runtimes). OVarFlow therefore verifies the availability 
of AVX before executing the workflow and informs the user about the absence of AVX. 
Fortunately, AVX evolved to be common in newer CPU generations.

The GATK is written in the Java programming language, which is inherently linked 
to the Java virtual machine (JVM). Performance of the JVM can be optimized by sev-
eral hundreds of settings (see: java -XX: + PrintFlagsFinal and java -X). In particular, the 
Java heap size and number of garbage collection threads exert a major influence on the 
performance of various GATK applications (see results section). In order to achieve an 
optimized resource utilization and runtime, these two parameters were optimized for 
the most important tools running in parallel and incorporated into the workflow.

Moreover, several minor inconveniences are handled by the workflow. These include 
the storage of intermediate data under the /tmp direcotry. Depending on the partition 
scheme and size, this can be a source of major trouble. Therefore, temporary data are 
stored under GATK_tmp_dir within the project directory. Depending on the input data, 
the GATK application MarkDuplicates opens a plethora of files, which is even more 
problematic since multiple instances of MarkDuplicates can run in parallel. To avoid 
problems arising from the maximum number of allowed open file descriptors (see ulimit 
-Sn or -Hn), each instance of MarkDuplicates has been limited to use 300 file handles. 
Finally, the workflow saves the user from fiddling around with many intermediate files, 
including various indices (.bai,.fai,.dict, bwa index), conversion of the gzip to BGZ for-
mat [43], or creation of a SnpEff database.

The configuration files

The user is freed from as much manual intervention as possible, all while scaling across 
different infrastructure sizes. This streamlining of the data evaluation is also achieved by 
“convention over configuration”. However, configurability is implemented through two 
configuration files, one of which is entirely optional.

The first configuration file (samples_and_read_groups.csv) describes the input data. 
This file specifies the more “biological” data, such as the reference genome and annota-
tion, as well as the sequenced samples. It is in colon separated values (csv) format, which 
allows for easy editing even in common spread sheet applications. Furthermore, read 
group data have to be specified in this file. Additionally, previously called variants can be 
included in the analysis. In addition, a minimum sequence length can be specified. Many 
genomes contain a high number of small contigs. These can be excluded from the analy-
sis by setting the desired cut-off value.

A second, optional configuration file (config.yaml) deals with the more “technical” side 
of the workflow. If present, this file is automatically picked up by the Snakemake work-
flow management system. Here, the Java heap size and the number of garbage collec-
tion threads can be adjusted if required. Parallelization can also be configured for the 
number of bwa threads, intervals of the genome that can be processed in parallel by the 
HaplotypeCaller, and the number of native pairHMM threads used by the Haplotype-
Caller. Finally, storage of temporary data and the maximum number of file handles used 
by MarkDuplicates can be configured. A separate configuration file is available for the 
BQSR workflow (configBQSR.yaml), which serves identical purposes.



Page 7 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

Results
The primary goal of our workflow is for it to be of practical use in variant calling pro-
jects. To demonstrate its validity, we reproduced the variant identification from a pre-
vious study. Another matter of concern was the resource efficiency of the variant 
identification. The potential to improve the performance of GATK based variant calling 
has been shown previously [42]. Here, we build upon those findings and further extend 
them into a lean variant calling workflow. For that reason, we investigated how to opti-
mize resource utilization of individual GATK applications and also on the level of the 
entire workflow.

Proof of concept

To confirm the feasibility of our workflow, we reproduced the identification of a variant 
responsible for recessive autosomal dwarfism (adw) in chicken, as originally performed 
by Wu et al. [44]. The adw variant was known to be located on chromosome 1, within 
52–56 Mb. Variant identification was performed using WGS data from a single adw/adw 
individual and 261 unaffected White Leghorns as controls. A total of 146,070 variants 
could be identified within the candidate region, which were further reduced by various 
filtering steps to 11 potential candidates, of which only one was categorized as a high 
impact variant (stop gained).

To repeat this analysis, we obtained the sequencing data of the adw/adw individual 
from the European Nucleotide Archive (ENA, www.​ebi.​ac.​uk/​ena), along with raw 
read data of another 25 normal White Leghorns. The fastq sequencing data of these 26 
chicken served as input data for the variant calling workflow presented here. To retain 
comparable genome coordinates, the same reference genome (Gallus_gallus-5.0) was 
utilized as in the previous study. The following steps were similar to the data evalua-
tion procedure of Wu et al. Briefly, all variants within the candidate region of 52–56 Mb 
on chromosome 1 were extracted. All variants that were not homozygous and also not 
exclusive to the dwarf chicken were removed from the dataset. This resulted in a total 
of 1,090 variants. Those variants that were categorized by SnpEff as having moderate 
or high impact were finally selected, yielding a total of 6 potential candidate variants 
(see Table 1). Most of these variants posses multiple annotations and exceed different 
impacts on the respective annotation. The identified candidate variant set is not identical 

Table 1  Variants exclusively associated with autosomal dwarfism in chicken

Position Ref/Alt Gene Category Impact Wu et al

53,369,406 G/A ASCL4 Missense variant
Non coding transcript variant

Moderate
Modifier

✔

53,406,379 C/G PWP1 Missense variant
Non coding transcript variant

Moderate
Modifier

✘

53,688,583 C/T MTERF2
C1H12ORF23

Stop gained
Downstream gene variant
Non coding transcript variant

High
Modifier
Modifier

✔
causative variant

54,232,753 G/A C12ORF75 Missense variant Moderate ✔
54,593,287 G/A CHST11 Missense variant Moderate ✘
54,764,182 CT/C 0 Frameshift variant

Non coding transcript variant
High
Modifier

✘

http://www.ebi.ac.uk/ena


Page 8 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

to the 11 candidates found by Wu et al., which is not surprising, giving the fact that dif-
ferent White Leghorns were used as a reference dataset as compared to the original 
study. Variants identified as potential candidates in both studies are marked with a small 
check mark, and those exclusive to our analysis are marked with a cross. However, all 
of those 11 variants selected by Wu et al. could be identified in our dataset prior to the 
filtering step (only the SNP at position 52,195,787 was detected as a deletion at posi-
tion 52,195,786). More importantly, the causative variant (position 53,688,583) that was 
finally identified by Wu et al. was among the 6 candidates identified by our analysis.

Taken together, these results confirm that our variant calling workflow is capable of 
detecting small variants (SNPs and indels) in whole genome sequencing data that can 
be utilized in further analysis steps to identify potential causative variants. In addition 
to chicken, we also tested OVarFlow with a variety of different organisms and various 
assemblies obtained from the RefSeq, including chicken, duck, C.  elegans, sheep, pig 
and alpaca. In particular, the alpaca genome (GCF_000164845.2) was highly fragmented 
(276,725 scaffolds), but variants were still successfully called.

Optimization of individual GATK applications

The GATK is written in the Java programming language, whose bytecode is executed by 
the JVM. One issue with the JVM is that its resource utilization does not always scale 
positively with the size of given hardware resources. This is particularly problematic, as 
variant calling is resource hungry and requires large computational resources.

Two aspects of the JVM are automatically adjusted to the available hardware, namely 
the number of garbage collection (GC) threads and the heap size (see Table 2). Both of 
these aspects relate to memory management by the JVM (here version 8). They were 
measured on actually available hardware. While the number of GC threads grows con-
tinuously with the number of given CPU cores, the heap size maxes out at 26.67 Gb. In 
many cases, these numbers are considerably larger than what is needed for the respec-
tive application to run efficiently, as shown by the following measurements. This also 
means that GATK applications will exhibit inconsistent behavior depending on the given 
hardware.

First, we assessed the impact of GC thread count on several GATK applications 
(Fig. 2). We selected those applications for a deeper analysis that are run in parallel. This 
part of the workflow generates the highest load and will benefit the most from optimiza-
tion. Three aspects of each application where analyzed, namely overall execution speed 

Table 2  Default resource usage of the Java virtual machine version 8

Given CPU cores Default GC thread count Given system
memory (Gb)

Default 
maximum
heap size 
(Gb)

8 8 16 3.48

28 20 64 13.98

64 43 256 26.67

160 103 512 26.67

1024 26.67



Page 9 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

(wall time), total load caused (system time), and memory usage (resident set size; RSS). 
Whenever possible, it is desirable to minimize all of these parameters, as this results in 
lower overall resource utilization. Wall time of GATK SortSam, HaplotypeCaller and 
GatherVcfs is barely influenced by the number of GC threads. MarkDuplicates shows 
a linear relation, resulting in longer runtimes at higher thread counts and a sweet spot 
at two GC threads. Total CPU usage for SortSam and MarkDuplicates increases with 
higher GC thread numbers. SortSam causes about 50% more CPU utilization between 
low thread counts and 20 GC threads. For MarkDuplicates the effect is even more pro-
nounced, resulting in an approx. fivefold higher resource utilization between 1 and 20 
GC threads. For HaplotypeCaller and GatherVcfs, no equally clear tendency is seen. 
Besides statistic variation, differences in memory consumption are not as pronounced. 
The GATK HaplotypeCaller might benefit from two GC threads.

From those findings, it can be concluded that memory footprint is only marginally 
influenced by the number of GC threads. CPU load, on the other side, is significantly 
affected for SortSam and MarkDuplicates, with the sweet spot being two GC threads for 
each.

Fig. 2  Resource usage benchmarking of GATK applications at different Java garbage collection thread 
counts. The performance of some GATK applications is severely influenced by the number of employed 
Java garbage collection (GC) threads. Each application was executed several times with different Java GC 
thread counts, intending to identify GC thread counts that result in minimal resource utilization. Here, 
the Java 8 default parallel garbage collector was used. Resource usage concerning wall time, system time 
and resident set size (memory usage) was analyzed (see rows) for the four tools SortSam, MarkDuplicates, 
HaplotypeCaller and GatherVcfs (see columns) (GATK version 4.1.9). Triplicated measurements for each of 
eight different numbers of GC thread counts (1, 2, 4, 6, 8, 12, 16 and 20) were recorded and resulting mean 
values plotted in lines. Lower measured values are preferable as they reflect a lower resource usage of the 
respective application. Runtime comparisons between different applications should not be performed here. 
The ordinate scales of individual plots vary greatly, to represent variances within an application as clearly 
as possible. Furthermore, SortSam, MarkDuplicates and GatherVcfs analyzed an entire dataset, while the 
HaplotypeCaller was limited to the analysis of chromosome 6 (NC_006093.5), thereby reducing the runtime 
from days to some hours



Page 10 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

Next, we investigated the effects of different JVM heap sizes on the performance of 
the same applications, observing the same parameters as before (Fig. 3). The picture is 
clearly distinct. The impact on wall and system time are identical for each individual 
application. Especially, CPU usage of SortSam benefits from larger heap sizes. Here, 
12 Gb is the sweet spot for the given data set. MarkDuplicates seems to benefit slightly 
from smaller heap sizes, but no definitive number can be given due to statistical fuzzi-
ness. Memory footprint is severely affected by the maximum allowed heap size for Sort-
Sam, MarkDuplicates, and HaplotypeCaller. In particular, MarkDuplicates scales linearly 
with the maximum allowed heap size and uses all the memory allocated as heap space 
(grey line). This is especially noteworthy since CPU usage and application runtime do 
not benefit from larger heap sizes. With SortSam being the exception, up to 12 Gb of 
heap space. Effects on GatherVcfs are negligible.

It can be concluded that the heap size exerts a drastic impact on memory consump-
tion and, in case of SortSam, also on CPU utilization. To minimize memory usage of 
the workflow, SortSam was allowed to allocate up to 10 Gb heap space, while the other 
applications were limited to 2 Gb.

Fig. 3  Influence of different Java heap sizes on the resource utilization of individual GATK applications. 
Besides the number of Java garbage collection threads, the provided heap size has a considerable impact on 
the performance of some GATK applications. Again, the four tools SortSam, MarkDuplicates, HaplotypeCaller 
and GatherVcfs (see columns) (GATK version 4.1.9) were assessed for their respective resource usage in terms 
of wall time, system time and memory usage (see rows). The intention was to identify Java heap sizes that 
result in minimized resource utilization. Therefore, lower readings on the ordinate are preferable as they 
reflect lower resource consumption of the respective application. Triplicate measurements were recorded for 
each of ten different values for Java heap size (1, 2, 4, 6, 8, 12, 16, 24, 32 and 48 Gb) and resulting mean values 
plotted in lines. The gray line in the resident set size plots indicate parity between the maximum allowed 
heap size and the actual memory usage. All measurements were recorded with two garbage collection 
threads enabled. As in Fig. 2, different scales of the ordinates of each plot have to be taken into account, since 
they vary considerably between the individual plots. In additon, the HaplotypeCaller was again limited to the 
analysis of chromosome 6 (NC_006093.5)



Page 11 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

Optimization of variant calling on the workflow level

Previously optimizations have been performed on the level of individual applications. 
In this section, we want to illustrate how the entire variant calling workflow can benefit 
from these optimizations. Furthermore, we are introducing additional optimizations on 
the level of parallelized data processing.

CPU usage is only one aspect of hardware utilization. Memory usage can be 
another limiting factor, and shortage thereof can even result in out of memory related 
application termination. Therefore, both of these aspects were monitored during the 
entire runtime of the workflow (Fig.  4). Six fastq files with chicken whole genome 
re-sequencing data were used for these measurements. We chose chicken as it’s a 
vertebrate with a moderately sized genome of approximately 1.1 billion bases. This 
shortens the time for workflow benchmarking, while still allowing to estimate evalua-
tion times for larger genomes.

Benchmarking of the workflow was performed for various degrees of GATK opti-
mization. First (Fig. 4a), a baseline measurement was recorded without any particular 

Fig. 4  Resource consumption of the basic workflow with increasing optimization levels. a CPU and 
memory utilization of the entire workflow, using a single interval (comprising the entire genome) for the 
HaplotypeCaller and without any Java optimization (total runtime: 67.1 h)). Four phases can be distinguished 
within the workflow (separated by dashed lines), that are dominated by individual applications. b When the 
genome is split into six separate intervals for the HaplotypeCaller analysis, but without any Java optimization 
(41.4 h). c With optimized Java garbage collection for each GATK application (39.8 h). d With optimized Java 
settings (garbage collection and heap size) for all GATK applications and four default threads for the native 
pairHMM algorithm of the HaplotypeCaller (40.3 h). e When all optimizations are applied to the workflow, 
including six parallel intervals for variant calling by the HaplotypeCaller, a single hmmThread for each 
HaplotypeCaller, and all Java optimizations (garbage collection and heap size) (34.7 h)



Page 12 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

GATK performance optimization. Parallelization solely relied on Snakemake’s sched-
uling of various processes to be executed simultaneously, and by bwa mem to use six 
threads for each distinct mapping process. The plateau in CPU utilization (gray line) 
within approx. the first six hours is due to mapping by bwa mem. After this phase, 
the workflow relies primarily on the GATK. Above all, the activity phases of SortSam, 
MarkDuplicates and the HaplotypeCaller were optimized.

Firstly, parallelization was applied to the HaplotypeCaller phase (Fig. 4b). This was 
achieved by splitting the reference genome into six discrete intervals, thereby arti-
ficially shortening the reference genome and allowing for more HaplotypeCaller 
processes to be executed in parallel. In doing so, CPU and memory usage are rising 
during the HaplotypeCaller phase (approx. between 10 and 30  h), while the overall 
runtime is shortened by more than an entire day. From this point on, resource utiliza-
tion was further reduced through the previously optimized JVM settings.

Applying optimized GC thread values was able to reduce the first spike in memory uti-
lization and caused an reduced and more even CPU usage between 6 and 10 h of work-
flow execution (Fig. 4c). This is mainly related to the more efficient resource utilization 
by SortSam and MarkDuplicates.

In the next step usage of the Java heap space was optimized (Fig. 4d). This allowed for 
a drastic reduction in memory utilization during the phase of parallel execution of Sort-
Sam, MarkDuplicates, HaplotypeCaller, and GatherVcfs (approx. 6 to 28 h). Before these 
optimizations were applied, memory utilization maxed out between 230 and 240 Gb and 
was lowered to a plateau at just about 50 Gb.

The resource utilization gains achieved above paved the way for additional optimiza-
tion of the HaplotypeCaller phase (Fig.  4e). It was observed that the HaplotypeCaller 
exhibits an average CPU utilization of 140% at its default setting of four native pairHMM 
threads (for more data, see the documentation of OVarFlow, section “Benchmarking & 
Optimizations» Maximizing CPU utilization”), which means that one core is fully uti-
lized and a second core is only 40% utilized. The Snakemake workflow management sys-
tem, on the other hand, is only capable of calculating and scheduling entire threads. This 
means that it can be configured to schedule either a single CPU thread or two. There-
fore, CPU usage of the HaplotypeCaller was assessed with different numbers of native 
pairHMM threads (see the documentation of OVarFlow). This showed that using one 
native pairHMM thread results in slightly longer runtimes, but also only a single thread 
is utilized. With this setting, the Snakemake scheduler only needed to allocate a single 
thread per HaplotypeCaller, effectively doubling the number of HaplotypeCaller pro-
cesses executed in parallel. This maximized CPU utilization and reduced the runtime for 
the entire workflow by an additional 5 h.

Ultimately, all of these optimizations were incorporated into the variant calling work-
flow, but they were also made configurable. The settings can be adjusted via the con-
figuration file config.yml or configBQSR.yml, respectively. This allows for a high degree 
of customization if needed, while reasonable defaults have been set within the work-
flow itself. Since the best performance for an individual HaplotypeCaller process is 
achieved at four native pairHMM threads, this was used as the default. This can lead 
to better runtime if unlimited hardware resource are available, e.g. in cluster usage. In 
this case Snakemake automatically schedules two threads per HaplotypeCaller process. 



Page 13 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

Nevertheless, it can be configured to use just a single native pairHMM thread, in which 
case Snakemake reserves only a single thread.

Discussion
The GATK is among the most popular variant calling frameworks [15, 45, 46]. Its 
Best Practices are commonly referenced as a data evaluation procedure, when writing 
method sections [17, 20]. However, it is often overlooked that the GATK Best Practices 
are very specifically tailored to human sequencing data [23]. This highlights a need for 
broadly applicable GATK based variant calling workflows. In addition, the Best Practices 
are constantly evolving, making it difficult to reproduce recommendations from several 
years ago. This is especially problematic for complex data evaluation procedures like 
variant calling, which involve more than a dozen computational steps and tools (Fig. 1), 
thereby compromising reproducibility. Poorly reproducible methods can also result in a 
loss of time, because a method or procedure must be partially reinvented [26]. We there-
fore created a variant calling workflow inspired by the GATK Best Practices for germline 
short variant discovery [47], but is more broadly applicable to both model and non-
model diploid organisms.

The GATK is a very complex framework with hundreds of different tools, where the 
right tools for variant calling have to be identified first. Additional complexity is intro-
duced by the JVM, which possesses hundreds of configuration options. A major pitfall is 
that the JVM does not always scale well with the size of the given hardware resources (see 
Table 2). The JVM tends to allocate more GC threads and larger heap size on a larger hard-
ware base. This, in turn, can actually have a negative impact on the performance of several 
GATK applications. To many GC threads even slowed down SortSam and MarkDupli-
cates (Fig. 2), while unnessesary large heap spaces consumed more memory than neces-
sary (Fig. 3). In the worst case, this can even result in out of memory errors, leading to 
program termination. The negative impact of too many GC threads for MarkDuplicates is 
consistent with previous findings, where various performance optimizations for the GATK 
were assessed [42]. In this study, the authors focused only on the execution time (wall 
time) of single applications. However, this is only one point to consider. System times are 
equally important, as they better reflect CPU utilization on multithreaded systems. This 
can be seen, for example, with SortSam (Fig. 2), where wall times remain identical regard-
less of the number of GC threads, but system times increased by approx. 50% between 1 
and 20 GC threads, thereby diminishing the potential for parallel data evaluation. Mem-
ory consumption also contributes its share to the final bill. Optimization of heap usage 
reduced memory consumption at the workflow level to less than a quarter (Fig.  3c, d), 
without negatively impacting overall runtime. For one thing, this allows to achieve more 
with given hardware resources, for another thing, it might also save costs in cloud environ-
ments that consider memory usage in the bill. Here we not only show these performance 
optimizations, but have also implemented them in our final workflow, which has not been 
done in any general purpose GATK 4 based variant calling workflow that we are aware 
of. Besides our improvements to JVM settings, additional system level optimizations have 
already been assessed for multiple GATK 3.x versions [48]. Applying most of those opti-
mizations requires administrator privileges, which is often not feasible in multi-user envi-
ronments. Here, we focused on optimizations that can be applied by non-administrator 



Page 14 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

users. Nevertheless, for large facilities, performing a lot of variant calling, this might be an 
opportunity to further accelerate variant calling.

Having a clearly defined data evaluation pipeline is only one aspect of scientific reproduc-
ibility. The most reproducible workflow is of no use if the underlying software cannot be 
installed. Mangul et al. conducted a systematic analysis of software installability, in which 
51% of the investigated tools were claimed “easy to install”, yet 28% failed to be installed at 
all [28]. To circumvent installation obstacles and to promote the long-term usefulness of our 
workflow, we followed the general guidelines outlined by Manguel et al. Firstly, our software 
is hosted publicly by GitLab and the associated documentation is available via Read the Docs. 
Secondly, application installation relies on the well established Conda environment and 
package manager. Thirdly, Conda also takes care of all dependencies of the tools used. Fur-
thermore, the last two points are also guaranteed by providing container images, which fur-
ther reduces the effort on the end user’s side. Additionally, the documentation includes not 
only an example dataset, but also a detailed tutorial on how to evaluate this dataset. Besides 
a quick start guide, a detailed description of every software component used is included. The 
software can be run without any root privileges. The Docker container might even be run on 
a Windows system. However, we strongly recommend performing variant calling on Linux 
based high-performance computing infrastructure.

Finally, our variant calling workflow is entirely based upon open source software. This 
is a key point for the unrestricted use and availability of our workflow. License changes 
between GATK 3 and 4 made this possible. With the previous license of GATK 3, dis-
tributing a prepackaged workflow in a container environment would not have been 
possible. This underlines the value of open source software and its associated licensing 
schemes, for the scientific community.

Conclusion
Variant calling has become an established method in genomics research. Its utilization 
can only be expected to rise due to continuously declining sequencing costs. The GATK, 
developed at the Broad Institute, is a major player in this field and its Best Practices are 
commonly cited in related publications, despite being focused on human sequencing 
data. This demonstrates the high demand for an easily accessible and widely applica-
ble GATK based variant calling workflow. The revised workflow fits this need, offering 
automatization, reproducibility, and documentation of the variant calling process. The 
presented workflow will help bridge the gap and further lower the threshold for variant 
calling. Taken together, the optimized workflow features transparent variant calling and 
economic computational resource management.

Methods
Utilized software versions

The following software versions were used within the variant calling workflow: FastQC 
v0.11.9, bwa 0.7.17-r1188 [36], samtools 1.11 [49], GATK 4.1.9 [16], and SnpEff 5.0 [34] 
(in order of use). Of these FastQC, GATK and SnpEff rely on the JVM for program exe-
cution. OpenJDK version 1.8.0_152 was utilized here. Snakemake [31] version 5.26.1 
served as a workflow management engine. Software installation was performed via 
Conda 4.9.2. Default JVM resource usage was determined on various machines using 



Page 15 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

the commands java -XX: + PrintFlagsFinal | grep ParallelGCThreads 
and java -XshowSettings:vm.

Data analysis for dwarf chicken variant

Whole genome sequencing data were obtained from the ENA, for one dwarf chicken 
(ERR2505843) and 25 White Leghorns (ERR3525251-8, ERR4326765-74, SRR2131198-9, 
SRR2131201, SRR5079491-3, SRR5079496). The variant calling workflow was executed 
using chicken genome build Gallus_gallus-5.0. To reduce the total runtime, all contigs 
shorter than 20,000 bp were excluded by a mechanism build into OVarFlow. Variants on 
chromosome 1, within the candidate region 52–56 Mb, were extracted by the bcftools’ 
(1.6) view command. Filtering of potentially causal variants was performed using a cus-
tom Python 3 script, screening for homozygous variants exclusive to the dwarf chicken. 
Moderate and high impact variants, as categorized by SnpEff, were selected using the 
Unix command grep ’\ (MODERATE\|HIGH\ )’.

Benchmarking of individual GATK applications

To reduce application runtime, sequencing data from Gallus gallus were employed for 
performance benchmarking of individual GATK applications. The current representa-
tive genome GRCg6a (RefSeq assembly accession: GCF_000002315.6) was obtained from 
the RefSeq. Fastq files were obtained from the ENA, run accession SRR3041137, offering 
2 × 125 bp Illumina sequencing data (HiSeq 2500). An average coverage of 34 with standard 
deviation of 44 was determined for this dataset (see rule calculate_average_cov-
erage of the workflow for details). SortSam, MarkDuplicates, and GatherVcfs processed 
the entire dataset, while HaplotypeCaller was limited to chromosome NC_006093.5 
(36,374,701 bp) to reduce application runtime. To benchmark various Java GC thread num-
bers the heap size was fixed to 12 Gb. Two GC threads were specified for the benchmarking 
of various Java heap sizes. Resource usage of each application was monitored by GNU time 
version 1.8 (version 1.7 reports incorrect results), written to a log file and visualized using R 
(3.4.4). Page caching was activated for resource measurements by copying all accessed data 
to /dev/null before actual program execution. Especially for a short running application 
like GatherVcfs, runtimes will be noticeably longer without page caching.

Benchmarking of the entire workflow

Again, reference genome and annotation GRCg6a of Gallus gallus were used. Paired 
end Illumina sequencing data (2 × 125  bp) were downloaded from the ENA, project 
PRJEB12944, run accessions ERR1303580, ERR1303581, ERR1303584, ERR1303585, 
ERR1303586 and ERR1303587. Average coverage of these files ranged between 24 and 
28. Five intervals were specified in the config.yaml file for parallelization of the Haplo-
typeCaller (GatkHCintervals). Thereby the reference genome was actually split into 
six discrete intervals. This is intended behavior of the splitting algorithm, which only 
splits the reference genome between individual sequences, while trying to limit the max-
imum size of the created intervals (see createIntervalLists.py for implemen-
tation). To measure resource usage of the entire workflow, the commands mpstat 30 
and sar -r ALL 30 from the sysstat application suit (12.2.0) were employed. Recorded 
measurements were plotted using R (3.4.4).



Page 16 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

Availability and requirements

Project name: OVarFlow

Project home page:

- GitLab: https://​gitlab.​com/​compu​tatio​nal-​biolo​gy/​ovarf​low

- Read the Docs: https://​ovarf​low.​readt​hedocs.​io/​en/​latest/

- Docker hub: https://​hub.​docker.​com/r/​ovarf​low/​relea​se/​tags

- Zenodo (Singularity): https://​zenodo.​org/​record/​47466​39

Operating system(s): tested and working on Linux

container images might also work on macOS and Windows

Programming language: Python & Snakemake; Bash

Other requirements: Conda/Bioconda or Docker/Singularity

License: Code: GNU General Public License version 3 (GPLv3)

Documentation: Creative Commons license CC-BY SA 3.0

Any restrictions to use by non-academics: none

Abbreviations
Adw: Autosomal dwarfism; AVX: Advanced vector extensions; BQSR: Base quality score recalibration; bwa: Burrows–
Wheeler aligner; CPU: Central processing unit; csv: Colon separated values; ENA: European Nucleotide Archive; GATK: 
Genome Analysis Toolkit; Gb: Gigabytes; GC: Garbage collection; GWAS: Genome-wide association study; indel: Insertion-
deletion; JVM: Java virtual machine; NGS: Next generation sequencing; RSS: Resident set size; SGS: Second generation 
sequencing; SNP: Single nucleotide polymorphism; VCF: Variant call format; WES: Whole exome sequencing; WGS: Whole 
genome sequencing.

Acknowledgements
We want to thank the Institute for Bioinformatics and Systems Biology at the Justus Liebig University Giessen for provid-
ing computational resources and support. Also, we want to thank our anonymous reviewers for the invaluable feedback 
and an amazing new abstract.

Authors’ contributions
JB devised the workflow, performed the benchmarking, wrote the code and documentation. JB and GL conceived the 
project and wrote the manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
All sequencing data analyzed in this study are available in the European Nucleotide Archive (https://​www.​ebi.​ac.​uk/​
ena/​brows​er/​home) under the following run accession codes: ERR2505843, ERR3525251, ERR3525252, ERR3525253, 
ERR3525254, ERR3525255, ERR3525256, ERR3525257, ERR3525258, ERR4326765, ERR4326766, ERR4326767, ERR4326768, 
ERR4326769, ERR4326770, ERR4326771, ERR4326772, ERR4326773, ERR4326774, SRR2131198, SRR2131199, SRR2131201, 
ERR5079491, ERR5079492, ERR5079493, SRR5079496, SRR3041137, ERR1303580, ERR1303581, ERR1303584, ERR1303585, 
ERR1303586 and ERR1303587. Chicken genome sequence data (fasta format) and associated annotations (general 
feature format) were obtained from the RefSeq for the two assemblies Gallus_gallus-5.0 (https://​ftp.​ncbi.​nlm.​nih.​gov/​
genom​es/​all/​GCF/​000/​002/​315/​GCF_​00000​2315.4_​Gallus_​gallus-​5.0/) and GRCg6a (https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​
es/​all/​GCF/​000/​002/​315/​GCF_​00000​2315.6_​GRCg6a/). Usage of the respective data is outlined within the methods 
section.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 June 2021   Accepted: 4 August 2021

https://gitlab.com/computational-biology/ovarflow
https://ovarflow.readthedocs.io/en/latest/
https://hub.docker.com/r/ovarflow/release/tags
https://zenodo.org/record/4746639
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/315/GCF_000002315.4_Gallus_gallus-5.0/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/315/GCF_000002315.4_Gallus_gallus-5.0/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/315/GCF_000002315.6_GRCg6a/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/315/GCF_000002315.6_GRCg6a/


Page 17 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 	

References
	1.	 Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol. 2009;578:3–22. https://​doi.​org/​10.​

1007/​978-1-​60327-​411-1_1.
	2.	 Lupski JR, Stankiewizy P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. 

PLoS Genet. 2005;1: e49. https://​doi.​org/​10.​1371/​journ​al.​pgen.​00100​49.
	3.	 Kauppi L, Jeffreys AJ, Keeney S. Where the crossovers are: recombination distributions in mammals. Net Rev Genet. 

2004;5:413–24. https://​doi.​org/​10.​1038/​nrg13​46.
	4.	 Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics. 

2011;38:95–109. https://​doi.​org/​10.​1016/j.​jgg.​2011.​02.​003.
	5.	 Koboldt D, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its 

impact on genomics. Cell. 2013;155:27–38. https://​doi.​org/​10.​1016/j.​cell.​2013.​09.​006.
	6.	 Wetterstrand KA. DNA sequencing costs: data from the NHGRI genome sequencing program (GSP). 2020. www.​

genome.​gov/​seque​ncing​costs​data. Accessed 10 Mar 2021.
	7.	 Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief 

Funct Genomic Proteomic. 2009;8:174–83. https://​doi.​org/​10.​1093/​bfgp/​elp013.
	8.	 Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, Shang L, Boisson B, Casanova JL, Abel L. Whole-genome 

sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci USA. 
2015;112:5473–8. https://​doi.​org/​10.​1073/​pnas.​14186​31112.

	9.	 Barbitoff YA, Polev DE, Glotov AS, Serebryakova EA, Shcherbakova IV, Kiselev AM, Kostareva AA, Glotov OS, Predeus 
AV. Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of 
coding sequence coverage. Sci Rep. 2020;10:2057. https://​doi.​org/​10.​1038/​s41598-​020-​59026-y.

	10	 Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8:e1002822. https://​doi.​
org/​10.​1371/​journ​al.​pcbi.​10028​22.

	11.	 Zhang Q, Guldbrandtsen B, Thomasen JR, Lund MS, Sahana G. Genome-wide association study for longevity with 
whole-genome sequencing in 3 cattle breeds. J Dairy Sci. 2016;99:7289–98. https://​doi.​org/​10.​3168/​jds.​2015-​10697.

	12.	 Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M. 
Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agro-
nomic traits in rice. Nat Genet. 2016;48:927–34. https://​doi.​org/​10.​1038/​ng.​3596.

	13.	 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, 
Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA. From FastQ data to high confidence variant 
calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11.10.1-11.10.33. https://​
doi.​org/​10.​1002/​04712​50953.​bi111​0s43.

	14.	 Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, Feng G. Review of current methods, applications, and data 
management for the bioinformatics analysis of whole exome sequencing. Cancer Inform. 2014;13:67–82. https://​
doi.​org/​10.​4137/​CIN.​S13779.

	15	 Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in next-generation and third-generation 
sequencing analysis. Brief Bioinform. 2020. https://​doi.​org/​10.​1093/​bib/​bbaa1​48.

	16.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, 
DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing 
data. Genome Res. 2010;20:1297–303. https://​doi.​org/​10.​1101/​gr.​107524.​110.

	17.	 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, 
McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework 
for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. 
https://​doi.​org/​10.​1038/​ng.​806.

	18.	 Supernat A, Vidarsson OV, Steen VM, Stokowy T. Comparison of three variant callers for human whole genome 
sequencing. Sci Rep. 2018;8:17851. https://​doi.​org/​10.​1038/​s41598-​018-​36177-7.

	19.	 Huang PJ, Chang JH, Lin HH, Li YX, Lee CC, Su CT, Li YL, Chang MT, Weng S, Cheng WH, Chiu CH, Tang P. DeepVariant-
on-spark: small-scale genome analysis using a cloud-based computing framework. Comput Math Methods Med. 
2020;2020:7231205. https://​doi.​org/​10.​1155/​2020/​72312​05.

	20.	 Luan J, Sun X, Fei Z, Douglas AE. Maternal inheritance of a single somatic animal cell displayed by the bacteriocyte 
in the whitefly bemisia tabaci. Curr Biol. 2018;28:459-465.e3. https://​doi.​org/​10.​1016/j.​cub.​2017.​12.​041.

	21.	 Zhu P, He L, Li Y, Huang W, Xi F, Lin L, Zhi Q, Zhang W, Tang YT, Geng C, Lu Z, Xu X. OTG-snpcaller: an optimized 
pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS ONE. 2014;9:e97507. https://​doi.​org/​
10.​1371/​journ​al.​pone.​00975​07.

	22.	 Bassano I, Ong SH, Sanz-Hernandez M, Vinkler M, Kebede A, Hanotte O, Onuigbo E, Fife M, Kellam P. Comparative 
analysis of the chicken IFITM locus by targeted genome sequencing reveals evolution of the locus and positive 
selection in IFITM1 and IFITM3. BMC Genomics. 2019;20:272. https://​doi.​org/​10.​1186/​s12864-​019-​5621-5.

	23.	 Broad Institute. About the GATK Best Practices 2020. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36003​58947​
11-​About-​the-​GATK-​Best-​Pract​ices. Accessed 11 Mar 2021.

	24.	 Jamann TM, Sood S, Wisser RJ, Holland JB. High-throughput resequencing of maize landraces at genomic regions 
associated with flowering time. PLoS ONE. 2017;12: e0168910. https://​doi.​org/​10.​1371/​journ​al.​pone.​01689​10.

	25.	 Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, Li C, Zhao Y, Li F, Liu B, Jiang Z. Deep genome resequencing 
reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese 
domestic sheep. Front Genet. 2019;10:300. https://​doi.​org/​10.​3389/​fgene.​2019.​00300.

	26.	 Teytelman L. No more excuses for non-reproducible methods. Nature. 2018;560:411. https://​doi.​org/​10.​1038/​
d41586-​018-​06008-w.

	27.	 Lewis J, Breeze CE, Charlesworth J, Maclaren OJ, Cooper J. Where next for the reproducibility agenda in computa-
tional biology? BMC Syst Biol. 2016;10:52. https://​doi.​org/​10.​1186/​s12918-​016-​0288-x.

	28.	 Mangul S, Mosqueiro T, Abdill RJ, Duong D, Mitchell K, Sarwal V, Hill B, Brito J, Littman RJ, Statz B, Lam AK, Dayama G, 
Grieneisen L, Martin LS, Flint J, Eskin E, Blekhman R. Challenges and recommendations to improve the installability 

https://doi.org/10.1007/978-1-60327-411-1_1
https://doi.org/10.1007/978-1-60327-411-1_1
https://doi.org/10.1371/journal.pgen.0010049
https://doi.org/10.1038/nrg1346
https://doi.org/10.1016/j.jgg.2011.02.003
https://doi.org/10.1016/j.cell.2013.09.006
http://www.genome.gov/sequencingcostsdata
http://www.genome.gov/sequencingcostsdata
https://doi.org/10.1093/bfgp/elp013
https://doi.org/10.1073/pnas.1418631112
https://doi.org/10.1038/s41598-020-59026-y
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.3168/jds.2015-10697
https://doi.org/10.1038/ng.3596
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.4137/CIN.S13779
https://doi.org/10.4137/CIN.S13779
https://doi.org/10.1093/bib/bbaa148
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1038/ng.806
https://doi.org/10.1038/s41598-018-36177-7
https://doi.org/10.1155/2020/7231205
https://doi.org/10.1016/j.cub.2017.12.041
https://doi.org/10.1371/journal.pone.0097507
https://doi.org/10.1371/journal.pone.0097507
https://doi.org/10.1186/s12864-019-5621-5
https://gatk.broadinstitute.org/hc/en-us/articles/360035894711-About-the-GATK-Best-Practices
https://gatk.broadinstitute.org/hc/en-us/articles/360035894711-About-the-GATK-Best-Practices
https://doi.org/10.1371/journal.pone.0168910
https://doi.org/10.3389/fgene.2019.00300
https://doi.org/10.1038/d41586-018-06008-w
https://doi.org/10.1038/d41586-018-06008-w
https://doi.org/10.1186/s12918-016-0288-x


Page 18 of 18Bathke and Lühken ﻿BMC Bioinformatics          (2021) 22:402 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

and archival stability of omics computational tools. PLoS Biol. 2019;17:e3000333. https://​doi.​org/​10.​1371/​journ​al.​
pbio.​30003​33.

	29.	 Anaconda, Inc. Conda documentation. Revision f683cad1. https://​docs.​conda.​io/​en/​latest/. Accessed 11 Mar 2021.
	30	 Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J. Bioconda Team. Bioconda: 

sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6. https://​doi.​
org/​10.​1038/​s41592-​018-​0046-7.

	31.	 Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics. 2018;34:3600. https://​
doi.​org/​10.​1093/​bioin​forma​tics/​bty350.

	32.	 Docker Inc. What is a Container? 2021. https://​www.​docker.​com/​resou​rces/​what-​conta​iner. Accessed 15 Mar 2021.
	33.	 Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific containers for mobility of compute. PLoS ONE. 2017;12: 

e0177459. https://​doi.​org/​10.​1371/​journ​al.​pone.​01774​59.
	34.	 Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and 

predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 
strain w1118. Fly (Austin). 2012;6:80–92. https://​doi.​org/​10.​4161/​fly.​19695.

	35.	 Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 
2014;30:2843–51. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btu356.

	36.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 
2009;25:1754–60. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btp324.

	37.	 GATK Team. Spark. 2020. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36003​58905​91-​Spark. Accessed 15 Mar 
2021.

	38.	 GATK Team. HaplotypeCallerSpark (BETA). 2021. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36005​69687​92-​
Haplo​typeC​aller​Spark-​BETA-. Accessed 15 Mar 2021.

	39.	 De Summa S, Malerba G, Pinto R, Mori A, Mijatovic V, Tommasi S. GATK hard filtering: tunable parameters to improve 
variant calling for next generation sequencing targeted gene panel data. BMC Bioinform. 2017;18:119. https://​doi.​
org/​10.​1186/​s12859-​017-​1537-8.

	40.	 GATK Team. VariantFiltration. 2021. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36005​74400​31-​Varia​ntFil​trati​on. 
Accessed 15 Mar 2021.

	41.	 Bagley M. GATK4 (Genome Analysis Toolkit) Launch: Optimizing Genomics Analytics. 2018. https://​itpee​rnetw​ork.​
intel.​com/​genome-​analy​sis-​toolk​it-​launch/. Accessed 15 Mar 2021.

	42.	 Heldenbrand JR, Baheti S, Bockol MA, Drucker TM, Hart SN, Hudson ME, Iyer RK, Kalmbach MT, Kendig KI, Klee EW, 
Mattson NR, Wieben ED, Wiepert M, Wildman DE, Mainzer LS. Recommendations for performance optimizations 
when using GATK3.8 and GATK4. BMC Bioinform. 2019;20:557. https://​doi.​org/​10.​1186/​s12859-​019-​3169-7.

	43.	 The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format Specification. 2021. http://​
samto​ols.​github.​io/​hts-​specs/​SAMv1.​pdf. Accessed 15 Mar 2021.

	44.	 Wu Z, Derks MFL, Dibbits B, Megens HJ, Groenen MAM, Crooijmans RPMA. A Novel Loss-of-function variant in 
transmembrane protein 263 (TMEM263) of autosomal dwarfism in chicken. Front Genet. 2018;9:193. https://​doi.​org/​
10.​3389/​fgene.​2018.​00193.

	45.	 Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z. 
A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2014;15:256–78. 
https://​doi.​org/​10.​1093/​bib/​bbs086.

	46.	 Hwang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal 
exome variants. Sci Rep. 2015;5:17875. https://​doi.​org/​10.​1038/​srep1​7875.

	47.	 The GATK Team. Germline short variant discovery (SNPs + Indels). 2021. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​
artic​les/​36003​55359​32-​Germl​ine-​short-​varia​nt-​disco​very-​SNPs-​Indels-. Accessed 18 Mar 2021.

	48.	 Kathiresan N, Temanni R, Almabrazi H, Syed N, Jithesh PV, Al-Ali R. Accelerating next generation sequencing data 
analysis with system level optimizations. Sci Rep. 2017;7:9058. https://​doi.​org/​10.​1038/​s41598-​017-​09089-1.

	49.	 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 
Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. https://​doi.​org/​10.​1093/​gigas​cience/​giab0​08.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pbio.3000333
https://doi.org/10.1371/journal.pbio.3000333
https://docs.conda.io/en/latest/
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1093/bioinformatics/bty350
https://www.docker.com/resources/what-container
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1093/bioinformatics/btp324
https://gatk.broadinstitute.org/hc/en-us/articles/360035890591-Spark
https://gatk.broadinstitute.org/hc/en-us/articles/360056968792-HaplotypeCallerSpark-BETA
https://gatk.broadinstitute.org/hc/en-us/articles/360056968792-HaplotypeCallerSpark-BETA
https://doi.org/10.1186/s12859-017-1537-8
https://doi.org/10.1186/s12859-017-1537-8
https://gatk.broadinstitute.org/hc/en-us/articles/360057440031-VariantFiltration
https://itpeernetwork.intel.com/genome-analysis-toolkit-launch/
https://itpeernetwork.intel.com/genome-analysis-toolkit-launch/
https://doi.org/10.1186/s12859-019-3169-7
http://samtools.github.io/hts-specs/SAMv1.pdf
http://samtools.github.io/hts-specs/SAMv1.pdf
https://doi.org/10.3389/fgene.2018.00193
https://doi.org/10.3389/fgene.2018.00193
https://doi.org/10.1093/bib/bbs086
https://doi.org/10.1038/srep17875
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://doi.org/10.1038/s41598-017-09089-1
https://doi.org/10.1093/gigascience/giab008

	OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Overview of the workflow
	Optimized parallelization of the workflow
	Pitfalls when working with the GATK
	The configuration files

	Results
	Proof of concept
	Optimization of individual GATK applications
	Optimization of variant calling on the workflow level

	Discussion
	Conclusion
	Methods
	Utilized software versions
	Data analysis for dwarf chicken variant
	Benchmarking of individual GATK applications
	Benchmarking of the entire workflow

	Availability and requirements
	Acknowledgements
	References


