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Background
Approaches to discretization of continuous variables have long been discussed alongside 
their pros and cons. Altman et al. [1] and Bennette et al. [2] both discuss the relevance 
and impact of categorizing continuous variables and reducing the cardinality of categori-
cal variables. Liao et al. [3] compares various categorization techniques in the context 
of classification tasks in medical domains, without using domain knowledge of field 
experts. Considerable advances in data mining are being driven by symbolic approaches, 
particularly those rooted in bioinformatic, compression and pattern mining research, 
including contributions pertaining to the analysis of symbolic sequences, text or basket 
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transactions. The relevance of discretization meets both descriptive and predictive ends, 
encompassing state-of-the-art approaches such as pattern-based biclustering [4] and 
associative models such as XGBoost [5].

In this work we present DI2, a Python library that extends non-parametric tests to find 
the best fitting distribution for a given variable and discretize it accordingly. DI2 offers 
three major contributions: (i) corrections to the empirical distribution before statistical 
fitting to guarantee a more robust approximation of candidate distributions; (ii) efficient 
statistical fitting of 100 theoretical probability distributions; and, finally, (iii) assignment 
of multiple items according to the proximity of values to the boundaries of discretiza-
tion, a possibility supported by numerous symbolic approaches [4, 6, 7]. The assignment 
of multiple items [8], generally referred as multi-item discretization, conferes the pos-
sibility to avail the wealth of data structures and algorithms from the text processing 
and bioinformatics communities without the risks of the well-studied item-boundaries 
problem.

Discretization methods have wide taxonomy [9] with a determinant division in: (1) 
supervised, where the method uses the class variable to bin the data, and, (2) unsuper-
vised, where the method is independent of the class variable. DI2 places itself on the 
latter, it works independently of the class variable. Other characteristics of DI2 are: (1) 
static, where discretization of the variables takes place prior to an algorithm; (2) global, 
uses information about the variable as a whole to make the partitions and can still be 
applied with a scarce number of observations; (3) direct and splitting, splits the whole 
range of values into k intervals simultaneously; and (4) multivariate and univariate, DI2 
can use either the whole dataset to create the intervals and discretize each variable or 
use each variable individually to create the respective intervals.

Some examples of unsupervised discretization methods are Proportional Discre-
tization (PD), Fixed Frequency Discretization (FFD) [10], equal-width/frequency (also 
known as uniform and quantile) and k-means [11]. In this work, DI2 is compared with 
such classic discretization methods. These are illustrated in Figs. 1, 2, and 3.

Normalization and feature scaling

While not mandatory, DI2 supports: min-max scaling,

Fig. 1  Illustration of equal-frequency method with 9 points along an axis and 3 categories. This method is 
based on the frequency of the items, where each category has the same number of items, in order to set the 
intervals

Fig. 2  Illustration of equal-width method with 9 points along an axis and 3 categories. This method is based 
on the range taken by the items, where each category has the same width interval
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where X is an ordered set of observed values, and Xmax and Xmin are the maximum and 
minimum value within X; z-score standardization for normally distributed observations 
[12],

where X is an ordered set of observed values, x is the sample mean, and Sn is the sample 
variance; and mean normalization,

where X is an ordered set of observed values, x is the sample mean, and Xmax and Xmin 
are the maximum and minimum value within X.

Statistical hypotheses

In order to discretize the data into intervals, DI2 provides two statistical hypothesis 
tests: (1) χ̃2 test [13], and (2) Kolmogorov–Smirnov goodness-of-fit test [14].

In the aforementioned tests, the empirical distribution is matched with a theoreti-
cal continuous distribution1, provided by the SciPy open-source library [15], where 
the parameters are estimated through maximum likelihood estimation function. We 
consider the null hypothesis to be “the empirical probability distribution matches 
the theoretical probability distribution”. Considering a significance level of 0.05 and 
the number of degrees of freedom to be the number of categories inputted by the 
user minus one minus the number of estimated parameters [16] (excluding scale and 
location parameters). If the χ̃2 statistic is higher than the critical value at 0.05 we 
reject the hypothesis. The same logic is applied to the Kolmogorov–Smirnov statis-
tic. The expected distribution of each category used in the χ̃2 test corresponds to 
the number of inputted categories by the user. The user can either choose the χ̃2 or 
the Kolmogorov–Smirnov goodness-of-fit as the primary fitting test. Both statisti-
cal tests yield properties of interest. While Kolmogorov–Smirnov does not provide 
an exhaustive characterization of the differences between the reference and empiri-
cal probability distributions as its statistic is derived from the highest distant point 
between the cumulative distributions, χ̃2 is dependent on the selected number of 

(1)X ′ =
X − Xmin

Xmax − Xmin
,

(2)X ′ =
X − x

Sn
,

(3)X ′ =
X − x

Xmax − Xmin
.

Fig. 3  Illustration of K-means method with 9 points along an axis and 3 categories. This method is based in 
the k-means clustering, where each category is defined by a centroid

1  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​stats.​html.

https://docs.scipy.org/doc/scipy/reference/stats.html
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categories to assess the goodness of fitting. Having these concerns in mind, χ̃2 test is 
suggested as the default option unless a high number of data instances are available. 
In this latter case, the Kolmogorov–Smirnov test provides a finer-grained view as it 
more accurately models the empirical cumulative distribution.

DI2 informs the user of the selected distribution per column, the statistic of the 
applied test, and whether the computed statistic passes the goodness-of-fit test. One of 
the following scenarios can occur: (1) at least one theoretical distribution passes the sta-
tistical test, or (2) no theoretical distribution passes the statistical test. In both cases, 
the distribution with the lowest test statistic is chosen. The second scenario might be 
intentional. Consider the following, if the user knows that the empirical distribution is a 
sample from a population that follows a normal distribution, he can input the theoretical 
continuous distributions accordingly (normal distribution and its variants).

Outlier correction

The Kolmogorov–Smirnov goodness-of-fit test can optionally be used to remove up to 
5% outlier points, from the empirical distribution, according to the theoretical continu-
ous distribution under assessment. Kolmogorov–Smirnov goodness-of-fit test returns a 
statistic (D statistic) measuring the maximum distance between the empirical and theo-
retical distributions,

where n is the number of observations, j is the index of a given observation, and F is the 
frequency of observation Xj . The first inner max function is referred as D-plus statistic, 
while the second inner max function is termed D-minus statistic. Using the D statis-
tic we can pinpoint where the farthest point between the distributions is and remove 
it. After up to 5% of the observations have been removed, the iteration with the best 
Kolmogorov–Smirnov statistic is picked (from 0 outliers removed to up to 5%). The 
data produced by outlier removal is then used to run the main statistical hypothesis test 
picked ( χ̃2 or Kolmogorov–Smirnov). This correction guarantees the absence of penali-
zations caused by abrupt yet spurious deviations driven by the selected histogram gran-
ularity and help consolidate the choice of the theoretical continuous distribution. The 
outlier observations are only temporarily removed to fine tune the statistical hypothesis 
tests previously mentioned. Once the best fitting distribution is selected and category 
borders imputed, the library returns the original data (with all the outliers and missing 
values), not yielding impact on the remaining variables or subsequent data mining tasks.

Multi‑item discretization

After selecting the theoretical probability distribution that best fits the continuous variable, 
DI2 proceeds with the discretization. Given a desirable number of categories (bins), mul-
tiple cut-off points are generated using the inverse cumulative distribution function of the 
theoretical distribution. The cut-off points guarantee an approximately uniform frequency 
of observations per category, although empirical-theoretical distribution differences can 
underlie imbalances. The possibility to parameterize the number of bins is offered since in 

(4)D = max

{

max
1≤j≤n

{

j

n
− F(Xj)

}

, max
1≤j≤n

{

F(Xj)−
(j − 1)

n

}}

,
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some application domains the desirable number is known a priori (e.g. well-defined number 
of gene activation levels for expression data analysis).

The optimal number of bins can be alternatively hyperparameterized. In supervised 
settings, cross-validation on training data can be pursued to this end. Similarly, in unsu-
pervised settings, different cardinalities can be assessed against a well-defined quality cri-
teria (e.g. silhouette in clustering solutions or number of statistically significant patterns 
in biclustering solutions) to estimate the number of bins. Alternatives for parameteriz-
ing the number of bins, including heuristic searches have been suggested [17]. In clinical 
domains, Maslove et al. [18] used an heuristic for determining the number of bins when 
discretizing data with unsupervised methods.

Unlike other well-known unsupervised discretization methods,(e.g. the aforemen-
tioned methods) DI2 supports multi-item assignments by identifying border values for 
each category, this is exemplified in Figure 4. Note also that in the presence of algorithms 
able to handle multi-items derived from category borders, the items-boundary problem 
associated with different bin choices is ameliorated. To this end, the user can optionally 
also define a boundary proximity percentage (between 0 and 50%, 20% being the default) 
to affect the distance from category borders. Let us introduce an example: the discretiza-
tion of a variable following a Normal distribution, N(0, 1), with three categories. The cut-
off points are − 0.43 and 0.43. To allow the presence of border values, observations with 
values near the frontiers of discretization are assigned with two categories. By default, a 
proximity of 20% to a discretization boundary is assumed for the assignment of multiple 
items. Proximity percentage is estimated by dividing the area under the probability dis-
tribution curve between the observation and the closest discretization boundary by the 
area between the discretization boundaries of the observation’s category. In the given 
example, observations falling between − 0.63 and − 0.43, as well as between − 0.43 and 
− 0.26, are assigned with two items. It can also be observed that the proximity percent-
ages translate into border boundaries (smaller brackets) being placed to the left and right 
of the discretization boundary (medium-sized brackets).

Implementation
DI2 tool is fully implemented in Python 3.72 (Additional file 1). DI2 is provided as an 
open-source method at GitHub with well-annotated APIs and notebook tutorials for a 
practical illustration of its major functionalities. The algorithm workflow is shown in 
Algorithm  1 and the Kolmogorov–Smirnov correction is shown in Algorithm  2. DI2 
workflow is further shown in Figure 5. All the code was executed on a computer with 
Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.

Fig. 4  Illustration example of discretization with 9 points along an axis and 3 categories considering border 
values (values which belong to 2 categories)

2  DI2 currently uses the following libraries: pandas 1.2.4, scipy 1.5.1, and numpy 1.20.2
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Algorithm 1: DI2 main algorithm
Input: dataset, number of bins
Optional input: statistical test=“chi2”, multi item cutoff margin=0.2, kolmogorov opt=True,
normalizer=“min max”, distributions=[...], single column discretization=True

Output: The dataset discretized
y normalized = [ ];
if single column discretization then

for column in dataset.columns do
y normalized = normalization(dataset[column],normalizer);
main operation(distributions, kolmogorov opt, number of bins, statistical test, y normalized);

end
else

for column in dataset.columns do
y normalized.append(normalization(dataset[column],normalizer));

end
main operation(distributions, kolmogorov opt, number of bins, statistical test, y normalized);

end
Function main operation(distributions, kolmogorov opt, number of bins, statistical test,
y normalized):

dist list = [ ];
for distribution in distributions do

results = [ ];
if statistical test == “chi2” then

if kolmogorov opt then
results = kolmogorov goodness of fit(y normalized, distribution, kolmogorov opt);
results = chi squared goodness of fit(results[1], distribution, number of bins);

else
results = chi squared goodness of fit(y normalized, distribution, number of bins);

end
else

results = kolmogorov goodness of fit(y normalized, distribution, kolmogorov opt);
end
dist list.append(“distribution”: distribution, “statistic”: statistical test, “statistic value”: results[0],
“data”: results[1], “num estimated parameters”: results[2])

end
best dist, data used = get best distribution();
dataset[column] = discretize(best dist, multi item cutoff margin, data used, dataset[column],
number of bins, y normalized);

return

Input

DI2

Normalization

Calculate best fitting distribution

Outlier
removal

Distribution
fitting

Compare with
current best

Next
distribution

inline

Create copy of
data

Multi-item
boundary

delimitation

Discretization Discretized
dataset

Hyper parameterization

V1,1 ... V1,n

... ... ...

Vm,1 ... Vm,n

Y1 ... Yn

X1

...

Xm

dataset

Output

Fig. 5  The flowchart of DI2. From data input, passing through data normalization, fitting of categories, and 
finally discretization

Table 1  Variables of the breast-tissue dataset and their respective description

Variables Type Description

I0 Continuous Impedivity (ohm) at zero frequency

PA500 Continuous Phase angle at 500 KHz

HFS Continuous High-frequency slope of phase angle

DA Continuous Impedance distance between spectral ends

Area Continuous Area under spectrum

A/DA Continuous Area normalized by DA

Max IP Continuous IP maximum of the spectrum

DR Continuous Distance between I0 and real part of the maxi-
mum frequency point

P Continuous Length of the spectral curve

Class Categorical Carcinoma, fibro-adenoma, mastopathy, glandu-
lar, connective, adipose
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Algorithm 2: Kolmogorov outlier correction
Input: empirical distribution, theoretical distribution, outlier removal flag
Output: The statistic of Kolmogorov test and the corresponding data
N5 = size(empirical distribution) × 0.05 if outlier removal flag else 1;
results = [];
i = 0;
while i < N5 do

Estimate Parameters(theoretical distribution);
D plus = D minus = [];
idx max d plus = idx max d minus = [];
calculate d minus(D minus, idx max d minus);
calculate d plus(D plus, idx max d plus);
if len(results) == 0 then

results = [max(D plus[idx max d plus], D minus[idx max d minus]), empirical distribution.copy()];
else

ks = max(D plus[idx max d plus], D minus[idx max d minus]);
if ks < results[0] then

results = [ks, empirical distribution.copy()];
end

end
if D plus[idx max d plus] > D minus[idx max d minus] then

delete empirical distribution[idx max d plus];
else

delete empirical distribution[idx max d minus];
end
++i;

end
return results;

.

Results and discussion
In order to illustrate some of the DI2 properties, we considered two published data-
sets: (1) the breast-tissue dataset [19], containing electrical impedance measure-
ments in samples of freshly excised tissue from the breast, and (2) the yeast dataset 
[20], containing molecular statistics variables. Both of these are available at the UCI 
Machine Learning repository [21] and a more detailed variable explanation is pre-
sented in Tables 1 and 2.

DI2 is executed with χ̃2 as the main statistical test, with and without Kolmogorov 
outlier removal, with single and whole column discretization, and 3, 5 and 7 cate-
gories per variable outputted. Predictive performance is further assessed against raw 
continuous data. The acronyms for the probability distributions referred throughout 
this section are described in Table 3.

Case study: breast‑tissue dataset

The breast-tissue dataset contains 106 data instances and 10 variables (9 continuous and 
1 categorical), presented in Table 1. The gathered results show the decisions placed by 
DI2 in the absence and presence of Kolmogorov–Smirnov optimization.

Table  4 shows the distributions yielding best fit for each continuous variable of the 
dataset. Variables “I0”, “PA500”, “A/DA”, “DR”, and “P” remained unchanged with a 
removal of up to 5% of outlier points. Variables “HFS” and “Area” produced better results 
in the χ̃2 test with the removal of outliers solidifying the distribution choice. Finally, the 
fitting choice changed for variables “DA” and “Max IP” under the χ̃2 test, revealing a 
more solid choice from the analysis of the residuals.

Considering “DA” variable, Fig.  6a, b show its Q-Q (quantile-quantile) plot, offering 
a view on the adequacy of the statistical fitting. In this context, we depict histograms 
for the empirical data with 100 bins (blue dots), to better visualize the impact of outlier 



Page 8 of 19Alexandre et al. BMC Bioinformatics          (2021) 22:426 

removal, and the best theoretical distribution picked without and with Kolmogorov–
Smirnov correction (red line). A moderate improvement from Fig. 6a, b can be detected, 
with the empirical quantiles (blue dots) being closer to the theoretical continuous quan-
tiles (red line).

After the fitting stage, cut-off points are calculated to produce the final categories. 
Figure 5c compares different discretization options: quantile, uniform, and the two best 
fitting theoretical continuous distributions (without and with Kolmogorov–Smirnov 
optimization). Category cut-off points are marked as red lines, and the border val-
ues cut-off points in yellow. This analysis shows how critical discretization can be for 
determining the inclusion or exclusion of high density bins. The ability of DI2 to assign 
multiple items using borders can thus be explored by symbolic approaches to mitigate 
vulnerabilities inherent to the discretization process [22, 23].

Table 2  Variables of the yeast dataset and their respective description

Variables Type Description

Sequence Text Accession number

mcg Continuous McGeoch’s method for signal sequence recognition

gvh Continuous von Heijne’s method for signal sequence recognition

alm Continuous Score of the ALOM membrane spanning region prediction program

mit Continuous Discriminant score of amino acid content of N-terminal regions

erl Binary Presence of retention signals in the endoplasmic reticulum lumen

pox Continuous Peroxisomal targeting signal in the C-terminus

vac Continuous Discriminant score of aminoacid content of vacuolar/extracellular proteins

nuc Continuous Discriminant score of nuclear localization signals

Class Categorical Localization site of protein.

Table 3  Theoretical probability distribution acronyms (for full list visit https://​docs.​scipy.​org/​doc/​
scipy/​refer​ence/​stats.​html—SciPy statistical functions)

Distribution acronym Description

Alpha Alpha continuous random variable

Exponnorm Exponentially modified Normal continuous random variable

Foldcauchy Folded Cauchy continuous random variable

Recipinvgauss Reciprocal inverse Gaussian continuous random variable

Frechet_r Frechet right (or Weibull minimum) continuous random variable

Mielke Mielke Beta-Kappa / Dagum continuous random variable

Johnsonsu Johnson SU continuous random variable

Johnsonsb Johnson SB continuous random variable

Genextreme Generalized extreme value continuous random variable

chi2 Chi-squared continuous random variable

genlogistic Generalized logistic continuous random variable

Laplace Laplace continuous random variable

Genhalflogistic Generalized half-logistic continuous random variable

Gengamma Generalized gamma continuous random variable

Pearson3 Pearson type III continuous random variable

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Case study: yeast dataset

The yeast dataset contains 1484 data instances and 10 variables, including the sample 
identification, class, and 8 molecular statistics variables (Table 2). In the previous analy-
sis, breast-tissue dataset was considered to compared DI2 category cut-off points against 
alternative unsupervised discretization procedures – quantile (equal-frequency) and 
uniform (equal-width). The yeast data is used to comprehensively assess the predictive 
capabilities of discretization approaches, including the k-means method.

Fig. 6  Distribution matching of DA variable from breast-tissue againt two statistical distributions 
(recipinvgauss in a and chi2 in b, as well as the corresponding discretization boundaries and border values in 
V.c
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Table  5 displays the results of the statistical tests produced by DI2 when applied to 
each variable independently and the whole dataset together, considering 5 categories per 
variable. As presented in Table 5, the empirical distribution of a variable does not always 
match a known theoretical distribution with statistical significance (e.g. variable “alm”). 
Nonetheless, the theoretical distribution with the lowest test statistic is still selected in 
an effort to ameliorate bad discretization decisions by preventing critically misadjusted 
probability distributions.

Figure 7a displays the distribution of values in the variable “mit” before outlier removal 
(brown and blue area of histogram) and after outlier removal (brown area of histogram). 
Figure  7b compares the distribution of the categories of all the discretization tech-
niques (DI2, quantile, uniform, and k-means), and further assesses the impact of outlier 
removal had in categorizing the data in different executions of DI2. Figure  8 presents 
the frequency distribution of observation per category, as well as intermediate categories 
produced by DI2’s border values.

The performed analysis for the yeast dataset shows how critical the category border, 
previously discussed in more detail with the breast-tissue dataset, can be. The ability of 
DI2 to assign multiple items using borders can be explored by symbolic approaches to 
mitigate vulnerabilities inherent to the discretization process as discussed in the follow-
ing subsection.

Predictive performance

To assess the predictive impact of DI2, we reuse the yeast dataset, applying a cross-
validation scheme with 10 folds, and six supervised classification methods: Naive Bayes 
[24], Random Forest [25], support vector machines using Sequential Minimal Optimiza-
tion (SMO) [26], C4.5 [27], Multinomial Logistic Regression Model (MLRM) [28] and 
FleBiC [29]. Discretization procedures are applied with 3, 5 and 7 categories per vari-
able. To preserve the soundness of assessments, the discretization thresholds are learned 

Table 4  Best fitting distributions for each continuous variable, without and with Kolmogorov–
Smirnov correction

Both χ̃2 (primary) and KS statistics are shown

Variables Without 
opt.

χ̃2 statistic p-value 
>0.05 
( χ̃2)

D statistic With opt. χ̃2 statistic p-value 
>0.05 
( χ̃2)

D statistic

I0 alpha 8.8 False 0.12 alpha 8.8 False 0.11

PA500 exponnorm 2.98 True 0.07 expon-
norm

2.98 True 0.07

HFS foldcauchy 2.25 True 0.07 foldcauchy 1.57 True 0.07

DA recipinv-
gauss

1.6 True 0.06 chi2 1.01 True 0.06

Area frechet_r 0.5 True 0.07 frechet_r 0.25 True 0.05

A/DA mielke 1.17 True 0.06 mielke 1.17 True 0.05

Max IP johnsonsu 4.72 True 0.05 alpha 1.09 True 0.07

DR johnsonsb 1.2 True 0.05 johnsonsb 1.2 True 0.05

P genex-
treme

5.13 True 0.09 genex-
treme

5.13 True 0.09
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only on the training data per fold. The testing data instances are then discretized using 
the learned discretization thresholds from training data.

Figure 9 presents the results of the aforementioned models with the original numerical 
data and a discretization of 5 categories per variable. In each model, DI2, with configura-
tions of single column discretization and outlier removal, is among the top performing 
procedure. In particular, the C4.5 model, DI2, with configurations of combined column 
discretization, achieved the highest accuracy compared with other discretization meth-
ods. Considering Naïve Bayes and SMO models, DI2 achieves competitive performance 
against the original numerical data, with a generally higher average accuracy for single 
column discretizations, yet not yielding statistically significant improvements.

Figure 10 displays the average accuracy achieved by each model with a discretization 
of 3 and 7 categories per variable. Results considering 3 and 7 categories were not as 

Fig. 7  Variable “mit” distribution (a). Categories distribution after k-means, quantile, uniform, and DI2 
discretization (b)
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optimal as with 5 categories, in terms of accuracy. Nonetheless, these results further 
encourage hyperparameterization to find an optimal number of bins.

In order to fully test out the potential of DI2, we now considered border values. 
FleBiC [29] is a classifier able to place decisions based on multi-item assignments. 
Other approaches, such as BicPAMS [4] (a patterned-based biclustering algorithm), 
can be alternatively consider to accommodate border values and thus minimize 
potential discretization drawbacks. FleBiC is here executed as a stand-alone classi-
fier and as an adjunct classifier to guide decisions of Random Forests, where deci-
sions are derived from both the probabilistic outputs of FleBiC (50%) and Random 
Forests (50%), which will be denoted by FleBiC Hybrid. Figure 11 shows the results 
of FleBiC and FleBiC Hybrid. In terms of average accuracy (Figure 11.a), both FleBiC 
and FleBiC Hybrid yield higher predictive accuracy with DI2 method than with other 

Fig. 8  Variable “mit” categories distribution after DI2 discretization with different settings with border 
values. Single column discretization with Kolmogorov–Smirnov outlier removal (light blue columns), single 
column discretization without Kolmogorov–Smirnov outlier removal (dark blue columns), whole dataset 
discretization with Kolmogorov–Smirnov outlier removal (light purple columns), whole discretization without 
Kolmogorov–Smirnov outlier removal (dark purple columns)
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discretization methods. Within the different settings of DI2, the best predictive 
accuracy is achieved for FleBiC Hybrid when the predictive model considers border 
values. Figure  12 presents the results when considering 3 and 7 categories. Finally, 
when considering the sensitivity of the NUC outcome (Figure 11.b), we can see that 
the incorporation of border values plays a decisive role, making it possible to break 
through a ceiling on the NUC predictability against discretization methods unable 
to consider border values. More details on the relevance of border values to improve 
the sensitivity of other classes are provided in supplementary material. This analysis 
shows that the use of border values can yield significant improvements.

To assess if the previous differences in predictive accuracy are statistically signifi-
cant, a one-tailed paired t-test is applied. We consider the alternative hypothesis 
(p-value < 0.05) to be “DI2 is superior to the identified discretization procedure using 
the same classifier”. Results obtained considering the discretization of 5 categories per 
variable are presented in Table  6. DI2 shows statistically significant improvements 

Table 5  Best fitting distributions for each continuous variable, without and with Kolmogorov–
Smirnov outlier removal, considering 5 categories per variable

Variables Without 
opt.

χ̃2 
statistic

p-value 
>0.05 
( χ̃2)

D statistic With opt. χ̃2 
statistic

p-value 
>0.05 
( χ̃2)

D statistic

mcg foldcauchy 3.72 True 0.08 exponnorm 3.18 True 0.02

gvh genlogistic 3.57 True 0.03 genlogistic 2.02 True 0.02

alm genlogistic 17.00 False 0.05 genlogistic 12.08 False 0.03

mit expon-
norm

19.23 False 0.05 exponnorm 6.11 True 0.03

pox chi2 4.4× 10
−14 True 0.99 gengamma 4.2× 10

−14 True 0.99

vac laplace 20.99 False 0.08 pearson3 14.18 False 1.00

nuc expon-
norm

1116.63 False 0.26 mielke 795.28 False 0.26

all vari-
ables

genhalflo-
gistic

45.69 False 0.25 genhalflo-
gistic

10.25 False 0.21

Fig. 9  Average accuracy per classifier and discretization method available without border values and 
considering 5 categories per variable(for more information consult Additional file 2). From left to right in each 
group of bars: K-means, Quartile, Uniform, DI2 (single, kol. correction), DI2 (single), DI2 (whole, kol. correction), 
DI2 (whole) and original data
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against uniform discretization in all classification models. DI2, with single column 
and optimized single column configurations, despite displaying competitive predic-
tive accuracy in most of the classifiers against k-means and quantile discretizations, 
it does not show statistically significant improvement. However, when considering 
FleBiC, DI2 outperformed all remaining discretization methods, with or without bor-
der values (p-value<0.05). In FleBiC Hybrid, DI2 also outperformed all other discre-
tization methods with the exception of quantile discretization when no border values 
are considered.

The benefits of discretization go beyond the previously assessed predictive settings. 
In the context of deep learning approaches, Rabanser et al. [30] surveyed the effect of 
data input and output transformations on the predictive performance of several neural 
forecasting architectures, concluding that the WaveNet model, when input data is dis-
cretized, yields best results.

Fig. 10  Accuracy when executing different models with multiple discretization methods. From left to right 
the bars are: K-means, Quartile, Uniform, DI2 (single, kol. correction) without border values and original data
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Scalability

The execution time of DI2 is presented in Fig.  13. Figure  13a displays the efficiency 
according to the number of tested theoretical distributions (from fastest to slowest in 
terms of parameter estimation) using the yeast dataset (1484 observations). Figure 13.b 
depicts how the computational time varies in accordance with the number of observa-
tions for the DI2 default setting, considering the yeast data with all variables.

Conclusion
This work proposed a new unsupervised method for data discretization, DI2, that 
takes into account the underlying data regularities, the presence of outlier values dis-
rupting expected regularities, as well as the relevance of border values. A tool for the 

Fig. 11  Accuracy when executing different FleBiC versions, and Sensitivity of when predicting class NUC, 
with multiple discretization methods considering 5 categories per variable (for more information consult 
Additional file 2). From left to right the bars are: K-means, Quartile, Uniform, DI2 (single, kol. correction), DI2 
(single), DI2 (border values, single, kol. correction) and DI2 (border values, single)
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Fig. 12  Accuracy when executing different FleBiC versions with multiple discretization methods considering 
7 categories per variable. From left to right the bars are: original data, K-means, Quantile, Uniform, DI2 (single, 
kol. correction), DI2 (single), DI2 (border values, single, kol. correction), DI2 (border values, single)

Table 6  Gathered p-values from statistically testing the superiority of DI2 with respect to predictive 
accuracy against alternative discretization procedures, and original data, using one-tailed paired 
t-test and considering 5 categories per variable (complementary information in Additional file 3)

DI2 is assessed without and with border values, single column and whole dataset, and in the absence and presence of 
outlier removal

Bold values indicate that the accuracy achieved using DI2 discretization is statistically superior against the corresponding 
discretization

DI2 (single) DI2 (single, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

Naïve Bayes 0.686 0.897 0.005 0.719 0.287 0.431 0.002 0.325

Random Forest 0.404 0.921 0.101 0.998 0.126 0.653 0.016 0.998

SMO 0.980 0.968 0.014 0.456 0.790 0.773 0.017 0.441

C4.5 0.500 0.345 0.044 0.965 0.230 0.194 0.013 0.891

MLRM 0.500 0.907 0.009 0.803 0.316 0.821 0.013 0.588

FleBiC 0.001 0.007 1.9E−08 – 2.1E−05 1.0E−04 6.7E−09 –

FleBiC Hybrid 5.4E−04 0.693 5.2E−05 – 0.030 0.873 2.0E−04 –

DI2 (whole) DI2 (whole, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

Naïve Bayes 0.948 0.991 0.020 0.965 0.662 0.822 0.004 0.712

Random Forest 0.066 0.426 0.012 0.992 0.074 0.666 0.195 0.999

SMO 0.906 0.914 0.042 0.641 0.805 0.813 0.026 0.406

C4.5 0.085 0.072 0.004 0.702 0.687 0.500 0.028 0.958

MLRM 0.952 0.986 0.148 0.993 0.721 0.896 0.047 0.942

DI2 (borders, single) DI2 (borders, single, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

FleBiC 8.0E−05 7.3E−05 1.5E−08 – 0.002 0.016 9.1E−08 –

FleBiC Hybrid 1.4E−05 0.001 4.3E−06 – 6.1E−04 0.084 1.0E−04 –
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autonomous, prior-free discretization of biological data with arbitrarily skewed variable 
distributions is provided to this end.

Our study showed that DI2 is a viable and robust discretization procedure when com-
pared against well-established unsupervised discretization methods. Statistical tests 
applied to assess differences in performance confirm that DI2 generally outperforms 
alternative discretization methods with statistical significance. The combined use of 
DI2 within classification tasks results in either competitive or superior levels of predic-
tive accuracy. DI2 as the unique feature of allowing the incorporation of border values. 
FleBiC, a classifier able to accommodate border values, achieved statistically significant 
performance improvements in the presence of multi-item assignments.

Fig. 13  Computational time efficiency of DI2 (without outlier removal) according to the number of 
underlying probability distributions (a) and number of observations. Candidate distributions (from 0 to 
95) are added with respect to ascending computational time, i.e. from fastest to slowest estimation of the 
theoretical distribution’s parameters
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Availability and requirements
Project name: DI2: prior-free and multi-item discretization.

Software homepage: https://​github.​com/​Jupit​ersMi​ght/​DI2.
Programming language: Python.
Other requirements: python 3.7, pandas 1.2.4, scipy 1.5.1 and numpy 1.20.2.
License: MIT License.
Any restrictions to use by non-academics: None.

Abbreviations
DI2: Distribution Discretizer; Quantile: Equal-frequency; Uniform: Equal-width; Q-Q plot: Quantile–Quantile plot; FleBiC: 
Flexible Biclustering-based Classifier; BicPAMS: Biclustering based on PAttern Mining Software.
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04329-8.

Additional file 1. Folder containing DI2 and an example in Jupyter Notebook using Breast Tissue dataset example.

Additional file 2. File with the average accuracy achieved by models with discretization method considering 5 
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Additional file 3. File with the accuracy achieved in cross validation by each discretization method in each model 
considering 5 categories.
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