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Abstract 

Background:  With recent advances in microscopy, recordings of cell behaviour can 
result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells 
at high speed and high 3D resolution, accumulating data at 100 frames/second over 
hours, presenting a major challenge for interrogating these datasets. The surfaces of 
vertebrate cells can rapidly deform to create projections that interact with the micro-
environment. Such surface projections include spike-like filopodia and wave-like 
ruffles on the surface of macrophages as they engage in immune surveillance. LLSM 
imaging has provided new insights into the complex surface behaviours of immune 
cells, including revealing new types of ruffles. However, full use of these data requires 
systematic and quantitative analysis of thousands of projections over hundreds of time 
steps, and an effective system for analysis of individual structures at this scale requires 
efficient and robust methods with minimal user intervention.

Results:  We present LLAMA, a platform to enable systematic analysis of terabyte-
scale 4D microscopy datasets. We use a machine learning method for semantic 
segmentation, followed by a robust and configurable object separation and tracking 
algorithm, generating detailed object level statistics. Our system is designed to run on 
high-performance computing to achieve high throughput, with outputs suitable for 
visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: 
we provide a specialised tool which supports interactive quality control, optimisation, 
and output visualisation processes to complement the processing pipeline. LLAMA 
is demonstrated in an analysis of macrophage surface projections, in which it is used 
to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony 
stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies.

Conclusions:  LLAMA provides an effective open source tool for running a cell micros-
copy analysis pipeline based on semantic segmentation, object analysis and tracking. 
Detailed numerical and visual outputs enable effective statistical analysis, identifying 
distinct patterns of increased activity under the two interventions considered in our 
example analysis. Our system provides the capacity to screen large datasets for specific 
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structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced 
ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like 
ruffling and filopodia deployment.

Keywords:  Machine learning, Semantic segmentation, High performance computing, 
Object detection and tracking, Macrophage, Ruffles, Filopodia

Background
Recent developments in microscopy include the introduction of the lattice light sheet 
microscope (LLSM) [8] which utilises a 2D optical lattice of Bessel beams to achieve res-
olution in X, Y and Z plane near diffraction-limited level with high signal-to-noise ratio. 
Beside maintaining good optical resolution, another key advantage of the LLSM is the 
low phototoxicity and photobleaching of specimens, which enables cells to be surveyed 
for extended periods of time in physiologically relevant conditions. This imaging now 
enables live, 3D fluorescence imaging of sufficient speed, duration and temporal-spatial 
resolution to adequately capture and record exquisite details of dynamic cell surface 
projections.

In vertebrate cells the cell surface can be dynamically deformed to produce a variety 
of membrane projections that are used for interactions with other cells and the micro-
environment. As innate immune cells, macrophages are well known for their ability to 
extend dramatic filopodia, ruffles and phagocytic cups which contribute to their roles in 
immune surveillance and defence [33]. Continuous, dynamic ruffling is a feature of the 
macrophage surface, occurring constitutively, it is further enhanced by cell activation 
[9]. Large membrane ruffles can close, entrapping and internalising fluid-phase cargo in 
vacuolar macropinosomes which are also hubs for receptor signalling and for endocytic 
and recycling membrane traffic [34, 35].

LLSM studies have recorded novel features of ruffling, macropinocytic cups, filopo-
dia and other surface projections in amoeba and vertebrate immune cells [9, 11, 22, 36]. 
LLSM recordings in 3D extending over many hours can capture thousands of cell surface 
protrusions, routinely resulting in terabyte-scale datasets that cannot be interrogated 
manually or with traditional segmentation, nor with techniques such as thresholding 
and automatic spot detection, which require careful calibration or manual editing [13]. 
Machine learning provides a promising approach, allowing manually defined example 
data to be extrapolated via sophisticated models. These models can be applied at scale, 
robustly performing tasks such as classification and semantic segmentation.

We earlier used live imaging and LLSM to record cell surface ruffling on activated 
macrophages [9]. The macrophage surface has many spike-like projections or filopodia, 
in addition to constant, undulating wave-like membrane ruffles [35]. LLSM also revealed 
a new type of ruffle, so-called ‘tent pole ruffles’ characterised by filopodia (tent poles) 
embedded in the ruffles. The tent poles appear to raise up the intervening ruffle and then 
twist together to close the ruffle for the formation of fluid-filled macropinosomes. The 
distinctive tent pole ruffles were characterised on lipopolysaccharide (LPS) activated 
macrophages but are also detected on other cell types such as cancer cells [9]. The rela-
tionships between filopodia, ruffles and tent pole ruffles remain to be fully investigated 
to define their modes of formation and deployment by cells under different conditions. 
These and other cell projections perform key roles in cell migration, immune defence, 
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and the formation of macropinosomes for environmental sampling and nutrient acquisi-
tion. LLSM datasets are valuable troves of data for the quantitative analyses required to 
gain critical insights into cell surface behaviours, but machine learning is necessary to 
unlock this information.

Semantic segmentation is designed to distinguish between classes of structures, and it 
will not necessarily separate individual objects. An effective system for analysis of LLSM 
data must therefore supplement machine learning segmentation with an object separa-
tion and tracking system. Such algorithms are well studied, but care must be taken to 
ensure the selected approach also works robustly at scale, without the need for manual 
editing. Macrophage ruffles are complex and highly dynamic structures, representing 
perhaps the worst-case scenario for object delineation and tracking.

Deep learning models, particularly the U-net (Ronneberger, Fischer, & Brox, 2015), 
provide a powerful approach to semantic segmentation, but require extensive annotated 
training data. Sophisticated instance segmentation algorithms have also been devel-
oped that allow for the direct detection of individual objects, notably Mask R-CNN [12], 
which like the U-net is based on a convolutional neural net architecture. However, such 
instance segmentation models require even more extensive annotation of training data, 
including segmentations of numerous individual objects. Lacking the required training 
data, we instead designed a platform that would allow for the rapid development and 
modification of models with minimal data annotation. This approach is particularly suit-
able for cases where image properties are likely to change between datasets due to exper-
imental requirements and markers, and different structures may need to be identified.

While non-interactive and distributed computation is a natural choice for compu-
tational analysis of terabyte scale data sets, an adaptable platform as outlined above 
will require integrated visualisation for interative tasks such as training data selection, 
parameter selection and quality control for the algorithms applied, as well as display of 
final outputs such as segmentations or rendered surfaces. Popular bioimaging analy-
sis platforms including ImageJ/Fiji [30–32], Vaa3D [19], and proprietary software such 
as Bitplane Imaris, are designed to combine analysis and visualisation in an interactive 
environment. Scripting systems then allow a process developed interactively on in-
memory imaging to be applied to unseen data. Although these approaches are clearly 
effective, integration into a pipeline involving distributed computational resources adds 
an additional layer of complexity and is limited in most cases. Our platform includes a 
specialised visualisation tool to address this need.

It should also be noted that for a specific image analysis task, there may be specialised 
software available; for example, the quantification and tracking of filipodia [7]. To the 
best of the authors’ knowledge there is no method which claims to directly detect and 
quantify more complex membrane ruffling structures in the same fashion. There is, how-
ever, an alternative approach to the analysis of cell surface structures, based on the divi-
sion of a defined surface into convex objects. These structures can then by analysed and 
classified by shape-based features [10]. While potentially very powerful, this approach is 
predicated on high quality rendering of the cell surface including complex and fine struc-
tures. This 2-class segmentation problem is challenging since threshold based methods 
tend to remove fine structure, but in recent work the Curvature-Enhanced Random 
Walker [21] provides an effective if computationally intensive method. The algorithm 
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requires tuning of 2 parameters, but the need for annotated data is much lower than for 
deep learning models. This is clearly an important approach to cell membrane analysis. 
However, without some modification it does not seem to be able to address one key part 
of the task addressed here—the segmentation of ‘tent poles’ within ruffles.

Implementation

We demonstrate a scalable, configurable and modular analysis platform suitable for large 
4D microscopy datasets (Fig.  1b), LLAMA (large scale light microscopy analysis with 
machine learning). A demonstration dataset is provided at https://​doi.​org/​10.​14264/​
3084d​b2, including code, the visualiser app, and scripts configured to demonstrate the 
computational pipeline on a local Linux machine. Source code is also provided (github.
com/jameslefevre/4D-microscopy-pipeline, github.com/jameslefevre/visualiser-4D-mi-
croscopy-analysis), as well as a detailed set of protocols (see Additional file 1: Supple-
mentary material).

Our software was developed specifically for the analysis of actin-rich protrusions 
consisting of spike-like filopodia, ruffles and tent pole ruffles on the surface of Lifeact-
labelled, activated macrophages in terabyte-scale LLSM datasets (Fig.  1a). Filopodia 
and ruffles are distinguished from cell bodies, and individual structures are identified 
and tracked over time. The pipeline is based on a machine learning approach to per-
form semantic segmentation, assigning each voxel to a defined class, followed by object 
separation and tracking algorithms designed to deal effectively with ambiguous struc-
ture delineation. The output datasets contain rich information on cell surface features 
over time, suitable for both statistical analysis and visualisation. This pipeline also pro-
vides a template for the application of ImageJ [32] based algorithms to large scale image 
datasets, including deployment to HPC (high performance computing) systems. We also 
provide a specialised 4D visualisation tool, the LLAMA visualiser, designed to support 
the pipeline (training data selection, parameter selection and validation) as well as to 
visualise the outputs. Effective visual validation and testing is a critical element in the 
LLAMA platform; the alternative is to provide extensive annotations that would allow 
quantitative scoring of semantic segmentation, and of the identification and tracking 
of structures. When confident in the segmentation model and the object detection and 
tracking parameters, the pipeline can be fully automated.

The platform is designed to be adaptable to other types of large 4D image datasets 
where the general analysis approach (identification and tracking of different classes 
of structures over time, with output of quantitative data) is suitable for addressing 
the research question. While we present results for one model and one biological 
and imaging system, it should be noted that the same segmentation, object analysis 
and tracking algorithms are employed on the dissimilar cell body, ruffle and filopo-
dia classes, with all customisation via per-class training data and parameter selection. 
This use of generalised algorithms is designed to allow ready application of the plat-
form to novel imaging and tasks, together with an approach that emphasises rapid 
development of models on new and un-annotated image data. The incorporation of 
3D visualisation presumes that this is a useful tool for model validation and tuning, 
and assessment of final outputs. While this will be more difficult for structures that 

https://doi.org/10.14264/3084db2
https://doi.org/10.14264/3084db2
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are internal to cells or tissues, the visualiser includes the capacity to hide individual 
segmentation classes, and to switch seamlessly between 3 and 2D views.

Ruffle, tent pole ruffle and filopodia. Example images from LPS treated cell samples, 
maximum intensity z-projection. Scale bars are 5 µm.

Key steps in analysis pipeline; images are illustrative. Our system is designed for 
systematic analysis of large scale 4D microscopy datasets and provides high through-
put by performing intensive computations (blue) in parallel for each time step, suit-
able for an HPC cluster. The LLAMA visualiser is designed to support all interactive 

Fig. 1  a Macrophage membrane projections. b Overview of the LLAMA image analysis system
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steps (green), including quality assurance, segmentation model development and 
parameter selection as well as analysis of results. Development of the segmentation 
model and the selection of parameters for object detection and tracking should be 
performed using a representative selection from the dataset. The pipeline can then 
be run non-interactively, using uniform settings to ensure comparable output across 
the dataset. See Methods and Materials and supplementary protocols for details.

Our computational pipeline is provided as a set of linked protocols (see Additional 
file  1: Supplementary material), with complete and commented code (github.com/
jameslefevre/4D-microscopy-pipeline). The implementation primarily uses headless 
ImageJ [32] processes, invoked via parameterised Groovy scripts, which combine 
core ImageJ functionality with selected plugins and custom extension code. This pro-
vides a common interface to each computational step with flexible calling options, 
including interactively from the ImageJ interface, as a background process on a local 
machine, or on a remote server or cloud service. While this approach exposes some 
complexity, requiring manual editing of scripts and selecting paths and other param-
eters, it also provides extensive flexibility in deployment, including local or remote 
execution as well as modification, removal or substitution of steps. The protocols 
provide a detailed guide for deploying the pipeline using a remote cluster with a PBS 
batch job system to perform the main computations (semantic segmentation and 
object analysis, see Fig. 1b) in parallel for each time step, enabling a scalable, high-
throughput system. The code provided includes example PBS job scripts. ImageJ/
FIJI was selected since it is free and open source, provides access to a wide range of 
image processing algorithms (via plugins as well as core ImageJ), and also has the 
benefit of a fully cross-platform Java-based system and simple installation (admin 
privileges not required, optionally bundles Java to avoid system dependency).

The custom 3/4D LLAMA visualisation software we developed (github.com/
jameslefevre/visualiser-4D-microscopy-analysis), is built on the Processing 3 envi-
ronment and language [28], which provides a powerful framework for interactive 
visualisation; this is the only component of the system which is not based on ImageJ. 
It should be noted that the visualiser is not directly part of the analysis pipeline, 
and following our modular approach it may be ignored, or alternative tools used. 
For example, the Vaa3D system, while particularly focussed on neuronal analysis, 
provides powerful 3D image volume and surface display capacities. However, the 
custom tool provides tight coupling with the analysis pipeline and targeted features; 
we found this to be a vital support tool throughout the process, enabling easy and 
direct comparison of imaging with segmentations and object representations, and 
between alternative versions of these outputs. This tool is designed specifically to 
support training data selection in 3D and customisation and quality control across 
the pipeline, as well as visualising outputs. It features rapid switching between slice 
and 3D view, and between the original image and one or more, from a single selected 
perspective. The segmentations may similarly be compared to the object repre-
sentations derived from them. Additional files 2, 3: Supplementary Videos 1 and 2 
demonstrate the key features of the visualiser and its use as part of the system. Addi-
tionally, the supplementary protocols document includes a guide, and a manual is 
included with the code.
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Semantic segmentation method

Our semantic segmentation approach is based on the Trainable Weka 3D software 
[2], which is implemented as a plugin to the ImageJ image processing platform [32]. 
This machine learning tool produces segmentations using a two-step process. Using 
ImageJ, a range of sophisticated pre-defined 3D image features are computed at mul-
tiple scales, capturing rich spatial context for each pixel. Then the set of features for 
each pixel is used with a selected machine learning algorithm from the Weka toolkit 
[39] to produce a per-pixel classification. We employed a reengineered high-through-
put pipeline suitable for use on a large scale 4D dataset with cluster-based computa-
tion (github.com/jameslefevre/4D-microscopy-pipeline).

We briefly describe the Trainable Weka system and our reengineered pipeline, 
designed to more effectively deal with large scale data. The Trainable Weka machine 
learning segmentation algorithm has the following steps:

Model training

•	 Define segmentation classes and select training data for each class from a training 
image.

•	 Compute selected image features for the training image.
•	 Extract image features and class for each training set voxel, generating a data table.
•	 Train classification model on this training data table using a selected Weka algo-

rithm.

Model use

•	 For each image stack, compute the image features that are required for the trained 
segmentation model.

•	 Extract the image features for each voxel and apply the trained model to classify 
the voxel.

•	 Combine voxel classifications to produce a segmentation and (optionally) a prob-
ability map giving the estimated probability distribution over the classes for each 
voxel.

The role of the image features, using algorithms provided by the ImageJ platform 
and the ImageScience plugin [23], resembles that of the earlier convolutional layers 
in the deep learning models such as U-Net [29] sometimes used for semantic seg-
mentation [41]. However, using predefined image features radically reduces the cost 
of training in computational time and in the requirement for manually segmented 
training data, although the modeller must ensure that the selected features and scales 
capture sufficient spatial context for pixel classification. Full manual segmentation to 
produce training data may represent weeks of effort for a biologist, and represents a 
major limitation in the use of deep learning; since the generalisability of the model to 
new data is uncertain, potentially limiting the useful life of the model, the required 
effort is often impractical. The Trainable Weka approach uses a much smaller set of 
manually selected training data, although high quality results typically require visual 
assessment on a representative set of full images, and model iteration.
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The Trainable Weka plugin uses the ImageJ interactive environment for both training 
and application of segmentation models in both 2D and 3D, which is highly effective for 
smaller image sets. Trained models may also be saved from the interactive environment, 
and either reloaded or deployed via non-interactive scripted processes. We encountered 
several bottlenecks when attempting to apply this software at scale: image features in 
3D are expensive in computational time leading to long delays during the interactive 
process; available RAM limits the number of image features that can be used; software 
instability was encountered under heavy load, compounding the previous issues; train-
ing data selection was often difficult due to a lack of 3D context; and extending or revis-
ing existing training data selections, or combining training data for multiple stacks, is 
only possible using an ad-hoc process outside the interactive environment. We created 
our LLAMA visualiser, in the first instance, to provide clear 3D context during train-
ing data selections: see Additional file 2: Supplementary Video 1 for a demonstration of 
the visualiser in training data selection and the evaluation and revision of segmentation 
models. The other issues identified motivated our reengineered pipeline, in which the 
Trainable Weka plugin is used for the interactive selection of training data, but all com-
putation is done non-interactively. Other key modifications are listed below:

•	 Image features are generated in a stand-alone process and cached to disk to minimise 
computational cost.

•	 Selected image features may be approximated using a down-sampled image. Features 
are calculated on a range of selected scales (the parameter sigma), and the compu-
tational cost increases with scale. But larger scales may be required to capture the 
required spatial context. We can effectively approximate larger scale features by 
down-sampling the original image, calculating the feature with appropriately reduced 
sigma, then up-sampling with interpolation. This greatly reduces computational cost. 
Importantly, the processes and code provided ensures that the features are calculated 
in a consistent way during training and deployment.

•	 Training data selections are recorded in an ImageJ macro. This process allows for 
editing and documentation of the selections and an easy way to resume or extend 
selections. It also enables the extraction of training data features to be handled by a 
separate non-interactive process with access to the macro file.

•	 Full flexibility is allowed in feature selection. In the plugin, each selected feature is 
used at each selected scale; the modified process allows any combination of feature 
and scale if desired.

The protocols document provides detailed instructions for the segmentation model 
training process and for the deployment of trained models. It is often necessary to mod-
ify the model one or more times after evaluation of segmentation results on a larger set 
of image data, and an additional protocol is provided as a guide for this iterative process.

Object detection and quantification method

Semantic segmentation is designed to classify each voxel as belonging to a type of struc-
ture, such as filopodia or ruffle, and will not necessarily separate individual adjacent 
objects. However, the most useful quantitative analysis of cell imaging will typically be 
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based on individual cells or subcellular structures, tracked over time. For example, in 
Fig. 2c (see “Results”) we can clearly distinguish 4 cells (and the edge of a structure which 
is primarily outside the imaging frame), but these are not fully separated in the segmen-
tation. These cells must be delineated, and each tracked over time. Macrophage ruffles 
are more complex and highly variable, representing perhaps the worst-case scenario for 
object delineation and tracking. It can occasionally be unclear even to the human analyst 
whether an object should be considered as one structure or two, or where the bound-
ary is, or when an object should first be considered a ruffle that is distinct from the cell 
membrane. Biological variation and noise in the imaging process mean that an auto-
mated process attempting to decide these questions without putting the data in tempo-
ral context may give inconsistent results over a sequence of time steps, making coherent 
tracking of structures impossible. However, due to the scale of the data and the need for 
computational feasibility it is necessary to segment each image stack in isolation, without 
incorporating information from adjacent time steps, and the algorithm used for this task 
cannot rely on manual editing.

In response to these challenges, we developed a sophisticated and configurable 
approach in which touching structures are split using a watershed algorithm [5] on edge 
distance, then selectively recombined as part of the tracking process in order to pool 
information across time steps and produce coherent tracks of structures over time (see 
Fig. 3 in “Results”). The watershed parameters are chosen to ensure that all necessary 
object splits are made, at the cost of potential over-separation which is corrected in the 
tracking algorithm. This is illustrated in panel C and D of Fig.  3. Most computations, 
including the expensive watershed split step, are performed in parallel for each image 

Fig. 2  Segmentation
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stack. This allows a scalable high-throughput analysis pipeline. The tracking algorithm 
is then applied using light-weight summary object information aggregated across time 
steps. Methods involving a re-merging step in combination with watershed split are well 
known, for example [37]. The key innovation in our algorithm is to integrate this re-
merging with the tracking algorithm as a way of efficiently pooling information across 
time. The algorithm is described in detail below.

A potential challenge with the macrophage segmentation is a degree of unresolvable 
ambiguity between the ruffle and filopodia classes; some structures appear to be truly 
intermediate, giving complex and unstable segmentations. In order to allow analysis of 
these structures, such as filopodia in the process of forming or decaying, we also applied 
the object detection and tracking algorithm to the merged ruffle and filopodia classes, 
in addition to the separate analyses. The average class probabilities of each structure are 
provided as an additional feature (measuring the degree to which a composite struc-
ture most resembles a ruffle or filopodia). This capacity to analyse merged segmenta-
tion classes is included as a general feature of the platform, documented in the protocols 
provided.

The watershed algorithm selected was extended maxima watershed on the edge dis-
tance [27]. Edge distance is the distance from each voxel in an object to the nearest 
external voxel; the idea is to use this measure to identify and remove narrow connec-
tions between more compact regions that are likely to represent separate objects. Clas-
sical watershed uses local maxima (equivalently minima) as seeds of expanding regions, 
but irregular object shapes may result in multiple local maxima in an object, leading to 
excessive splitting. The extended maxima approach solves this problem by specifying 
a minimum difference in the underlying measure (edge distance in this case) between 

Fig. 3  Structure delineation and tracking
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adjacent regions. This minimum difference is the parameter “dynamic”. Given any two 
local maxima m1 and m2 , they will be merged into the same region if there is a path 
between them where the minimum value is greater than min (m1,m2)− dynamic . The 
dynamic parameter is used to tune the algorithm, with smaller values leading to more 
splitting.

The watershed algorithm implementation (ExtendedMinimaWatershed) was provided 
by the MorphoLibJ plugin [17], working with 3D distance maps (edge distance trans-
form) provided by the 3D ImageJ Suite (mcib3d-suite) plugin [25]; 3D distance maps 
were also used to provide auxiliary statistical information on proximity between struc-
tures of different classes. The 3D ImageJ Suite plugin was additionally used for 3D hole 
filling, and to produce object meshes using the marching cubes algorithm [20] followed 
by mesh pruning. Skeleton representations of linear structures are produced using the 
plugins Skeletonize3D and AnalyzeSkeleton [3]. Skeletons and meshes provide an effi-
cient means of object visualisation and may also be used in statistical analysis.

A range of descriptive features are calculated for each object, including three that are 
used in the tracking algorithm: position, volume, and the amount of contact with each 
adjacent object. The measure of contact between objects A and B is the number of dis-
tinct pairs of adjacent voxels (a, b), where a and b are contained in A and B respectively. 
Two voxels are considered adjacent if they are equal in one coordinate and differ by at 
most 1 in other coordinates, so a non-edge voxel is adjacent to 18 neighbours. This sum-
mary data is saved in tabular form for each stack and forms the inputs for the tracking 
step described below. These features are also carried through to the computed tracks as 
part of the output, and combined appropriately when objects are merged.

Tracking algorithm

In this section we provide a technical description of the tracking algorithm. Detailed 
instructions for applying the algorithm are included in the supplementary protocols, 
but the following text should also be consulted as a guide to selecting the key param-
eters used and understanding the output. We conclude with a brief guide to using the 
LLAMA visualiser to assess tracks and revise parameters.

The algorithm presented is designed to deal with data where adjacent structures often 
touch, the identity of individual structures is ambiguous, and methods used to delineate 
them can give inconsistent results between consecutive time steps. For example, it may 
be unclear at what point a dividing structure becomes two structures, or a disappearing 
structure completely recedes into the cell membrane. Biological variation between time 
steps or noise in the observational process means that a fixed algorithm applied to each 
time step may produce inconsistent segmentation results, leading to low quality tracking 
of structures over time, and the goal of the following is to correct these.

The approach is to pool information across time to give temporally stable and coher-
ent representations of structures. We start with object data for individual time steps 
where an algorithm such as water-shedding has been used to separate touching struc-
tures, and the resulting objects have been reduced to a summary form; this has the 
advantage of allowing most computation to be done at the level of individual time steps, 
enabling parallel processing with relatively modest resource requirements. The splitting 
algorithm should be run under aggressive parameters to ensure that all true structures 
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are split apart, at the cost of initially incorrectly subdividing many structures (if it is pos-
sible to completely avoid both under and over splitting, this tracking approach is not 
required and a simple matching algorithm is sufficient). We then selectively merge adja-
cent objects and match between successive time steps to form coherent structure tracks, 
seeking a balance between merging and matching in a sensible way and maintaining 
tracks over time.

The algorithm is customised with the 6 parameters specified in Table 1. Tracking is 
performed separately for each class of structure, so these parameters are specified for 
each class individually. See header information in the script “get_tracks.groovy” for 
details of how to set these and other parameters.

The general approach is to assign scores for merging adjacent objects at the same time 
step, based on the contact area, sizes and centre of mass distance between the objects, 
and combine with a distance measure for matching objects between consecutive time 
steps (with a threshold above which no match is made). We start by running a matching 
algorithm between consecutive time steps, forming a draft set of tracks (modified Hun-
garian algorithm [16] with distance threshold). Then we run an iterative process of track 
merging.

Quantification of object matches between adjacent time steps and merges at each time 

step

The distance measure used to match objects across time takes relative size into account 
as well as distance, with the relative importance controlled by the parameter Wl . Given 
objects a and b with positions pa , pb , and volumes va , vb , then the distance is defined as

We require d(a, b) < dmax for a match to be allowed. In order to help evaluate a set of 
tracks produced by matching and merging operations, we allocate a matching score

This score penalises poorer matches while rewarding longer tracks, since any match 
within the threshold gives a positive score.

d(a, b) =

√

∣

∣pa − pb
∣

∣

2
+

(

Wl log

(

va

vb

))2

Smatch = dmax − d(a, b)

Table 1  Tracking parameters

Parameter Name in script Purpose

Wl logSizeWeight Weight to put on size difference when matching objects

dmax matchThreshold Maximum distance for matching

Qp relativeNodeDistance_referenceValue Calibrates the object merging score based on centre of 
mass proximity

Qc relativeNodeContact_referenceValue Calibrates the object merging score based on contact 
between objects

Wc relativeNodeContact_weight Relative weight for contact measure versus distance 
measure

Wmatch matchScoreWeighting Relative weight on matching score versus merging score
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The object merging score (defined below) is designed to indicate whether two adjacent 
objects with the same class and time step are truly distinct, or if they should be merged 
and treated as a single structure. This score is a weighted average of two factors. The 
relative contact Rc is an estimate of the contact area as a proportion of the surface area 
of the smaller object, which is approximated by the surface area of a sphere of the given 
volume (the lower bound of true surface area); both are in pixel units. The relative prox-
imity Rp is the inverse distance between the object centres with a correction factor based 
on the object volumes, since a given distance between centres of mass is indicative of a 
greater degree of separation for smaller objects. To get this correction factor, for each 
object we calculate the radius of the sphere with the same volume as the object, then we 
sum these 2 radii. This sum is then divided by the distance between the centre of masses 
to give Rp . Given objects a and b with volume and position as above and contact area 
C(a, b) , the formulae are

These factors are divided by reference values Qc and Qp , indicating the neutral level at 
which the score is not thought to be evidence for or against aggregation. The final merg-
ing score is a weighted sum of these factors, with weights based on the estimated useful-
ness of each.

Final merge scores above 0 are taken as evidence for aggregation, but negative scores 
may still be consistent with aggregation when balanced by other score terms. The over-
all objective function is then a weighted sum of the scores of all merging and matching 
operations:

Tracking and iterative merging process

We seek to create a set of tracks by selectively merging objects at each time step and 
matching objects between consecutive times, in order to maximise the objective func-
tion above. This optimisation problem is computationally infeasible to solve in general, 
so we first solve the problem for matching only, then iteratively modify the result by 
merging tracks, allowing for matches to be added or removed in the process (splitting or 
joining tracks across time).

The objects are assembled into an initial set of tracks by matching objects at each pair 
of consecutive time steps. Matching distance is typically subject to a reasonably strict 
threshold ( dmax ), such that we expect an object to be matched to at most one object 
in each temporal direction. But we account for the possibility that an object may have 

Rc(a, b) = C(a, b)/
(

36π min (va, vb)
2
)1/3
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v1/3a + v
1/3
b

)

/

(

(4π/3)1/3
∣

∣pa − pb
∣

∣

)

Smerge(a, b) =
WcRc(a, b)

Qc
+

(1−Wc)Rp(a, b)

Qp
− 1

O =

∑

(a,b)∈merges

Smerge(a, b)+Wmatch

∑

(a,b)∈matches

Smatch(a, b)



Page 14 of 26Lefevre et al. BMC Bioinformatics          (2021) 22:410 

more than 1 possible match within this threshold, adapting the Hungarian algorithm to 
ensure that matches are unique (and hence tracks are simple/unbranched), and that total 
matching distance is minimised within these constraints. To do this, we first calculate 
the distance matrix between the 2 object sets. Then we replace all values greater than 
dmax in the matrix with dmax , and pad the smaller dimension of the distance matrix with 
dummy objects, with all associated distances set to dmax . We then apply the Hungarian 
algorithm to this square matrix, and finally discard all distance dmax matches and the 
dummy objects.

The initial set of tracks is then iteratively modified by track merging operations, in 
which two or sometimes more tracks, existing at the same or overlapping time periods, 
are merged together over some time interval [t1, t2] . Although there may be more than 
two tracks involved, exactly two must exist at each time between t1 and t2 , and between 0 
and 2 tracks may extend beyond the merged interval in each direction. The merge opera-
tions may involve one or more cuts to the tracks at the ends of the merged interval; if 
2 tracks continue before or after the merged interval, at least one must be cut to avoid 
track branching. A prospective merge operation is scored by adding the merge scores at 
each time step and the change in matching score (the scores of all new matches made 
minus the scores of all discarded matches) weighted by Wmatch.

We begin the iterative merging process by considering every pair of tracks which are 
adjacent for at least one time point (touching objects). We find and score the optimal 
merge between the two tracks, by considering all possible merge intervals in the period 
where both tracks exist. For each possible merge interval, we calculate whether continu-
ing tracks should be included into the merged track or cut into separate tracks, in order 
to give the best match score adjustment, and this adjustment is included in the score for 
the interval. In the case where the merge score is positive, but the overall score is nega-
tive after match score adjustment, we consider extending to further tracks (since this sit-
uation may be an artefact of a single point tracking failure). If the optimal merge interval 
continues to the end of the common time period, but one track continues beyond this 
time, then we look for tracks that are adjacent to the continuing track and start immedi-
ately after the merge period. If the matching at the end of the merge interval is improved 
by this new track, it is added to the hypothetical merge operation, and the merge interval 
is extended. This extension is continued in both directions while possible, adding new 
tracks as indicated, unless an overall positive merge score is achieved.

We then identify and execute the potential merge operation with the highest score, 
provided the score is positive. If possible, we extend the merged track by matching to 
existing tracks. Merge scores are then recalculated for the merged track, and any tracks 
formed by splits, and the highest merge score in this adjusted list is found. The process 
continues until no merges with positive score are available.

Assessing tracks and revising parameters using visualiser

The LLAMA visualiser may be used for assessing tracks, and in combination with the 
information above it may be used in setting or revising the object splitting and tracking 
parameters. Additional file 3: Supplementary Video 2 provides a demonstration of the 
visualiser in this role. Note that multiple track sets based on the same object data can 
be compared. In the data specification screen, select 2 or more object datasets with the 
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same object folder but different track files, and provide labels to allow easy identification 
when the visualiser is running.

Useful tools include the “Selected” filter with specified track id and the “multiple 
times” option. Using “Object Coloring” you may see the objects as split by the water-
shed algorithm (“Object” option) versus the possibly merged structures produced by the 
tracking algorithm (“Node” or “Track” option; these are provided as separate options to 
support branched tracks if required).

A special feature is activated with the ‘c’ key in the visualiser. When showing tracks, 
the values of Rp(a, b) and Rc(a, b) are shown for each pair of touching nodes. Both values 
are multiplied by 100 and rounded to the nearest integer, then displayed as a pair Rp(a, b)

/Rc(a, b) between the two nodes. By comparing the displayed values to your judgement 
of whether objects are best regarded as one structure or two, the appropriate reference 
values  Qp and Qc can be selected.

Results and discussion
The software presented is intended to provide an integrated approach to a relatively new 
practical issue: the quantitative analysis of terabyte scale microscopy data; here we pre-
sent an analysis that demonstrates the main features of the approach as well as its capac-
ity to produce original biological findings.

We demonstrate our analysis pipeline with a quantitative analysis of two different 
interventions that stimulate macrophage ruffling: (i) bacterial lipopolysaccharide (LPS) 
LPS is a potent endotoxin that stimulates morphological changes associated with arm-
ing innate immune responses in macrophages through actin reorganisation and tyrosine 
phosphorylation of Pyk2 and focal adhesion, paxillin [38]; and (ii) macrophage colony 
stimulating factor (CSF-1), a cytokine involved in differentiation of macrophages that 
induces cells via WAVE2-Abi mediated pseudopod assembly for cell chemotaxis [15]. 
Both stimuli also induce macropinocytosis, an actin driven process that facilitates the 
bulk engulfment of extracellular fluid via ruffling [6, 40]. For these studies, samples con-
taining 17 complete cells were each imaged at a resolution of 1.04 µm × 1.04 µm × 2.68 
µm × 5.3 s for 53 min total over two captures (before and after treatment). Cell tracks 
were matched between the two captures and excluded if cells moved partially or fully 
out of the field of view during imaging. 901,696 objects were found that were associated 
with the analysed cells, arranged into 76,386 tracks that met minimum size thresholds. 
Statistics produced included volume, maximum extension from the cell surface and the 
set of adjacent structures. We identified and analysed 1188 significant ruffling events, 
defined by peak ruffle volume exceeding 14.5 µm3.

Macrophage segmentation

Segmentation classes used to dissect the LLSM macrophage imaging were back-
ground, cell body, ruffle and filopodia, where filopodia include the “tent pole” struc-
tures contained within some ruffles. Training data was obtained from four image 
stacks, selected from four different captures and two imaging sessions. Compared to 
the deep learning models sometimes used for semantic segmentation [41], the Traina-
ble Weka approach requires only a very small selection of training data, although high 
quality results may require an iterative process involving assessment of representative 
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segmentations, followed by updating the model with additional training data. Our 
macrophage model required two revision steps, primarily to add robustness against 
heterogeneity in noise and contrast between image captures. Final training data was 
drawn from 4 image stacks selected from 4 samples over 2 separate experiments. It 
consisted of 2036 simple elliptical image samples: 1101, 220, 244, and 471 respectively 
for the background, cell body, filopodia and ruffle classes. These produced respectively 
9113, 3339, 1057 and 2821 labelled voxels. The total of 16,330 labelled voxels is equiv-
alent to less than 0.1% of a single image stack cropped to the size of a macrophage 
(approx. 60000µm3. Fluorophore intensity was adjusted between and within cap-
tures using cytoplasm intensity as a benchmark and modelling an exponential decay 
curve in each capture; the same intensity adjustment process was also used for ana-
lysed data. In addition, the segmentation model was made more robust against base 
fluorophore intensity variation by fourfold replication of training data with intensity 
scaled by factors 0.5, 0.75, 1, 1.25. The final model used the Weka random forest algo-
rithm with default parameters on class-balanced training data. The random forest was 
selected from the range of models available in Weka as it was judged to perform best 
in generalising beyond the training data. The full range of features was used, with ker-
nel size (sigma of 1,2,4,8, and 16 µm (16 µm is approximately 15 × 15 × 6 voxels. For 
computational efficiency, a twofold down-sampling in x and y was used for all features 
at sigma = 16, and the ImageJ filters (mean, median, minimum, maximum, variance at 
sigma = 8. The maximum sigma value must reflect the amount of spatial context nec-
essary to classify each voxel, and the down-sampling feature was added to our system 
to minimise the computational cost of computing features at larger scales. The wide 
range of features used was necessary to provide robust and clean segmentations in the 
presence of heterogeneous image quality and noise; otherwise a more parsimonious 
model could have been used, allowing faster computation.

The robustness of the model was tested on the training data using a tenfold cross 
validation, giving a 0.73% error rate. Training on similar image datasets consistently 
gave cross validated errors below one percent, and this continuing very low error 
rate shows a highly robust model. It should be reiterated that the limited and biased 
nature of the training data selection means that this metric is a necessary but not suf-
ficient performance measure; testing is performed visually on larger scale data.

The segmentation model was successful in identifying the four classes, distinguish-
ing ruffles and filopodia and identifying filopodial-like “tent poles” embedded in 
major ruffle structures (Fig. 2).

Sample segmentation output, showing macrophage cells imaged on the LLSM, 
segmented into background (black/transparent), cell body (green), ruffle (blue), 
and filopodia/tent pole (red). (ABC) Full image stack, view rotated so that plate is 
on left side. (DEF) Detail of ruffle containing tent pole like structures. (AD) Origi-
nal image after pre-processing (de-skew and deconvolution). (BE) Probability map, 
showing the estimated probability that a voxel will occur in each class. (CF) Semantic 
segmentation; each voxel is assigned to the single class considered most likely. All 
images produced using our LLAMA visualisation software (github.com/jameslefevre/
visualiser-4D-microscopy-analysis).
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The segmentation results, displayed alongside the LLSM imaging using LLAMA visu-
aliser, proved effective in helping to manually identify tent pole ruffling events (see Addi-
tional file 4, 5: Supplementary Videos 3,4).

Detection and tracking of cells and surface structures

The object splitting and tracking parameters used are given in Table 2 (see Table 1 above 
for definitions, except for the watershed parameter dynamic which is discussed under 
object detection and quantification). These were decided by iterative refinement of ini-
tial estimates, with results assessed primarily in the visualiser.

In addition, objects that were removed by the watershed algorithm were replaced if 
above 75 voxels in size, but a minimum size threshold was applied to structures used 
for tracking: 9000 voxels for cell body, 200 voxels for ruffle, and 30 voxels for filopodia. 
Image resolution is 0.104 µm × 0.104 µm × 0.268 µm, so voxel volume is 0.0029 µm3.

(A) Semantic segmentation into cell body (green), ruffle (blue), filopodia/tent pole 
(red), with a prominent ruffle in the foreground. (B) Isolation of ruffle class. (C) Water-
shed split algorithm separates ruffle from touching objects but incorrectly splits the 
foreground structure; except in the simplest cases, this initially excessive splitting is nec-
essary to ensure that all required separations are performed. (D) Structure boundaries 
after re-merging step; this is integrated with the tracking algorithm to maximise con-
sistency with other time steps. (E) Foreground ruffle correctly delineated and associ-
ated with the cell body. (F) Ruffle with associated call and filopodia structures (identified 
using adjacency data) using the original class colour scheme. (G) Structures in F tracked 
over time; the timestep shown in A-F is in the central position. All images shown were 
produced using our LLAMA visualiser using only the standard display options available 
in the graphical user interface, with no post-editing. This application provides a power-
ful tool for customisation and validation of the algorithm as well as visualising results.

Statistical analysis

Our system provides a rich set of data for each structure, including size, position, shape, 
orientation and distance from a specified reference class (measuring, for example, the 
maximum extension of a structure from the cell surface). The contact between touch-
ing objects of all classes is quantified, allowing relationships between structures to be 
determined. These data are recorded in tabular form, for easy loading into any statisti-
cal software. In addition, skeleton and mesh representations of objects are (optionally) 
produced. These are intended as an aid for visualisation using the LLAMA visualiser or 
other software, and may also be used to provide additional statistical information such 
as the length of linear structures.

Table 2  Watershed and tracking parameters used

Parameter Dynamic Wl dmax Qp Qc Wc Wmatch

Cell body 0. 2 µm 9 µm 12 µm 0.7 0.06 0.66 3.5 µm

Ruffle 0.01 µm 2.2 µm 2 µm 0.8 0.04 0.66 2.5 µm

Filopodia/tent pole 0.01 µm 2.2 µm 2 µm 0.5 0.02 0.66 2.5 µm
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Each macrophage sample analysed was imaged for 300 timesteps before and after 
treatment, at intervals of approximately 5.3 s; we refer to these as the pre and post 
captures. Matching of cell tracks allowed direct pre vs post comparisons for each 
cell after stimulation. Observed changes were compared to untreated control cells, 
which were prepared in parallel and imaged in the same session. Analysis was per-
formed in the R statistical programming environment using the track files produced 
at the final stage of the image analysis.

Many ruffles and filopodia were found to extend along the slide surface and 
appeared to be attached to the slide, resulting in a morphology distinct subset from 
the structures in the upper region of the cell. Differential behaviour was also con-
sidered likely between these regions, so for analysis we classified structures as slide-
proximal or slide-distal, depending on whether the distance from the estimated slide 
position to the structure centre of mass is less or greater than 1.5 µm.

In the following sections we demonstrate types of analysis and conclusions that 
can be drawn using these methodologies. Distinct patterns of macrophage ruffling 
from LPS and CSF stimulation (as discussed in the introduction) were seen, with 
increased activity in the distal and proximal regions of the cell surface respectively. 
Using data at the level of individual tracked structures, we could attribute this to 
increased frequency of ruffling events with CSF, while LPS stimulation lead to larger 
as well as more numerous ruffles. The duration of individual ruffling events did not 
change significantly in either case.

Distinct patterns of increased ruffling and filopodia volume in LPS and CSF treated cells

We performed an analysis based on the total volume of ruffle and filopodia struc-
tures in each cell before and after cell treatments (Fig. 4), identifying spatially dis-
tinct patterns of increased activity. A consistent increase in ruffle volume was 
seen for both LPS and CSF cells, however this increase occurred exclusively in the 
plate-distal regions of the LPS treated cells, and the plate-proximal regions of the 
CSF treated cells. In contrast, a consistent increase in filopodia/tent pole volume 
was seen in both proximal and distal regions of the LPS cells, while no significant 
changes were seen in the CSF treated cells.

Aggregate ruffle and filopodia (including tent pole) volume per cell, mean and SEM 
pre and post treatment. Structures are classified as plate-proximal (within 1.5  µm of 
imputed plate position) or plate-distal (greater than 1.5 µm from plate). (A) LPS experi-
ment, plate- proximal; (B) LPS experiment, plate-distal; (C) CSF experiment, plate-prox-
imal; (D) CSF experiment, plate-distal. Means are calculated across the time steps in 
each capture, with SEM adjusted for autocorrelation. This adjustment does not account 
for possible trends over time that are independent of treatment, so changes in control 
cells (left) are included for comparison with treated cells (right). In the LPS treated cells, 
consistent increases are seen in the slide-distal ruffles and the filopodia in both distal 
and proximal regions. In contrast, the CSF experiment exhibits consistent increase in 
the slide-proximal ruffles and no change to filopodia volume in either region. Plots were 
produced with the ggplot2 package in the R statistical programming language, using the 
tabular output from the object tracking code.
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Increased ruffling associated with higher frequency of events in CSF cells, increased 

frequency and size in LPS cells

The aggregate volume analysis in Fig.  4 demonstrates spatially biased patterns of 
increased ruffling. An important question is whether this is reflected in any change 

Fig. 4  Ruffle and filopodia volume



Page 20 of 26Lefevre et al. BMC Bioinformatics          (2021) 22:410 

to the nature of the ruffling events that are associated with macropinocytosis or cell 
motility under different conditions of cell stimulation. As from our data and oth-
ers [4, 6, 18, 24, 26], CSF regulates mesenchymal cell motility and macropinocyto-
sis, whereas LPS facilitates primarily macropinocytosis in macrophages under these 
conditions. Therefore, is the increased aggregate volume associated with an increased 
number, size or duration of events during these different processes? The track dataset 
provides a rich set of information for addressing questions such as these. Individual 
ruffle tracks could not be reliably used as a proxy for ruffling events, as numerous 
tracks were identified which persisted well beyond a distinct ruffling event and even 
included two or more consecutive events; this is consistent with actin recycling 
between ruffling events, and with the spatial clustering behaviour observed in [9]. We 
isolated major ruffling events from the tracked ruffle structures by identifying track 
intervals in which the peak volume is above 14.5 µm3 (5000 voxels; this threshold was 
established by inspection in the visualiser) and the volume at the end points is less 
than half the peak value. Hence, we are able to classify each LifeAct-labelled event 
from the initiation of actin polymerisation/extension (increased in ruffling volume) 
until its retraction.

More ruffling events were observed after treatment in both LPS and CSF cells, with 
the increases occurring in the slide-distal region of the LPS cells and the slide-prox-
imal region of the CSF cells (Fig.  5a), consistent with the aggregate volume results. 
There was also an increase in the median peak volume of the slide-distal ruffling 
events in the LPS cells (Fig. 5b). We observed that LPS stimulate circular dorsal ruf-
fles that protrude exclusively from the plate-distal region/or the peripheral surface 
of the cell. Whereas in CSF stimulated cells, lamellipodia-like structures along the 
plate proximal region predominantly emerge upon stimulation. Filopodia/tent-poles, 
as finger-like linear actin structures responsible for sensing chemical and mechanical 
cues, elongate and increase in quantity under both circumstances.

Fig. 5  Ruffling events
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The number of ruffling events increases in the slide-distal region of LPS treated cells 
and the slide-proximal region of CSF treated cells, while peak volume increases for 
slide-distal LPS only. Ruffling events are defined as a ruffle structure tracked over a time 
period in which the peak volume is at least 14.5 µm3 (5000 voxels) and the volume at the 
start and end of the time period is less than half this peak value (or the end of the capture 
period is reached). (A) Number of ruffling events per cell, before and after treatment. (B) 
Median peak ruffle size per cell, before and after treatment. Points above the diagonal 
line indicate an increase in number of events or median size. Plots were produced with 
the ggplot2 package in the R statistical programming language, using the tabular output 
from the object tracking code.

A range of additional object features are automatically generated by our system, and 
several were analysed but not included here, as no clear experimental effect was found. 
Duration of ruffling events was considered as a possible contributing factor to the over-
all increase in activity, but no change was detected for either CSF or LPS, suggesting that 
ruffle deployment but not structure is modulated in different physiological conditions. 
The maximum extension of each structure from the cell surface was measured, and the 
plate-proximal structures were found to be substantially more elongated on average, but 
this difference did not depend on treatment. Further null results were given by measure-
ments of filopodia size and the number of filopodia associated with each ruffle.

Tent pole ruffling motifs occur within a diversity of ruffling behaviour

One of the key motivations for pursuing a systematic quantitative analysis of LLSM 
macrophage data was to develop a more complete understanding of tent-pole ruffling, 
including the frequency of these events and the variability between them. The plate-
distal regions in the LPS treated macrophages showed a high level of ruffle and filo-
podia/tent pole activity (Fig.  4), and examples of filopodia ruffling were readily found 
(Additional file 4, 5: Supplementary Videos 3,4). However, an initial visual assessment 
did not find that the majority of ruffling events (Fig. 5) corresponded directly with tent 
pole ruffling, although apparent tent poles were often present, and previously described 
behaviours could be identified. This visual assessment was greatly complicated by the 
rapid and dynamic nature of actin turnover. To gain a more systematic understanding 
we undertook a complete analysis of the first 13 min (150 timesteps) in an LPS treated 
sample containing 4 macrophage cells.

Firstly, we manually identified four stereotypical examples in which (at a specific time) 
a pair of prominent tent poles were joined by a ruffle “veil”, and analysed these examples 
using the object statistics to develop a filter to detect all similar cases. The selected filter 
required: (1) a ruffle object of volume 10.15 µm3 (3500 voxels) or greater, with at least 
2 µm mean and 4 µm maximum distance from the cell surface, and at least 1.5 µm mean 
distance from the plate; (2) two filopodia/tent pole objects adjacent to the ruffle, each 
with volume 0.22 µm3 (75 voxels) or greater, and minimum contact score with the ruffle 
of 240 (this arbitrary score is based on pairs of adjacent voxels, one in each object).

Computationally applying these filter criteria to the 4 macrophage cells over 150 
timesteps, we identified 133 examples belonging to 33 distinct tracked ruffles. We 
then sampled 10 of these tracked ruffles at random for detailed visual analysis. In 9 
cases we observed rapid twisting of the tent pole pair during or after the collapse of the 
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connecting ruffles, which we consider the canonical feature of tent pole ruffling and a 
key closure mechanism for macropinosomes [9]. Variations in the origin and timing of 
the ruffles and tent poles were also recorded as follows. Ruffles developed from a) part of 
a pre-existing ruffle structure (4 cases, see Additional file 7: Supplementary Video 6); b) 
de novo on the dorsal region of the cell (3 cases, of which only 1 features tentpoles dur-
ing the initial emergence, see Additional file 6: Supplementary Video 5); c) de novo on 
the proximal region of the cell, attached to the plate (2 cases). Tent poles appeared either 
during the terminal phase, after the ruffle formed a semi-circle and started to close (5 
cases, see Additional file 6: Supplementary Video 5); tent poles exhibited a configuration 
with a “veil” in between forming prior to the final phase (3 cases, see Additional file 7: 
Supplementary Video 6) and a tent pole pair appeared to emerge from the hinge point of 
a large ruffle (1 case, Additional file 8: Supplementary Video 7).

Our approach of computational filtering combined with visual analysis allows us to 
detect different features within a range of complex and multi-facetted ruffles, includ-
ing distinctive tent pole ruffling events. Importantly, the variety of behaviours observed 
here suggests that tent pole ruffling exists on a continuum with non-tent pole ruffling. 
The fact that tent pole ruffling and the involvement of filopodia in ruffle formation are 
increased by LPS activation of macrophages [9], suggests that this continuum of ruffling 
morphologies is ‘tuneable’. By revealing that ruffling constitutes a range of membrane 
formations, rather than discrete subtypes of ruffles, now frames future studies that will 
dissect the physiological demands and molecular functions that drive this variation.

Conclusions
Realising the full potential of terabyte scale microscopy data requires new approaches 
to image analysis. Even storing and transferring image datasets on this scale can over-
whelm the local IT resources available to a typical researcher; a high-end workstation 
running specialised software is certainly capable of visualising an individual image stack 
produced by an LLS microscope, as well as performing analytical processes such as 
thresholding and object counting, but running a systematic quantitative analysis over 
hundreds of time steps is not feasible. Processes that can be run on high performance 
computing facilities are required, and the algorithms employed must be robust enough 
to produce reliable results with minimal recourse to manual editing and adjustment. 
Machine learning methods provide a promising approach and have proved capable of 
producing robust semantic segmentations of microscopy imaging. Segmentation into 
defined tissue classes requires supervised machine learning, meaning that data must be 
labelled for training, and the models derived from this training data represent a sophis-
ticated means to extrapolate to the larger dataset. But such a model can only be reli-
ably applied on data that is well represented by the training data selection, and may be 
invalidated by changes in experimental conditions, markers and microscopy settings. 
In response to these challenges, we selected a machine learning approach and software 
platform featuring rapid model training with minimal data labelling requirements. We 
especially emphasised the development of a custom visualisation tool, to optimise train-
ing data selection and the assessment of draft segmentations.
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The LLAMA image analysis system was designed to semi-automatically detect and 
decipher characteristics of cell membrane protrusions from large scale data acquired 
through the LLSM, with integration of statistical and visual analysis. Semantic seg-
mentation provides the starting point for an object delineation and tracking system 
designed to convert the segmentation into a rich set of data at the level of individual 
structures over time. The interactive steps in the pipeline use a visual approach to 
customising the algorithms without the need for extensive training data; process-
ing of additional data can then be fully automated. While designed as a general-
purpose tool, initially our primary goal was to analyse macrophage ruffles, filopodia 
and the filopodia-like “tent poles” embedded within ruffles. The complex behaviour 
of macrophage ruffles proved a particular challenge, and the system features a novel 
approach designed for separating and tracking these structures, under the constraint 
that segmentation and other computationally difficult tasks are performed for each 
time step in isolation. The algorithm is parameterised to allow customisation to other 
structure types and was successfully adapted to the cell body and filopodia classes. 
Our system is designed for flexible deployment and is suitable for cluster or cloud 
computing, providing a general-purpose system for tracking and quantifying struc-
tures in large scale 4D microscopy data. The included code also provides a template 
for deploying an ImageJ based processing pipeline on high performance computing 
facilities.

Using this system, we were able to perform for the first time a systematic quantita-
tive analysis of RAW264.7 macrophage cells under two experimental conditions, LPS 
and CSF treatment. We were able to tease out features that varied under different 
stimulation; these included the frequency of occurrence, location (proximal or dis-
tal to plate) as well as size of the actin structures on the cells. In addition, there are 
aspects of these actin structure where no differences were found, such as the mean 
lifetime and maximum distance from the cell surface. These physical variations in 
actin structures reflect the different physiological requirement of the cell under LPS 
(pathogen uptake) versus CSF (cell migration and invasion).

We were also able to conduct a systematic qualitative analysis of tent pole ruffling 
in LPS treated cells, using the capacity of the LLAMA visualiser to link numerical and 
visual data. This analysis highlighted the considerable challenge of completely char-
acterising macrophage membrane protrusions, with the largest ruffles in particular 
exhibiting complex and multi-facetted behaviour. Most importantly, we were able to 
demonstrate continuity between tent pole ruffling and the wave-like ruffling behav-
iour as traditionally understood.

The LLAMA pipeline is designed to be broadly applicable, with an approach based 
on distinguishing, tracking, and quantifying structures that is not bound to the spe-
cific problem of macrophage surface projections. The system is modular, tuneable via 
a range of parameters, and based on fully open code. As such our system is suitable 
for use on a wide range of large-scale cellular and other microscopy data. The mac-
rophage analysis presented demonstrates the value of the system, deriving biologically 
significant results which could not practically be replicated using standard methods.
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