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Background
The adaptive immune system plays a critical role in curbing infections and in cancer 
immunosurveillance, defined as the patrolling of the body by the immune system with 
the active elimination of precancerous and cancerous cells [1]. CD8+ T lymphocytes are 
one of the key cell types involved in antiviral responses and cancer immunosurveillance. 
They perform their function by binding to small peptides presented on the surface of 
highly polymorphic molecules known as the Major Histocompatibility Complex (MHC) 
using T Cell Receptors (TCR). TCRs are transmembrane proteins that contain either α 
and β or γ and δ chains, within which are three loops called Complementarity Deter-
mining Regions (CDRs). CDR loops are characterized by both germline loops (CDR1 
and CDR2) and the hyper-variable CDR3 loop, which is the product of somatic recom-
bination [2, 3]. These CDR loops are responsible for interacting with the peptide/MHC 
(pMHC) complex. The diversity of TCR sequences is mostly focused on the CDR regions 
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and is very large, with numbers in human that are thought to exceed 1020 possible dis-
tinct receptors [4].

The collection of TCRs possessed by an individual is known as the T cell repertoire, 
which is shaped over time by the history of infections in combination with stochastic 
factors, and is in turn responsible for determining the outcome of an immune response. 
One of the ultimate goals of T cell repertoire analysis is predicting the specificity of the 
T cells of an individual using sequence information alone [2]. This would entail deter-
mining the identity of the peptide(s) that each TCR is capable of recognizing by compu-
tationally analyzing the TCR sequences from CD8+ cells circulating in the peripheral 
blood of an individual. More high-quality TCR sequencing data and peptide binding 
information specificity will be needed to achieve this objective. On the sequencing front, 
although the availability of TCR sequencing data is still fairly limited, the field has seen 
steady progress and technological advancements [5].

Two main technologies are currently available for sequencing TCRs: (1) single cell 
(SC) sequencing and (2) bulk sequencing (BS). SC TCR sequencing technology allows 
to reconstruct the complete sequence of a TCR with paired α and β chain sequence 
information, but its cost is still limiting the amount of available data. In contrast, BS 
technology is more affordable and has yielded substantially larger amounts of data, but 
reconstructing the correct α and β chain pairs within a TCR is not possible with this 
technology.

Being able to map the specificity of human repertoires can equip us with powerful new 
tools for studying autoimmunity, cancer immunotherapy, and immunopathology  [6]. 
However, for these methods to be broadly applicable it is critical to sample T cell reper-
toires deeply and in multiple individuals, as well as to account for the diversity of binding 
topologies to pMHCs with computational approaches. Here we introduce SwarmTCR, a 
computational method to predict the specificity of TCRs for class I MHC/peptide com-
plexes that compares favorably to the nearest-neighbor based approach TCRdist [2] on 
both SC and BS data.

TCRdist uses a nearest-neighbor approach with a pairwise sequence alignment score 
between TCRs as a proximity measure. The two chains are weighted equally, and the 
CDR3 region is weighted three times more than the other CDR regions. While this is a 
reasonable choice considering the importance of CDR3 for peptide binding, it does not 
take into consideration the fact that the two chains and the regions within them might 
have different levels of involvement in binding to the pMHC, depending upon the pep-
tide being presented and the MHC type. In a recent study, we curated a non-redundant 
set of TCR/pMHC crystal structures and explored binding topologies of TCR/pMHC 
complexes and the number of contact residues ( ≤ 4.5  [7]) made by α and β chains 
with pMHC [8]. Our results indicated a wide range of TCR binding angles and a vari-
able use of the α (7–25 contacts) and β (6–22 contacts) chains in making contacts with 
the pMHC. We also computed the number of alpha and beta contacts to the pMHC, 
determining a ratio of contacts ( α/β ratio) for each structure. In some complexes, the α 
chain had a much larger number of interactions with the pMHC than the β chain (corr. 
= 0.77, p < 1.6x10−14 ), whereas in other complexes the β made more interactions than 
the α chain (corr. = −0.73, p < 2.2x10−12 ). In other complexes, we saw an almost equal 
number of αβ interactions with the pMHC ( ∼ 15 contacts per chain). Taken together, 
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these results suggest a wide range of binding recognition modes, which should be 
reflected in a computational method to predict TCR binding specificities.

As a first step to leverage these findings, we developed SwarmTCR, a method to pre-
dict TCR specificity that automatically learns the optimal set of weights to assign to each 
CDR region based on classification accuracy in a cross-validation setting (Fig.  1). In 
addition to CDR1, CDR2, and CDR3, the method also incorporates the CDR2.5 region 
(a loop between CDR2 and CDR3 that can interact with the pMHC, as discussed in [2]), 
for a total of four weights per chain. By directly optimizing the weights for CDR regions 
in an peptide-specific fashion, our method automatically accounts for the diversity in 
pMHC recognition that is documented in crystal structures (see Methods).

We applied our method to SC and BS data and compared its performance against that 
of TCRdist. In addition to performing in most cases better than TCRdist, the weights 
returned by SwarmTCR in SC sequencing data can potentially inform the user about the 
contribution of the two chains in recognizing the pMHC complex.

Results
Classification performance of SwarmTCR​

The rationale for developing SwarmTCR is that receptor α and β chains can be involved 
in peptide recognition to a variable extent. Figure 2 shows two crystal structures of TCR/
pMHC complexes to visually illustrate the fact that the α and β chains can be involved in 
pMHC binding to a very different extent, depending on the peptide that is being recog-
nized. In the example shown in Fig. 2, out of the total number of residues making con-
tact with the pMHC, one TCR (PDB ID: 4G8G [9]) has 16 (59%) α chain residues and 11 
(41%) β chain residues in contact with the pMHC, whereas the other [10] has 9 (39%) α 
chain residues and 14 (61%) β chain residues in contact with the pMHC. This is consist-
ent with results in the literature [8].

Based on this observation, SwarmTCR optimizes the weights used to compute the 
CDR alignment scores underpinning the nearest-neighbor classification approach. In 
contrast, previous attempts at predicting TCR specificity (TCRdist method) used a 
static weighting scheme with equal α and β chain contributions and fixed CDR loop 

Fig. 1  Overall approach. Here the model for single-cell data is illustrated. Weights for each CDR loop are 
determined by the optimization step and subsequently tested on the testing set to assess peptide prediction 
performance



Page 4 of 14Ehrlich et al. BMC Bioinformatics          (2021) 22:422 

weights [2]. The SwarmTCR method makes no assumptions about chain or CDR loop 
importance, but learns the weights in an peptide-specific fashion.

Mean and standard deviation of the optimized weights for several peptides 
are shown in Fig.  3 (numerical values in Additional file  1: Table  1), together with 

Fig. 2  Contact residues in crystal structures.The complexes shown here (PDB ID: 4G8G, peptide: KRWIILGLNK 
and PDB ID: 2VLR, peptide: GILGFVFTL) express the need for SwarmTCR. The 4G8G complex illustrates an α 
driven interaction and 2VLR conversely, a β driven interaction. All protein chains (including the CDR loops) 
are color-coded to supplement the tables beneath each structure. The tables show the number of contact 
residues in each CDR loop and a target structure

Fig. 3  CDR weights and performance. These boxplots summarize the results of SwarmTCR and compare 
them against TCRdist. A, C SC and BS SwarmTCR results describe weights (y-axis) selected for each CDR 
loop (x-axis) for each repertoire tested. B, D SC and BS performance comparison of SwarmTCR and TCRdist 
compare average precision scores (y-axis) for each repertoire tested (x-axis). P-values for performance 
comparison are defined by two-sample independent t-test
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classification performance for SwarmTCR and TCRdist [2], separately for SC and BS 
data. To test the robustness of the results, we repeated the same analysis using TCRs 
from IEDB at different confidence thresholds (0, 2, 3), obtaining similar results (see 
Methods and Additional file 1: Table 2). In addition, in the absence of true negative 
data (i.e., data showing which TCRs do not bind to particular epitopes), we randomly 
shuffled CDR regions within each chain (alpha and beta), for all TCR sequences with 
our existing single-cell data. As expected, for nearly all repertoires we observed a 
notable loss in precision, with IAV-M1 showing a less pronounced loss in precision 
(see Methods and Additional file 1: Table 2).

Additional area under receiver operating characteristic curve (AUROC) analysis can 
be found in Additional file  1: Table  3, SC true positive rate (TPR)/false positive rate 
(FPR) boxplots in Additional file 1: Figs. 1 and 2, and BS TPR/FPR boxplots in Additional 
file 1: Figs. 3 and 4.

Single cell sequencing

SC data provides paired αβ chain information, i.e., the complete TCR sequence is avail-
able. The SwarmTCR optimization procedure for SC data involves the use of eight sepa-
rate weights, since we have paired α and β chain sequences. The results of our SC analysis 
show relatively high weight being placed on non-CDR3 loops, although the CDR3 region 
has high weight for several peptides (Fig. 3A, and Additional file 1: Fig. 5). Interestingly, 
in the case of the EBV YVL peptide and the Yellow Fever LLW (peptide: LLWNGPMAV) 
peptide the SwarmTCR optimization procedure assigns more weight to the α chain, sug-
gesting that the α and β chains might have a more or less prominent role in TCR peptide 
recognition depending on the peptide, which is consistent with the example shown in 
Fig. 2 and the previous literature [8].

By looking at the results in Fig. 3B and in Fig. 4B (Additional file 1: Table 1), we can 
see that the largest difference between the classification performance of TCRDist 
[2] and SwarmTCR is for the EBV YVL and GLC peptides. The optimized weights for 
these peptides differ substantially from the fixed TCRdist weights. Based on the opti-
mized weights, YVL appears to favor the α chain as noted above, with only CDR2β being 
weighted more than its α counterpart. This is consistent with results in the literature [11].

PR curves for all SC peptides are shown in Additional file 1: Fig. 6, AUROC results 
in Additional file 1: Table 3, SC TPR/FPR box plots in Additional file 1: Figs. 1 and 2. 
The distributions of alignment scores between test and reference TCRs for positive (i.e., 
binding) and negative (i.e., “non binding”) TCRs is shown in Additional file 1: Fig. 7. For 
most epitopes (with the notable exception of NLV, which has poor performance), we can 
observe a clear separation of scores between positives and negatives.

SwarmTCR weights correlate with structural contacts

We further explored the potential of SwarmTCR to infer TCR chain usage in binding 
to the pMHC by extracting contact residue counts from TCR/pMHC crystal structure 
CDR regions (see Methods). Figure 5A shows that the weights generated by SwarmTCR 
correlate in a statistically significant manner (PCC = 0.812, p < 0.05 ) with actual chain 
usage for TCR/peptide contacts, compared to TCRdist (PCC = 0.484, p < 0.331).
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Though number of contacts increase when MHC contacts are included (Fig.  5B), 
SwarmTCR weights maintain stronger correlation (PCC = 0.827, p < 0.042 ) compared 
to TCRdist (PCC = 0.645, p < 0.166 ). We performed the same analysis on CDR regions 
(Additional file  1: Figs.  8, 9, and 10), obtaining lower correlation values. However, 
SwarmTCR does appear to capture germline loops with high contact counts. Contact 
counts for all PDB structures can be seen in Additional file 1: Figs. 11 and 12.

Bulk sequencing

As mentioned in the Introduction, in contrast to SC sequencing bulk sequencing yields 
the sequence of only the α or the β chain of TCRs but not both. The SwarmTCR optimi-
zation procedure was carried out in the same manner as for SC, except that the weights 
to optimize are four instead of eight, since we have unpaired α or β chain sequences, con-
taining CDR1, CDR2, CDR2.5, and CDR3 regions for a total of four weights per chain. 
Compared to SC data, the results on BS data show more weight being placed on CDR3 
loops, indicating its importance in predicting the specificity of TCR data when using 
only one chain. While [2] assigns to the CDR3 loop three times the weight of the CDR1, 
CDR2, and CDR2.5 regions, SwarmTCR assigns to CDR3 between  4 and  64 times the 
weight of the other regions (using the average weight as a measure), as it can be seen in 
Fig. 3C and Additional file 1: Fig. 13. These differences between the SwarmTCR weights 
and the original weights by Dash et al. [2] have a substantial impact on the classification 
performance for the GLC and YVL peptides using the β chains (Fig. 3D).

Fig. 4  Precision-recall curves for SwarmTCR and TCRDist.These precision-recall curves show the performance 
of SwarmTCR and TCRdist on the data used for 50 cross-validation iterations. TCRdist mean curves are in blue 
and SwarmTCR mean curves are in red, while the shaded regions cover one standard deviation
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Figure  4C and D shows precision-recall (PR) curves for a representative peptide 
(EBV YVL), obtained by averaging 50 curves, with the shaded region representing 
one standard deviation above and below the mean. SwarmTCR outperforms the 
original weights used in  [2] for both chains, with a more substantial improvement 
for the β chain (AUCPR 0.85 with the optimized weights vs. 0.74 with the origi-
nal TCRdist weights). PR curves for all BS peptides are shown in Additional file 1: 
Fig. 14, AUROC results in Additional file 1: Table 3, SC TPR/FPR box plots in Addi-
tional file 1: Figs. 3 and 4.

Fig. 5  Comparison of SwarmTCR weights and contact residues in crystal structures. These plots compare 
α β chain usage for SwarmTCR and TCRdist, using known crystal structures as a baseline. The x-axis details 
the normalized weight for each repertoire’s chain and the y-axis is ordered in ascending order according 
to crystal structure average number of contacts. Plot A includes the number of CDR loop contacts to the 
peptide and plot B includes number of CDR loop contacts to the pMHC. Pearson and Spearman statistics are 
located to the right of the legend
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Discussion
We introduced SwarmTCR, a computational approach for predicting TCR specific-
ity that maximizes classification performance within a nearest neighbor framework by 
identifying optimal CDR weights. Compared to the results obtained with fixed TCRdist 
weights, overall SwarmTCR performs better, with some peptides showing more substan-
tial improvement than others (Fig. 4). We note that in a worst case scenario, with enough 
data SwarmTCR can always fall back on the weights used by TCRdist if those yield maxi-
mum performance during the PSO step.

When comparing CDR weights in SC and BS data, we noticed stark differences 
between the results obtained with the two data types. In particular, we found that 
SwarmTCR assigns much more weight to the CDR3 region in BS data, whereas the 
results on SC data show relatively higher weights for the germline CDR loops. Due to 
the small size of the SC dataset, the diversity of TCR gene families is likely considerably 
lower than that found in the BS dataset. Therefore, the lower gene family diversity in 
the SC dataset compared to BS could partly explain the higher predictive power of gene 
family (germline loops) in SC data. Another reason for this difference in the weights 
between the two data types is the presence of paired chains information in SC, where 
combinations of TCR genes for α and β chains would likely be selected for by the optimi-
zation approach. More SC data is needed to further elucidate the issue. Consistent with 
the substantial differences in size between the two datasets, SC results show higher vari-
ance in both performance and weight selection than BS results.

The performance, generarizability, and robustness of computational approaches 
depend on the quality of the data used for training. An important caveat to consider 
when using publicly available databases like IEDB and VDJdb is that they might contain 
data obtained in a specific experimental context and not further validated. For example, 
confounding factors like bystander activation of CD8+ cells (i.e., activation of T cells 
that is independent of the TCR [12]) can potentially lead to incorrect assignment of TCR 
specificity.

An important question to consider is whether the optimized weights can also be 
interpreted to reflect chain and CDR usage. In other words, if a chain or a CDR region 
receives a high weight during the optimization step, does that mean that it also makes 
a large number of contacts with the pMHC? Our results suggest that the optimized 
weights can point to possible TCR chain and CDR loop usage, as shown in Figs. 3A, 5, 
and Additional file 1: Table 1 for the GIL TCR/pMHC crystal structure (Fig. 2, PDB ID: 
2VLR) with respect to β chain dominance and CDR2β loop usage.

A recent study  [11] corroborates these findings, explaining CDR1β and CDR2β ’s 
role in pMHC recognition, as well as CDR3β ’s conserved arginine fitting into a pocket 
between the peptide and the MHC α2-helix. Additionally, this study explains CDR3β ’s 
sequence conservation and notable variability in CDR3α . This likely explains the weight-
ing results of SwarmTCR (GIL, Fig. 3), despite the number of contacts in the 2VLR TCR/
pMHC structure. We also note that SwarmTCR’s weight results for YVL and LLW rep-
ertoires align with findings from this study, indicating the importance of the α chain in 
pMHC recognition [11].

However, one has to exercise caution when interpreting the weights in a structural 
sense. As discussed above, the weights are the result of an optimization process designed 
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to maximize classification performance, and factors other than structural importance 
can play a role in determining the optimal weights. If we consider the crystal structures 
and literature mentioned, this is shown by our BS weighting results and differences pre-
sent in Additional file  1: Figs.  8, 9, and 10. Nonetheless, given large amounts of TCR 
sequence data, peptide-specific optimal weights can provide helpful information in elu-
cidating TCR/pMHC interactions.

Sequence-based approaches to infer TCR specificity are appealing due to their com-
putational efficiency and the availability of sequence data [2, 6, 13]. However, structural 
data continue to provide information that expands and sometimes challenges our cur-
rent understanding of TCR/pMHC interactions. For example, one study found a strong 
negative correlation between mean CDR3 α , β charge and peptide charge [2]. Another 
study [3] showed how cross-reactive peptides share similar pMHC features (struc-
tural motifs and electrostatic potential) despite having different peptide sequences. 
These findings point to the importance of factoring in structural information for fur-
ther improving prediction methods. However, more work needs to be done both at the 
experimental level (generation of more crystal structures) and the computational level 
(reliable and scalable modeling of TCRs and pMHC complexes).

Conclusions
Being able to reliably predict TCR specificity will push the boundaries of many disci-
plines including vaccine design, immunotherapy, cancer research, and disease detection/
prevention in new directions. Here we have introduced SwarmTCR, a nearest-neigh-
bor approach that optimizes CDR weights by maximizing classification performance. 
SwarmTCR was benchmarked on both SC and BS data, and compared against a state-
of-the-art methodology, TCRdist. The results showed that SwarmTCR improves the 
performance of the nearest-neighbor classification approach and that the CDR weights 
generated in the training phase tend to correlate with the number of contacts made by 
the CDR regions in crystal structures.

Methods
TCRs sequence data

CD8+ TCR SC and BS data were collected from: (1) the Selin and Luzuriaga Labs at 
UMASS; (2) VDJdb [14]; and (3) IEDB [15].

Data acquired from the Selin and Luzuriaga labs contained TCRs isolated from HLA 
A:02:01-restricted, naïve and peptide-specific CD8+ T cells binding to YVL (EBV-
BRLF1109: HLA-A:02:01 restricted, peptide: YVLDHLIVV), GLC (EBV-BRLF1300:HLA-
A:02:01 restricted, peptide: GLCTLVAML), and GIL (IAV-M158: HLA-A:02:01 restricted, 
peptide: GILGFVFTL). SC data were obtained from ex  vivo single-cell sequencing of 
CD8 T cells from peripheral blood mononuclear cells (PBMCs) of four adult donors. 
Further information on these data can be found in  [11]. BS data were obtained from 
ex  vivo bulk sequencing of CD8 T cells from PBMCs of three adult donors. Further 
information on these data can be found in [16].

Human data from VDJdb was downloaded in January 2018, where paired TCR infor-
mation is denoted by matching index values and unpaired chains have index values of 
0. Complete SC data (confidence value ≥ 1) from the Immune peptide Database (IEDB) 
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was added to our dataset and used as the default for all analysis. To test the sensitivity 
of the results to data composition, we also built datasets that had IEDB data with con-
fidence value ≥ 0 , ≥ 2 , and ≥ 3 , respectively. In total, our default SC dataset comprised 
1447 TCRs, BS α 21,207 chains, and BS β 25,927 chains (for complete dataset counts see 
Additional file 1: Table 4). Data is available for download from the Github repository for 
the project.

CDR information

Our method for predicting the specificity of TCRs requires TCR gene family and com-
plete CDR3 sequence. To obtain this, we retrived all human germline CDR loop infor-
mation from the International ImMunoGeneTics Information System Gene database 
(IMGT/GENE-DB) [17]. CDR1 and CDR2 loops can be retrieved directly from the data-
base. However, CDR2.5 needs to be extracted from the IMGT alignment sequence, and 
is defined by the residues in columns 81-86 of the gapped alignment (F+ORF+in-frame 
P amino acid sequences with IMGT gaps), as discussed in Dash et al.  [2]. After trans-
lating the data to protein sequence, we produced non-redundant datasets by removing 
duplicate TCRs (sequence identity < 100%).

Shuffled CDRs

Since we did not have access to true negative data (i.e., data showing which TCRs do 
not bind to particular epitopes), we randomly shuffled CDR regions within each α and β 
chain, to test whether or not a loss of precision would be observed. CDR regions for each 
TCR were shuffled prior to assigning the receptors to the train and test sets.

Baseline method

We implemented TCRdist  [2] as a baseline method for classifying TCRs according to 
their peptide specificity. TCRdist is based on a nearest-neighbor approach, where the 
distance between TCRs is obtained from protein sequence alignment scores between 
TCRs. Using a BLOSUM62 matrix, a protein alignment is performed between any two 
TCRs using CDR loops 1, 2, 2.5, and 3. Subsequently, CDR 1, 2, and 2.5 are given a 
weight of 1, where CDR3 is given a weight of 3. Finally, the weighted sum of the CDR 
loop alignment scores is used as a proximity measure, and TCRs are assigned the pep-
tide specificity of their nearest neighbor [2].

SwarmTCR​

The main idea behind SwarmTCR is that the “importance” of the α and β chains as 
well as the CDR regions within these chains varies depending upon the peptide that is 
being recognized, as described in the literature [8]. In order to reflect this, SwarmTCR 
learns optimal weights for each of the eight CDR loops in a peptide-specific fashion. 
SwarmTCR explores the eight-dimensional (with SC data) or four-dimensional (with 
BS data) space of CDR weights with Particle Swarm Optimization (PSO), an established 
optimization technique inspired by the natural flocking behavior of birds that has been 
shown to achieve good performance in a wide range of optimization contexts [18].

The weights are used in a nearest-neighbor framework as done in TCRdist. We framed 
this as an optimization problem, where the objective is to identify a set of weights that 
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maximize classification performance as measured by Average Precision (AP) (eq. 1). AP 
was selected as the objective function to address the issue of unbalanced datasets (Addi-
tional file 1: Table 4), as suggested by [19]. We used Particle Swarm Optimization (PSO) 
for carrying out the optimization of the weights and maximize AP on a training set.

AP is determined by the sum over every position of the precision-recall curve where k is 
the rank of the retrieved TCRs, n is the number of TCRs, P(k) is the precision at cut-off 
k, and �r(k) is the change in recall from k − 1 to k [20].

In PSO particles are initially placed in a multidimensional space at random, with each 
particle representing a possible solution to the optimization problem. At each iteration, 
particles move with a velocity vector that is a function of both the local best of the par-
ticle and the global best. The velocity ( v ) and position ( p ) of a particle i are updated at 
each time step t according to Eq. 2 and 3:

where ω is an inertia factor set to 0.5, c1 and c2 are scaling factors set to 0.5, r1 and r2 
are two random numbers between 0 and 1, pbesti is the position of particle i that has 
resulted in the best value for the objective function so far, while pbestg is the global best 
(i.e., the position corresponding to the best value so far across all particles).

The optimization is set to terminate if the swarm moves ≤ 10−8 from its best position 
or if the change in the swarm’s best objective value is ≤ 10−8 . The swarm size is set to 25, 
with a maximum number of 20 iterations.

The SwarmTCR model

We define as “training set” the TCRs used to obtain an optimal set of weights maximiz-
ing average precision, and test set as the TCRs where the performance of the optimal 
weights is evaluated. Within both sets, we have a reference subset containing labeled 
TCRs and a sample subset that the nearest neighbor approach compares against the ref-
erence subset to infer peptide labels for the TCRs.

Training and test sets for SC and BS data were constructed differently due to data 
availability, with BS data being much more abundant than SC data. For BS, the train-
ing and test sets were filled using a 50/50 split, and for both training and test sets half of 
the TCRs specific for a particular peptide were placed into the reference subset and the 
remainder into the sample subset (Fig. 6A).

For SC, 30% of all TCRs specific for a peptide were placed into the reference subset for 
both training and testing sets. The same reference subset was used in training and test-
ing due to limited amounts of SC data (see Additional file 1: Table 4). In order to create 
the sample subsets for training and testing, the remaining 70% (TCR specific) under-
goes another 70/30 split (Fig. 6B). We note that the sample reference sets are distinct for 

(1)AP =

n∑

k=1

P(k)�r(k)

(2)vt+1
i = ω ∗ vti + c1 ∗ r1 ∗ (pbesti − pti )+ c2 ∗ r2 ∗ (pbestg − pti )

(3)pt+1
i = pti + vt+1

i
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training and test. We also ensured that the different proportions of TCR peptide specifi-
cities were equally represented in training and test sets.

Once data was randomly allocated into the training and test sets as described above, 
we performed the PSO procedure on the training set. Each solution (optimal set of 
weights maximizing average precision) was then applied to the test set. Cross-valida-
tion was performed using repeated random sub-sampling for 50 iterations on both SC 
and BS datasets.

Crystal structure contacts and SwarmTCR output

We searched the Protein Data Bank (PDB) for TCR/pMHC crystal structure com-
plexes containing one of the peptides in our TCR repertoires, to compare α and β 
chain usage and CDR loop usage with SwarmTCR weights.

We found nine complexes with the GILGFVFTL peptide (PDB IDs: 1OGA, 2VLJ, 
2VLK, 2VLR, 5EUO, 5E6I, 5ISZ, 5JHD, 5TEZ), three complexes with the NVLPM-
VATV peptide (PDB IDs: 3GSN, 5D2L, 5D2N), and one complex with the GLCTL-
VAML peptide (PDB ID: 3O4L). Using the distance threshold discussed in a previous 
publication [8], we extracted CDR region residues within 4.5Å to the target (peptide, 
pMHC).

We then compared contact residue counts from the crystal structures to the 
SwarmTCR weights for each repertoire and the default TCRdist weight set.
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