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Abstract 

Background:  Assessing the reproducibility of measurements is an important first 
step for improving the reliability of downstream analyses of high-throughput metabo-
lomics experiments. We define a metabolite to be reproducible when it demonstrates 
consistency across replicate experiments. Similarly, metabolites which are not consist-
ent across replicates can be labeled as irreproducible. In this work, we introduce and 
evaluate the use (Ma)ximum (R)ank (R)eproducibility (MaRR) to examine reproducibility 
in mass spectrometry-based metabolomics experiments. We examine reproducibility 
across technical or biological samples in three different mass spectrometry metabo-
lomics (MS-Metabolomics) data sets.

Results:  We apply MaRR, a nonparametric approach that detects the change from 
reproducible to irreproducible signals using a maximal rank statistic. The advantage of 
using MaRR over model-based methods that it does not make parametric assumptions 
on the underlying distributions or dependence structures of reproducible metabolites. 
Using three MS Metabolomics data sets generated in the multi-center Genetic Epide-
miology of Chronic Obstructive Pulmonary Disease (COPD) study, we applied the MaRR 
procedure after data processing to explore reproducibility across technical or biologi-
cal samples. Under realistic settings of MS-Metabolomics data, the MaRR procedure 
effectively controls the False Discovery Rate (FDR) when there was a gradual reduction 
in correlation between replicate pairs for less highly ranked signals. Simulation studies 
also show that the MaRR procedure tends to have high power for detecting reproduc-
ible metabolites in most situations except for smaller values of proportion of reproduc-
ible metabolites. Bias (i.e., the difference between the estimated and the true value 
of reproducible signal proportions) values for simulations are also close to zero. The 
results reported from the real data show a higher level of reproducibility for technical 
replicates compared to biological replicates across all the three different datasets. In 
summary, we demonstrate that the MaRR procedure application can be adapted to 
various experimental designs, and that the nonparametric approach performs consist-
ently well.

Conclusions:  This research was motivated by reproducibility, which has proven to 
be a major obstacle in the use of genomic findings to advance clinical practice. In this 
paper, we developed a data-driven approach to assess the reproducibility of MS-
Metabolomics data sets. The methods described in this paper are implemented in the 
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open-source R package marr, which is freely available from Bioconductor at http://​
bioco​nduct​or.​org/​packa​ges/​marr.

Keywords:  Reproducibility, Mass spectrometry, Metabolomics

Background
Metabolites are small molecules that represent a type of molecular phenotype that is 
intermediate between genetic and regulatory processes, such as methylation and tran-
scription, and the physiological and disease state of an organism. Comprehensive pro-
filing of the small molecule repertoire in a sample is referred to as metabolomics and 
has been applied extensively in detecting clinical biomarkers, studying physiological and 
disease processes, and predicting phenotypic changes [1, 2].

One of the most appealing features of metabolomics is the ability to characterize the 
full spectrum of metabolites by measuring them objectively and quantitatively. Metab-
olomics experiments can be classified into two categories: targeted and untargeted. 
Targeted metabolomics studies measure ions from biochemically known annotated 
metabolites. In contrast, untargeted metabolomics experiments measure the total-
ity of ions in a set of predefined mass range [3, 4]. Among the platforms employed for 
measuring metabolites, Gas Chromatography Mass Spectrometry (GC–MS) and Liquid 
Chromatography Mass Spectrometry (LC–MS) are popular due to their sensitivity and 
coverage of all possible ions [5]. These GC–MS and LC–MS techniques prepare a sample 
at a high resolution, fragment it into ions and isolate the ions to generate spectra for the 
sample [6]. The fragmented ion spectra are subsequently reported on the basis of their 
physical properties (e.g., mass-charge ratio and retention time) [7, 8]. In many instances, 
some of the mass spectral signals measured by metabolomics experiments may not 
be biologically relevant due to background signals from the input sample preparation, 
or signals arising from the same analyte, such as isotopes and adducts [9]. Therefore, 
metabolite feature identification can sometimes be imperfect since noisy signals could 
be identified as a peak group [10]. Thus, many metabolomics data sets can have a large 
number of falsely identified metabolites or metabolite features with incorrect integration 
regions and missing values, which affect the reproducibility of the study [11, 12]. We use 
the term metabolites to refer to small compound features resulting from a metabolomics 
experiment in the rest of this article.

Reproducibility is an on-going challenge for high-throughput technologies developed 
in the last two decades for quantifying a wide range of biological processes. A persistent 
difficulty faced by researchers is the variability of output across replicate experiments 
[13]. Several authors have addressed the issue of reproducibility among high-through-
put experiments [14–16]. In each high-throughput experiment (e.g., arrays, sequencing, 
mass spectrometry), a large number of features are measured simultaneously, and can-
didates are often subjected to follow-up statistical analysis. When measurements show 
consistency across replicate experiments, we define the signals that generate the meas-
urements to be reproducible. Similarly, measurements that are not consistent across rep-
licates may be problematic and those signals should be identified as irreproducible. In 
this work, metabolites that show consistency across MS-Metabolomics replicate exper-
iments are termed reproducible and the ones that are not consistent are termed irre-
producible. The reproducibility of a high-throughput experiment primarily depends on 
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technical variables, such as run time, technical replicates (chemical factors and spike-in 
controls), laboratory operators, and biological variables, such as healthy and diseased 
subjects. A critical step toward making optimal design choices is to assess how these 
biological and technical variables affect reproducibility across replicate experiments [17, 
18].

The simplest technique used to examine reproducibility is Spearman’s rank correla-
tion across pairs of experiments, i.e., consistency of how metabolites are ranked in each 
experiment. However, the degree of reproducibility may depend on the magnitude of the 
signals, i.e., highly ranked signals are consistently more reproducible than low ranked 
signals. For this reason, Spearman’s rank correlation is not ideal for assessing the repro-
ducibility of high-throughput experiments, since it does not account for the magnitude 
of signals.

The most detailed framework to assess reproducibility in high-throughput experi-
ments was developed by [13]. Using Chromatin ImmunoPrecipitation sequencing 
(ChIP-seq) data as motivation, this procedure uses a copula mixture model in order 
to estimate the proportion of reproducible signals, and the Irreproducible Discovery 
Rates (IDR) for ChIP-seq peaks can be computed at each set of paired replicate ranks 
for assessing reproducibility and combining replicates. Several other methods have 
been proposed for characterizing and examining the reproducibility of high-throughput 
experiments, including the Correspondence at the Top (CAT) plot [19], which is a graph-
ical tool to visualize and assess the reproducibility between a pair of replicate microarray 
experiments. However, CAT is only limited to visualization where the two ranked lists 
can be compared by looking at curves for the “proportion in common” based on fold 
change, between each experiment and a reference experiment. The choice of reference 
is important to calculate proportion in common. When the number of experiments is 
large, visualizing many curves with different reference experiments can be overwhelm-
ing. A more quantitative approach was a regression model developed to examine the 
effect of technical replicates for ChIP-seq and microarray data termed the correspond-
ence curve regression [20]. The correspondence curve regression employs a cumulative 
regression model to quantify the simultaneous and independent effects of technical rep-
licates on reproducibility without a specific significance threshold [21]. This regression 
model framework is a parametric alternative to existing graphical tools for comparing 
and benchmarking the reproducibility of different study designs in high-throughput 
sequencing experiments. Both IDR and correspondence curve regression are parametric 
approaches, and may be problematic if distributional assumptions are violated.

Like other high-throughput sequencing experiments (e.g., RNA-seq, ChIP-seq), repro-
ducibility is also a major concern for effective downstream analysis of MS-Metabolomics 
data. There are few approaches that specifically examine reproducibility for MS-based 
metabolomics experiments. The most common approach is calculating the coefficient of 
variation (CV) across replicates. CV is computed by dividing the standard deviation of 
the replicates by the average, producing a measure for magnitude of the variation 
between replicates. An alternative measure RSD (Relative Standard Deviation) is often 
used instead of CV, where RSD = 100× Standard Deviation

Absolute Mean
 . It is often used to examine 

variation across biological and technical replicates samples and to filter metabolites [22]. 
The RSD (or CV) is often a poor predictor of feature quality because it only assesses 
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variability across technical replicates, without considering biologically meaningful varia-
bility across subjects [23]. Typically, the RSD (or CV) is calculated across pooled QC 
samples for each feature and those with an RSD above a predetermined cutoff (e.g., 
20–30%) are removed [24, 25]. That is, its properties are dependent on arbitrary cut-offs 
chosen by the user. In addition, RSD does not perform a statistical test for error control.

Limited research has been conducted comparing the reproducibility between bio-
logical or technical replicates. Even though previous research [15] has shown that the 
experiments were sufficiently reproducible between technical replicates, we strongly 
emphasize the need of further assessment of reproducibility of abundances of metabo-
lites across both biological and technical replicates.

In this work, we present a method to identify reproducible metabolites for use with 
MS-Metabolomics data. We demonstrate that the (Ma)ximum (R)ank (R)eproducibility 
(MaRR) procedure can be adapted to high-throughput MS-Metabolomics experiments 
across (biological or technical) replicate samples. The MaRR procedure was originally 
developed by [26] to assess the reproducibility of RNA-seq data. It is a nonparamet-
ric approach that detects the change from reproducible to irreproducible signals. The 
advantage of using the MaRR procedure over model-based methods is that it does not 
make parametric assumptions on the underlying distributions or dependence structures 
of reproducible metabolites. Assessing reproducibility by the MaRR procedure will pro-
vide a new and robust way of studying reproducibility in the field of MS-Metabolomics 
experiments.

Methods
Maximum rank reproducibility (MaRR)

Maximum Rank Reproducibility (MaRR) was proposed to assess reproducibility of gene 
ranks in replicate experiments by [26]. Since, MaRR is a non-parametric procedure, it 
does not assume any distributional parameters on the underlying structure of reproduc-
ible features. The core idea behind developing MaRR is based on a maximum rank statis-
tic, such that, the procedure has the ability to detect the transition from reproducible to 
irreproducible signals by minimizing the mean squared error between the observed and 
theoretical survival function. The survival function S(t), is the probability that a subject 
survives longer than time t. For this reason, the Survival function is often regarded as 
complementary cumulative distribution function.

Using the MaRR procedure, we propose to examine the reproducibility of ranked 
lists from replicate experiments and assess how concordant the metabolites are ranked 
in replicate experiments. Any numeric value for a metabolite feature, such as abun-
dance, test statistic, p-value, q-value or fold change score can be used to rank the fea-
tures. Then the method utilizes the ranks and not the original measurements. Additional 
file 1: Fig. S1 illustrates an example dataset of rank statistics for M = 10, 000 metabolites 
under the ideal setting of a perfect split (when the correlation between highly ranks sig-
nals is 1 and correlation between low ranked signals is 0).

Metabolites with reproducible measurements should be consistently highly ranked for 
both replicate experiments (blue, Additional file  1: Fig.  S1), and are expected to have 
positive correlation in their ranks, whereas, metabolites with independent measures 
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are assumed to have independent ranks and considered irreproducible (red, Additional 
file 1: Fig. S1).

MS‑metabolomics data design

We introduce notation to describe MS-Metabolomics data resulting from a study design 
with D layers (D ≥ 1) . The layers in a study design may be technical (e.g., batches, techni-
cal replicates) or biological (e.g., disease status of subjects), and all layers measure abun-
dances of metabolites. Under each layer in a MS-Metabolomics study design, multiple 
replicate experiments are obtained. Under each layer d, d = 1, 2, . . . ,D , the reproduc-
ibility of these experiments are generally assessed across pairwise combinations of rep-
licate experiments, i.e., 

(nd
2

)
 pairwise combinations, where nd is the number of replicate 

experiments at layer d, where d = 1 indicates the top layer, d = 2, . . . ,D − 1 indicate the 
intermediate layers and d = D is the bottom layer in a study design.

In each replicate MS-Metabolomics experiment, a large number of unique metabo-
lites with respect to mass-charge ratio and retention time are obtained. Each metabolite 
m examined is assumed to be associated with a continuous measurement from each of 
nD replicate experiments by the layer D (bottom layer), where M is the total number of 
metabolites. Let xdm,i be the abundance measure of mth metabolite and the ith replicate 
experiment at layer d, such that, m = 1, 2, . . . ,M and i = 1, 2, . . . , nd . We describe the 
structure and notation of these layers in the following sections. For notational simplicity, 
we will now use I as the total number of replicate experiments at the bottom layer.

Single layer

Let x1m,i be the measure of mth metabolite and the ith replicate experiment under a 
single layered study design. An example of this study design is a data set that has the 
abundance measurements of M metabolites and I biological subjects (the replicate 
experiments in this case). See Fig. 2c for an example of a single-layered study design.

Double layer

Let xω1
m,i be the measure of mth metabolite and the ith replicate experiment under a two-

layered study design, i.e., ω1 (top layer) and i (bottom layer- replicate experiment level), 
where ω1 = 1, . . . , nω1 and i = 1, . . . , I , such that, nω1 and I denote the total number of 
replicate experiments at the first (top) and bottom (second in this case) layers, respec-
tively respectively respectively. An example of this study design is a data set that has 
abundance measurements of M metabolites and I replicate experiments under each 
of the nω1 biological subjects, i.e., in total there are I × nω1 samples. See Fig. 2b for an 
example of a double-layered study design.

Triple layer

Let xω1,ω2
m,i  be the measure of mth metabolite and the ith replicate experiment under a 

three-layered study design, i.e., ω1 (top layer), ω2 (middle layer) and i (bottom layer- rep-
licate experiment level), where ω1 = 1, . . . , nω1 , ω2 = 1, . . . , nω2 and i = 1, . . . , I , such 
that, nω1 , nω2 ≥ 2 . nω1 , nω2 , and I denote the total number of replicate experiments at 
the first (top), second and bottom (third in this case) layers, respectively respectively. 
An example of this study design is a data set that has abundance measurements of M 
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metabolites and I replicate experiments under two layered study design where the mid-
dle layer is the technical layer (e.g., different operators or runs) with nω2 technical repli-
cates and the top layer is subject layer with nω1 biological subjects, i.e., in total there are 
I × nω1 × nω2 samples. See Fig. 2a for an example of a triple-layered study design.

N layer

Let xω1,ω2,...,ωN−1

m,i  be the measure of mth metabolite and the ith replicate experiment under 
an N-layered study design, i.e., ω1 (top layer), ω2 (second layer), . . . , ωN−1 ( (N − 1) layer) 
and i (bottom layer- replicate experiment level), where ω1 = 1, . . . , nω1 , ω2 = 1, . . . , nω2 , 
. . . , ωN−1 = 1, . . . , nωN−1 and i = 1, . . . , I , such that, nω1 , nω2 , . . . , nωN−1 ≥ 2 . nω1 , nω2 , . . . , 
nωN−1 and I denote the total number of replicate experiments at the first (top), second, 
. . . , (N − 1) and bottom (last) layers, respectively.

MaRR procedure for MS‑metabolomics

For notational simplicity, we assume only the single layered study design to describe the 
MS-Metabolomics data sets in the context of the MaRR procedure as discussed in “Sin-
gle layer section”. MaRR assumes no missing values (see below for data pre-processing 
steps regarding missing values). Even though, we have data for more than two replicate 
experiments, the MaRR application to MS-based metabolomics data focuses on pairwise 
replicate experiments. Thus, under the single layered study design, we implement MaRR 
on pairwise combinations of I replicate experiments, i.e., 

(I
2

)
 combinations of pairwise 

replicate experiments, where xi and xi′ are the replicate data sets, such that, i  = i
′ , where 

xi = (x1,i, . . . , xM,i)
′ . Moreover, X is a M × I matrix, such that, X = (x1, . . . , xI ) , where 

xi′ be the vector of abundances of M metabolites on the ith replicate experiment. These 
abundances are converted into rank statistics. Each metabolite is assigned a rank in each 
of the two replicate: (Rm,i, Rm,i

′ ) , where Rm,i is the rank among x1,i, . . . , xM,i and likewise 
for Rm,i

′ . Now, the maximum rank statistic for the metabolite m can be defined as,

for m = 1, . . . ,M.
Consider Additional file 1: Table S1 detailing a subset of a real data of M = 6 metab-

olites to describe the calculation of maximum rank statistics from a pair of replicate 
experiments. It is to be noted that metabolites that are highly ranked will have a rela-
tively low value for their maximum rank statistic. On the other hand, low ranked metab-
olites will have higher values. Thus, choosing a threshold value based on the maximum 
rank can have the potential to separate reproducible from irreproducible signals.

Estimator of the proportion of reproducible metabolites

We define the proportion of reproducible metabolites between sample pairs as 
π1 . Due to the first assumption of the MaRR procedure under ideal settings [26], 
Maxy < Maxz for all reproducible metabolites y and irreproducible metabolites z. This 
implies that all metabolites y such that Maxy/M ≤ π1 are reproducible, and all metab-
olites z such that Maxz/M > π1 are irreproducible. Rank pairs and maximum rank 
statistics for a sample data set generated under the ideal assumptions with π1 = 0.35 

(1)Maxm = max(Rm,i, Rm,i
′ ),
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are provided in Additional file 1: Fig. S1. MaRR uses the survival function in its esti-
mator derivation of π1 . Thus, the empirical survival function is given by,

Let π1 ∈ (0, 1) be fixed, then according to the properties of MaRR under the ideal set-
ting, the marginal limiting distribution of the random variable Maxz/M as M → ∞,

A weighted mean squared error between two functions for � ∈ (0, 1) is defined as:

where l� = maxl=1,...,M(l : l/M ≤ �) . The minimizer of MSEM(�) is used to estimate π1 . 
[26] showed the desirable performance of this estimator across a variety of scenarios.

We assume the following under the realistic setting:

•	 Reproducible signals tend to be ranked higher than irreproducible signals, that is, 
P(Ry,i < Ry,i

′ ) > 1/2 and P(Rz,i < Rz,i
′ ) > 1/2 if metabolite y is reproducible and 

metabolite z is irreproducible for any replicate sample pair (i, i′).
•	 The correlation between the ranks of reproducible signals is nonnegative.
•	 The two ranks per irreproducible metabolite are independent.

The important difference between assumptions that separates the first assumption of 
realistic and ideal settings is the lack of clear split between reproducible and irre-
producible signals with respect to Maxy . As a result, the estimator π̂1 derived in [26] 
is consistent in the ideal case whereas conservatively biased in the realistic case. In 
realistic settings, reproducible signals Maxy/M have a positive probability of falling in 
the region (π1, 1).

For computational convenience, the discrete and rescaled version of π1 was used, 
i.e., k̂.

where l� = max
{l=1,...,M}

(l : l/M ≤ �).

In practice, k̂ is a good estimate when reproducible signals begin transition to irre-
producible signals. We chose the value of � to be 0.9 on the basis of a large number of 
simulated datasets with varying degrees of effect size and proportion of reproducible 
signals. However, this assertion cannot yet be proven theoretically. Although, for cer-
tain datasets with small effect size (e.g., mean parameter), we might need to reduce 

(2)ŜM(x) =
1

M

M∑

y=1

I(Maxy/M ≥ x), x ∈ (0, 1).

Sπ1(x) =





1 x < π1

1− (x−π1)
2

(1−π1)
2 , π1 ≤ x ≤ 1.

0 1 < x

(3)MSEM(�) = (M − l�)
−1

M∑

x=l�

[ŜM(x/M)− (1− �)S�(x/M)]2,

(4)k̂ = arg min
l=l�

[MSEM(l/M)],
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the � value [26]. In our MS-Metabolomics datasets, it was not required as the effect 
sizes were relatively large compared to the real RNA-seq datasets in [26].

Estimation of reproducible signal for metabolite m and replicate sample pair (i, i′)

To determine the set of reproducible metabolites, a critical value N̂  was chosen, accord-
ing to an error rate. All metabolites from a replicate sample pair experiment (i, i′) will be 
assigned reproducible if Maxy ≤ N̂  . This approach of declaring metabolites is defining 
a rejection as (0, N̂ ) , and rejecting the null hypothesis [irreproducibility for all signals 
with Maxy in the region (0, N̂ ) ] [27]. When an irreproducible metabolite was declared 
reproducible, Type I error (false discovery) was committed. Marginal false discovery rate 
(mFDR) is estimated based on a rejection region [28].

We assume z be the possible outcomes from simultaneous hypotheses [29], where U 
is the number of true null hypothesis that were correctly not rejected (true negatives), 
V is the number of false rejections (false positives), T is the number of hypotheses that 
were not rejected when they should have been (false negatives), and S is the number of 
correctly rejected hypotheses (true positives). Q is the total number of rejections made 
(rejected null hypotheses). The mFDR [28] is given by,

The above quantity is similar to the classical FDR as defined by [30]. To define mFDR 
estimate based on the MaRR procedure, the following notations are introduced:

By using the above notations, the mFDR estimate for using l as the threshold value for 
declaring reproducibility is given by,

The denominator of the above expression can be directly computed from the data 
whereas the numerator needs to be calculated using the distribution of Maxz and is also 
dependent on k̂ [26]. The final expression of the numerator is given by,

The mFDR estimate associated with any rejection region (0, l) can then be defined as,

We summarize the MaRR procedure for set of m metabolites each with two metrics gen-
erated from sample pair experiments as below:

(5)mFDR =
E[V ]

E[Q]
.

Q(l) =

M∑

y=1

I(Maxy ≤ l) = Number of metabolites declared reproducible for critical region (0, l).

Vk(l) = Irreproducible metabolites declared reproducible with k < Maxy ≤ l.

(6)mF̂DR(l) =
E[V

k̂
(l)]

Q(l)
.

(7)E[V
k̂
(l)] =

(l − k̂)2

M − k̂
, l = k̂ + 1, . . . ,M.

(8)mF̂DR(l) =
E[V

k̂
(l)]

Q(l)
=

(l − k̂)2

Q(l)(M − k̂)
, l = k̂ + 1, . . . ,M.
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The FDR is controlled at a nominal level α if the threshold value N̂  is chosen to be

and the set of metabolites generated from replicate pair of experiments with maximum 
rank statistics less than or equal to N̂  are declared reproducible. We detect the indices 
of the metabolites from replicate sample pair experiments which are declared reproduc-
ible. We define an indicator variable rm,(i,i′) = 1(0) to be a reproducible (irreproducible) 
signal for metabolite m and replicate sample pair (i, i′) as below:

Evaluating reproducibility

We create a matrix of reproducible signals with M rows (total number of metabo-
lites) and J columns ( J =

(I
2

)
 ) (replicate sample pairs 

(I
2

)
 ), where J is the total possible 

number of sample pairs of replicate experiments. We assign metabolite m to be repro-
ducible if a certain percentage signals ( 100cs% ) are reproducible for pairwise combi-
nations of replicate experiments across all study designs, i.e., if

such that, cs ∈ (0, 1).
Similarly, we assign a sample pair (i, i′) for each study design ω1 to be reproducible 

if a certain percentage signals ( 100cm% ) are reproducible across all metabolites, i.e., if

such that, cm ∈ (0, 1) . Figure 1 illustrates the schematic filtering approach of reproduc-
ible signal matrix by rows (metabolites) and columns (sample pairs).

Illustrative data sets

Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and 
mortality in the United States. The multi-center Genetic Epidemiology of COPD 
(COPDGene) study was designed to study the underlying genetic factors of COPD, 
[31]. This study enrolled 10,263 individuals from 2008 to 2011 (Visit 1) who were aged 
45–80 with ≥ 10 pack-year smoking history and no exacerbations for > 30 days. From 
2013 to 2017, 6758 subjects returned for an in-person 5-year visit (Visit 2). Each in-
person visit included spirometry before and after albuterol, quantitative CT imaging 
of the chest, and blood sampling.

(9)k̂ = arg min
l=l�

[MSEM(l/M)],

(10)N̂ = max
k̂<l≤M

{l : mF̂DR(l) ≤ α},

rm,(i,i′) =

{
1, I(Maxm ≤ N̂ )

0 otherwise.

(11)
∑

i<i′ rm,(i,i′)

J
> cs,

(12)
∑

m rm,(i,i′)

M
> cm,
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Technical (Tech) data set

Three technicians performed all steps of sample prep for profiling of a single base 
human plasma sample collected from COPDGene visit 1 containing six spiked in con-
trol compounds at concentrations of 1X, 2X and 4X and two negative controls at 1X 
in all samples. Processing of the raw data was performed in Agilent’s Mass Hunter 
software.

Fig. 1  Schematic filtering approach of reproducible signal matrix. Schematic diagram showing the 
evaluation of MS-Metabolomics data. The schematic filtering approach can is data-adaptive because the 
filtering cut-offs ( cs and cm ) can be specified to the filtering requirements of the data by the user

Fig. 2  Flow charts of the 3 data sets. Flow charts show the hierarchical structure of the Tech, BioTech and 
Bio data sets. a The Tech data set is a triple-layered MS-Metabolomics experiment. b The BioTech data set 
is a double-layered MS-Metabolomics experiment. c The Bio data set is a single-layered MS-Metabolomics 
experiment
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The Tech data set is a triple-layered MS-Metabolomics experiment. Figure 2a shows 
the hierarchical structure of the Tech data set, (i) the top layer being the batch operators, 
(ii) the middle layer is the spike-ins under each batch operator, and (iii) the bottom layer 
is the technical replicates under each spike-in. Based on our generic notations in “Triple 
layer section”, we can write, nω1 , nω2 and I be the total number of replicate experiments 
at the top (batch operator), middle (spike-in control) and bottom (technical replicate) 
layers, respectively. Additional file 1: Table S2(a) illustrates the design of the MS-Metab-
olomics experiment for a single operator of the Tech data set.

Biological–Technical (BioTech) data set

Fresh frozen plasma was collected at COPDGene Visit 1 from 131 subjects. These sam-
ples were analyzed using untargeted LC–MS (C18+ and HILIC+) metabolomics. The 
lipid fraction of the human plasma collected from current and former smokers was ana-
lyzed using Time of Flight (ToF) liquid chromatograph (LC) (Agilent 6210 Series) and 
a Quadrupole ToF mass spectrometer (Agilent 6520) which yielded combined data on 
2999 metabolite features before data-preprocessing. Data are available at the Metabo-
lomics Workbench with Study ID ST000601, and data processing is described in [32].

The BioTech data set (Fig. 2b) can be treated as a double-layered MS-Metabolomics 
experiment as described in “Double layer section”. We can write, nω1 = 131 and I = 3 
be the total number of replicate experiments at the top (biological subjects) and bottom 
(technical replicates), respectively. Additional file 1: Table S2(b) illustrates the design of 
the MS-Metabolomics experiment for the BioTech data set.

Biological (Bio) data set

Within COPDGene 1136 subjects participated in an ancillary study in which they pro-
vided fresh frozen plasma at Visit 2. The plasma was profiled using the Metabolon Global 
Metabolomics platform using an untargeted gas chromatography–mass spectrometry 
and liquid chromatography–mass spectrometry (GC–MS and LC–MS) based metabo-
lomic quantification protocol as described previously [12, 33]. The platform reported 
1392 features including 1064 annotated features. A data normalization step was per-
formed to correct variation resulting from instrument inter-day tuning differences: 
metabolite intensities were divided by the metabolite run day median then multiplied 
by the overall metabolite median. Subjects with aggregate metabolite median z-scores 
greater than 3.5 standard deviation from the mean (N = 6) of the cohort were removed.

The Bio data set (Fig.  2c) is a single-layered MS-Metabolomics experiment (“Single 
layer section”). Note that, there are no technical replicates in this data set. We can write, 
x1m,i be the abundance measures of mth metabolite and the ith replicate experiment 
where i = 1, . . . , I(= 1130) . I = 1130 denotes the total number of replicate experiments. 
Additional file 1: Table S2(c) illustrates the design of the MS-Metabolomics experiment 
for the Bio data set.

Data pre‑processing

We processed the three data sets described in “Illustrative data sets section” using the 
MSPrep software [34]. The data sets used in this paper are all log transformed. The data 
pre-processing include three steps and they are as follows:
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Filtering

For each of the data sets, metabolites with more than 20% missing values were 
removed [22, 35]. (a) Tech data set-Post filtering, M = 860 metabolites remain. (b) 
BioTech data set-Post filtering, M = 2860 metabolites remain. (c) Bio data set-Post 
filtering, M = 995 metabolites remain.

Missing value imputation techniques

For all data sets, we used BPCA to impute missing values, which implements a 
Bayesian version of the PCA (Principal Component Analysis) [36, 37]. It combines 
an Expectation Maximization (EM) approach for PCA with a Bayesian model and 
imputes the missing values. This R function is available in R/Bioconductor package 
pcaMethods. As a secondary analysis to compare imputation methods, we also used 
kNN and Random Forest (RF) imputations for the BioTech dataset. kNN imputation 
was originally developed for high-dimensional microarray gene expression data [38]. 
For each metabolite with missing values, this method finds the k ( = 5 ) nearest metab-
olites using Euclidean metric and missing values are imputed by averaging the nearest 
neighboring non-missing values. We applied the R package VIM for this imputation 
approach. Further, we used RF to impute the missing values. In many literatures, it 
has been observed that RF-based imputation outperformed other imputation meth-
ods for imputing metabolomics data [39–41]. We applied the R package missForest 
for RF-based imputation.

Normalization

Unwanted variation appears from various sources in metabolomics studies. Normali-
zation is an important step for the downstream statistical analysis of metabolomics 
data. For all three data sets, we employ the msnormalize function with the quantile 
normalization options in MSPrep [34] to normalize the data while maintaining bio-
logical variation in the replicates. As a secondary analysis to compare normalization 
methods, we also used the median normalization option in MSPrep [34] for the Bio-
Tech data set.

Pooling the abundance measurements

To evaluate the top layer of the hierarchy in the MS-metabolomics data design, we 
need to sum the abundances in the lower layer levels. We illustrate the sum of abun-
dance measurements approach to measure reproducibility at each layer of the hier-
archical MS-Metabolomics data sets using the Tech data set. For within spike-ins, 
i.e., between technical replicates, we rank and compare metabolites from each rep-
licate pair. To make comparisons between spike-ins using the same operator, we sum 
abundance measurements over three replicates per spike-in. Subsequently, we rank 
the total abundance measurements for each spike-in and apply MaRR to measure the 
reproducibility metrics ( π1 s) pairs of spike-ins under each batch operator, i.e., nine 
pairs of spike-in across three batch operators. Further, to make comparisons between 
batch operators for the same biological subject, we sum abundance measurements 
over all replicates under three spike-in per batch operator. MaRR is then applied to 
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these pooled data set. We also repeat the sum of abundance measurements approach 
in the BioTech data set. However, this approach is not required to perform in the Bio 
data set (single-layered MS-Metabolomics data set).

Dealing with ties

In the rare occurrence of ties, ties in the ranking method were treated by random assign-
ment. For example, if there are 10 metabolites and 2 are tied for smallest values, then 
one of the tied metabolites will be randomly assigned to the 9th position and the other 
one to the 10th position.

Simulations

The main goal of the simulation settings is to generate data with known reproducible/
irreproducible signals that mimics the characteristics of one of our example data sets 
(BioTech described in “Illustrative data sets section”) to examine the performance of 
MaRR procedure. For this purpose, we describe two sets of simulation studies under 
extensive simulation settings. Since the MaRR procedure is applied to pair of replicate 
experiments, and to simplify notation, we assume one layer. In these simulations, we 
evaluate the accuracy of estimates of the reproducible signals π1 , FDR control and the 
power for detecting the true reproducible signals. In the simulations, we assume that the 
data are log transformed.

Settings for simulation I

In simulation I, we generate data from a Bivariate Normal distribution using the means, 
standard deviations and Pearson’s correlation coefficient between replicate pair experi-
ments of the processed BioTech data set.

We first ran the MaRR procedure to identify which metabolites were reproducible or 
irreproducible (see Methods), then calculated summary statistics of the reproducible/
irreproducible metabolites and used those to generate simulation data sets In summary, 
(i) the quartiles of the proportion of reproducible signals ( π1 ) ranged between 0.90 and 
0.95 for 393 sample pairs and 2860 metabolites. (ii) The quartiles of the means of the 
reproducible abundance measures ( µR ), for replicate experiments ranged between 3.89 
and 4.13. (iii) The quartiles of the means of the irreproducible abundance measures 
( µIR ), for replicate experiments ranged between 3.19 and 3.21. (iv) The quartiles of the 
standard deviations of the reproducible abundance measures ( σR ) for replicate experi-
ments ranged between 0.16 and 0.17. (v) The quartiles of the standard deviations of the 
irreproducible abundance measures ( σIR ) for replicate experiments ranged between 0.04 
and 0.05. (vi) The quartiles of the Pearson’s correlation coefficient of the reproducible 
abundance measures ( ρR ) between replicate experiments ranged between 0.992 and 
0.994. We summarized the quartile measurements of these parameters in Additional 
file  1: Table  S3. In addition, we presented the boxplots showing the spread of these 
parameters in Additional file 1: Fig. S2.

We fix the true values of the following parameters because their quartile ranges 
were extremely narrow: mean of the irreproducible abundance measures for replicate 
experiments ( µIR = 3.2 ), standard deviation of the reproducible abundance measures 
for replicate experiments ( σR = 0.17 ) and standard deviation of the irreproducible 
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abundance measures for replicate experiments ( σIR = 0.05 ). For the other param-
eters, we chose values from the quartile ranges: the mean of the reproducible abun-
dance measures ( µR ), the proportion of reproducible signals ( π1 ), and the correlation 
between reproducible pairs of abundance measures(ρR).

Under realistic settings of the MaRR procedure, (i) we assume that test statistics 
with large values will be highly ranked and (ii) the correlation between irreproducible 
abundance measure is zero. The test statistics for reproducible signals are generated 
from the Bivariate Normal distribution as follows:

The test statistics for irreproducible signals are generated from the standard bivariate 
Normal distribution assuming that the two test statistics are independent:

To make the situations more challenging and exhaustive, we include 24 settings by 
varying µR ∈ {3.89, 4.01, 4.13} , ρR ∈ {0.45, 0.99} , and π1 ∈ {0.2, 0.4, 0.75, 0.9} based on 
the summary statistics described above For each setting, we simulate 1000 data sets of 
metabolite size M = 2860 , which is the number of metabolites in the BioTech data set, 
and apply the MaRR procedure.

Settings for simulation II

The simulation design is kept similar to the original MaRR paper [26]. Thus, to test 
the performance of the MaRR under extensive simulation settings, we implement the 
simulations with extreme choices of the parameters ( π1 and r0 ), and do not assume 
normality for all values.

Each simulated data will consist of proportion of reproducible signals and a mini-
mum correlation for lowest ranked signals as parameters. The largest values of tm,1 
and tm,2 are assumed to be highly ranked metabolites. For each reproducible metabo-
lite m, the first test statistic tm,1 is generated according to tm,1 ∼ Uniform(4, 5) . The 
second test statistic tm,2 is dependent in such a way that, the correlation between tm,1 
and tm,2 is linearly dependent according to a Normal distribution given tm,1,

where rm = 1−r0
5−4 (tm,1 − 4)+ r0.

For the correlation structure, we assume that when tm,1 = 5 , there is perfect cor-
relation whereas, the minimum correlation for the lowest ranked reproducible signals 
( tm,1 = 4 ) is r0.

As with Simulation I, the test statistics for irreproducible metabolites are gener-
ated from the bivariate Normal distribution assuming that the two test statistics are 
independent,
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We consider 12 parameter settings for this simulation design by varying the propor-
tion of reproducible signals, π1 ∈ {0.2, 0.4, 0.75, 0.9} and the minimum correlations 
r0 ∈ {0.4, 0.6, 0.99} as selected above. For each setting, we simulate 1000 data sets and 
apply the MaRR procedure. To imitate the MS-Metabolomics data more closely for 
each data set, the size of metabolites is chosen to be M = 2860 , which is the number of 
metabolites for the BioTech data set.

For each simulated data set, we compute the empirical FDR based on MaRR indepen-
dently by dividing the number of false positives by the total number of reproducible sig-
nals. Similarly, we also compute the empirical NDR by dividing the true negatives by the 
total number of true reproducible signals.

Settings for simulation III

This simulation design is kept exactly similar to the settings for Simulation I except the 
test statistics for irreproducible signals are generated from the standard bivariate t dis-
tribution with degrees of freedom 3 assuming that the two test statistics are independ-
ent. The Standard t-distribution with degrees of freedom has heavier tails compared to 
Standard Normal distribution.

Results
Simulation results

We assess the performance of the MaRR procedure using simulated data sets designed 
to resemble the output from MS-Metabolomics experiments for the three sets of simula-
tion studies.

FDR control

Figure 3 and Additional file 1: Fig. S3 compare the FDR control for ρR = 0.45 of Simu-
lation I. The FDR results illustrate that the MaRR procedure effectively controls FDR 
across all settings of Simulation I at 5% level of significance. The FDR results across all 
choice of µR show that the variability is increasing as π1 decreases. This was expected as 
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)
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µIR

µIR

)
,
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IR 0
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.

Fig. 3  FDRs for simulations I and II based on 1000 simulated datasets in each setting. The horizontal line 
indicates the target FDR level ( α = 0.05 ) for all simulations. Labels along the x-axis describe values of π1
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the MaRR procedure performs best when the proportions of reproducible signals are 
high.

In Simulation II (Fig. 3), the FDR results demonstrate that the MaRR procedure per-
forms well in controlling the FDR in almost all situations. Here also, we observe that the 
MaRR procedure can be very conservative when the proportion of reproducible signals 
are high and r0 are low. A downward trend can be observed with increasing values of π1.

Discriminative power

We compare the discriminative power (1-NDR) for the same settings discussed above, 
where NDR is the Non-Discovery Rate (Type II error) [26]. The discriminative power of 
simulations I ( ρR = 0.45, 0.99 ) are almost 100% (Additional file 1: Figs. S4 and S5). For 
simulations II (Fig. 4), we also observe high discriminative power. The MaRR procedure 
has very high power for all simulation settings across I and II.

Bias of π1
Additional file 1: Figs. S6 and S7 show the bias of the proportions of reproducible sig-
nals, i.e., π1 . The bias values across all simulations lie within a narrow range (−0.05, 0.05) 
indicating that the MaRR procedure performs sufficiently well in estimating π1 . In Simu-
lation I, the bias is positive and monotonically increasing with the increment of π1 irre-
spective of the choices of ρR and µR . Additional figures when ρR = 0.99 are presented 
in Additional file  1: Fig.  S6. In Simulation II, the bias is negative and monotonically 
decreasing with the decrease of π1 except when r0 = 0.99 . For r0 = 0.99 , the bias behaves 
similar to Simulation I.

Simulation III results were similar to Simulation I. We presented the results in the 
Additional file 1: Figs. S8–S13. Further, we also compared the performance of the MaRR 
procedure and RSD. We find that the performance of the MaRR procedure is better 
compared to RSD. We provided the details about the simulation settings and results in 
the Additional file 1: Figs. S14 and S15.

Fig. 4  1− NDR for simulation II based on 1000 simulated datasets in each setting. Labels along the x-axis 
describe values of π1
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COPDGene data analysis

We apply the MaRR procedure to study the reproducibility of biological and technical 
replicates between and within study designs (e.g., operators, biological subjects) on 
real data sets. As described in previous section (“MS-metabolomics data design sec-
tion”), MS-Metabolomics data can have multiple layers.

We applied the MaRR procedure to each of the three MS-Metabolomics data sets. 
The reproducible signals were identified for all three layers (batch, spike-in and repli-
cates) in Tech data set; two layers (biological subjects and replicates) in BioTech data 
set and a single layer (biological replicates) in Bio data set. We declared a signal to be 
reproducible at an error controlling rate of α = 0.01 using the MaRR procedure. We 
assign a metabolite for a replicate sample pair and a sample pair for a metabolite to be 
reproducible using a threshold value of cs and cm , respectively defined in “Evaluating 
reproducibility section”, and vary these values.

The distribution of reproducible pairs and metabolites are illustrated in Additional 
file 1: Figs. S16 and 5 for the Tech data set and Additional file 1: Figs. S17 and 6 for the 
BioTech and Bio data sets, respectively.

We label a metabolite and a sample pair to be reproducible if at least 100%cs and 
100%cm of signals are reproducible across sample pairs of experiments and metabo-
lites, respectively. We provide the percentage of reproducible metabolites and sam-
ple pairs based on the threshold value of greater than the percent threshold values of 
reproducible signals for the three data sets. The results of all the three data sets are 
also summarized in Table 1. For different values of cs and cm , the entries in the table 
represent the proportion of sample pairs of replicate experiments with reproducible 
signals per sample pair a and proportion of metabolites with reproducible signals per 
metabolite, respectively. It is a more conservative approach to have higher percentage 
of threshold as it would filter higher number of metabolites or sample pairs.

Fig. 5  Histograms showing reproducible metabolites for three layers. These histograms are in percent 
scale where the x-axes denote the percent scale of reproducible metabolites for all possible sample pairs. a 
Top layer (batches): three pairs of batches. b Middle layer (spike-ins): nine pairs of spike-ins. c Bottom layer 
(technical replicates): 27 pairs of technical replicates
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Tech Data‑ Reproducibility of metabolites per sample pair

Figure  5 illustrates percentage of reproducible metabolites per sample pair in the 
x-axis. In Fig.  5, the higher percentage of reproducible metabolites per sample 
pair in the x-axis would indicate stronger reproducibility between the two samples 
(sample pairs), e.g., the percent metabolites in the last right bin indicates that all or 
almost all the metabolites are reproducible for the number of sample pair combi-
nations in the y-axis. The percentage of reproducible metabolites per sample pair 
(close to 100%) are much higher for the Operator and technical layer compared to 
the spike-in layer data (Table 1).

Table 1  Summary of reproducible metabolites per sample pair and reproducible sample pairs per 
metabolite for Tech, BioTech and Bio data sets

The columns of proportion of reproducible metabolites per sample pair > 70/80/90% indicate that proportion of sample 
pairs of replicate experiments with reproducible metabolites per sample pair greater than 70/80/90% . The columns 
of proportion of reproducible sample pairs per metabolite > 70/80/90% indicate that proportion of metabolites with 
reproducible sample pairs per metabolite greater than > 70/80/90%

Data set Percentage of reproducible 
metabolites per sample pair

Percentage of reproducible sample 
pairs per metabolite

> 70% > 80% > 90% > 70% > 80% > 90%

Tech Operator layer 100.00 100.00 0.00 82.09 82.09 82.09

Spike-in layer 88.89 11.11 0.00 81.28 81.05 80.23

Replicate layer 100.00 92.59 0.00 85.23 84.30 83.02

BioTech Biological layer 49.85 9.59 0.73 64.44 60.80 55.07

Technical layer 90.08 0.76 0.25 68.29 63.78 59.09

Bio Biological layer 98.52 92.40 76.95 88.84 84.32 76.78

Fig. 6  Histograms showing reproducible metabolites per sample pair for BioTech and Bio data sets. These 
histograms are in percent scale where the x-axes denote the percent scale of reproducible metabolites. 
Reproducible metabolites a 393 technical replicate sample pairs (BioTech), b 8515 biological replicate sample 
pairs (BioTech), and c 637,885 biological replicate sample pairs (Bio)
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Tech data‑reproducibility of sample pairs per metabolite

Additional file  1: Fig.  S16 illustrates percentage of reproducible sample pairs per 
metabolite in the x-axis. In all three layers (Additional file 1: Fig. S16a–c), the higher 
percentage would indicate strong reproducibility of a metabolite across all sample 
pairs for each of these layers. This indicates that there is high reproducibility of sam-
ple pairs per metabolite in all these three layers of technical replicates. Table 1 shows 
that the percentage of reproducible sample pairs per metabolite greater than different 
thresholds (70%, 80%, 90%) are more or less same, i.e., around 82%.

BioTech and Bio data‑reproducibility of metabolites per sample pair

Figure 6 illustrates that the reproducibility of metabolites per sample pair are higher 
for technical replicates of BioTech data set (Fig. 6a) compared to biological replicates 
of the same data set (BioTech) (Fig. 6b). Table 1 also confirms the reproducibility of 
metabolites per sample pair is higher for technical replicates compared to its biologi-
cal data set (BioTech). In BioTech data set, the percentage of reproducible metabo-
lites per sample pair greater than 70% for technical replicates is 90.08% compared to 
49.85% of biological replicates. In Fig.  6b and c, we also report that the reproduc-
ibility of metabolites per sample pair is much higher for Bio data set compared the 
biological replicates of Biotech data set. However, there are differences between the 
two technologies for BioTech and Bio data sets since the samples were not collected 
on the same subjects at the same visit for a direct comparison.

BioTech and bio data‑reproducibility of sample pairs per metabolite

Additional file  1: Fig.  S17 compares the percentage reproducible sample pairs per 
metabolite either across technical replicates (Additional file  1: Fig.  S9a) or bio-
logical replicates (Additional file  1: Fig.  S17b,  c). However, in this case, we observe 
that the percentage of reproducible sample pairs per metabolite > 70% threshold 
( = 68.29% ) for technical replicates of the BioTech data set (bottom layer) (Addi-
tional file 1: Fig. S17a) is higher than their biological replicates (BioTech data set (top 
layer)) ( = 64.44% ) (Additional file  1: Fig.  S17b) and lower than biological replicates 
( = 88.84% ) of Bio data set (Fig. S17c), (Table 1). Also, note that, the samples were not 
collected on the same subjects at the same visit for a direct comparison.

Using MaRR to compare data processing methods

In the previous sections, we only presented MaRR reproducibility results with BPCA 
imputed and quantile normalized data. Here, we also illustrate how MaRR can be 
used to compare different combinations of imputation and normalization steps based 
on the resulting reproducibility of metabolites and sample pairs: we compare four 
combinations of imputation and normalization methods: (i) BPCA and quantile (as 
above), (ii) BPCA and median, (iii) kNN and median, (iv) kNN and quantile, (v) RF 
and median, (vi) RF and quantile. The results of all the BioTech dataset are summa-
rized in Table  2. For the BioTech dataset, processing the data using RF-median or 
RF-quantile achieved the maximum reproducibility (Table 2). The additional figures 
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(Additional file 1: Figs. S18–S23) for the BioTech and Bio data sets are provided using 
the MaRR procedure to compare data processing methods in the Additional file.

Reproducibility comparisons using MaRR and RSD

We compared MaRR and RSD measurements in terms of reproducibility for the Bio-
Tech data set. The reason we chose BioTech data set since it is a combination of both 
biological and technical replicates. We examined reproducibility, in particular RSD 
measurements versus MaRR based reproducible (and irreproducible) metabolite 
index in a scatter plot (technical and biological replicates of BioTech data set using 
RF-quantile pre-processing). We assigned a metabolite to be reproducible if the per-
cent of reproducible sample pairs per metabolite is greater than a particular threshold 
value ( 75% ) (Additional file  1: Figs.  S24(a) and  S24(b) for reproducible metabolites; 
Additional file 1: Fig. S24(c) and S24(d) for irreproducible metabolites). The RSD val-
ues in the y-axis are shifted slightly higher for irreproducible metabolites compared 
to reproducible metabolites. One would expect reproducible metabolites to have rela-
tively high variability (RSD) across subjects (biological replicates) and low variability 
across replicate samples (technical replicates), which was clearly not the case. Gener-
ally, in analytical metabolomics research, the RSD is calculated across pooled Quality 
Control (QC) samples for each metabolite and those with an RSD above a pre-deter-
mined cutoff (e.g., 20–30%) are removed [5, 22, 24, 25, 42]. However, we find that the 
RSD is not an ideal predictor of identifying high quality (reproducible) metabolites 
(Additional file 1: Fig. S25 and Table S4-complementary to Fig. S24). We used a fil-
tering cutoff of 25% (horizontal black line in Additional file 1: Fig. S25) but the cut-
off does not remove any of the irreproducible metabolites. Even though it assesses 
variability across technical replicates relatively well, it fails to capture the true vari-
ability (separating the reproducible and irreproducible metabolites) across biological 

Table 2  Summary of reproducible metabolites per sample pair and reproducible sample pairs per 
metabolite for BioTech data set

The columns of proportion of reproducible metabolites per sample pair > 70/80/90% indicate that proportion of sample 
pairs of replicate experiments with reproducible metabolites per sample pair greater than > 70/80/90% . The columns 
of proportion of reproducible sample pairs per metabolite > 70/80/90% indicate that proportion of metabolites with 
reproducible sample pairs per metabolite greater than > 70/80/90%

Imputation Normalization Percentage of reproducible 
metabolites per sample pair

Percentage of reproducible 
sample pairs per metabolite

> 70% > 80% > 90% > 70% > 80% > 90%

BPCA Median Biological layer 52.27 10.68 0.75 64.69 61.22 55.56

Technical layer 90.08 0.76 0.25 68.29 63.78 59.09

Quantile Biological layer 49.85 9.59 0.73 64.44 60.80 55.07

Technical layer 90.08 0.76 0.25 68.29 63.78 59.09

KNN Median Biological layer 14.14 0.47 0.00 56.01 52.41 47.06

Technical layer 0.00 0.00 0.00 46.05 41.89 35.45

Quantile Biological layer 13.39 0.36 0.00 55.66 51.75 46.89

Technical layer 0.00 0.00 0.00 46.05 41.89 35.45

RF Median Biological layer 75.30 30.85 3.73 69.62 65.87 60.77

Technical layer 98.73 7.63 0.51 71.05 66.89 62.03

Quantile Biological layer 74.15 29.07 3.58 69.41 65.52 60.38

Technical layer 98.73 7.12 0.51 71.12 67.03 62.03
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replicates. Our MaRR procedure can detect reproducible and irreproducible metabo-
lites with greater accuracy as shown using simulations. Our findings about the predic-
tive ability of RSD in identifying reproducible and irreproducible metabolites are also 
in concordance with the findings of low and high quality metabolites (features) shown 
in another approach of filtering procedures for MS-Metabolomics data [23].

Data‑driven Reproducibility pipeline using MaRR

We argue that reproducibility methods should be data-driven and should not depend 
on a particular cutoff (or a range of cutoff, e.g., 20–30%). A data-driven pipeline is 
one which curates reproducibility to the specific requirements of a particular data 
set, rather than using predefined cutoffs. Here, we present a sequence of steps (Fig. 7) 
representing a data-driven pipeline in assessing reproducibility of MS-Metabolomics 
data. Our data-driven filtering approach consists steps for data pre-processing, iden-
tifying reproducible metabolites and sample pairs using the MaRR procedure and 
subsetting the reproducible data.

Discussion
The biggest strength of MaRR is that with very limited assumptions, it can detect the 
reproducible signals efficiently. In the simulation studies, there were situations where the 
MaRR procedure was not conservative enough even though it achieved the main pur-
pose of controlling the FDR at α = 0.05 . This is due to the lack of separation between 

Fig. 7  Data-driven reproducibility flow chart using the MaRR procedure. Flow chart of a data-driven 
reproducibility pipeline for MS-Metabolomics data. The approach is data-driven because the filtering cutoffs 
and level of significance can be specified by the user to identify reproducible metabolites and sample pairs 
prior to further downstream analysis
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the reproducible and irreproducible components. In these scenarios, the real signals 
might fall in the undetectable regions because of overlapping between the reproducible 
and irreproducible components [43]. For smaller values of π1 , the finite sample perfor-
mance deteriorates, making the detection of true signals unreliable. The powers for most 
of the situations were nearly one, meaning that all the true reproducible signals were 
discovered using the MaRR procedure. This indicates that the true reproducible signals 
identified using the MaRR procedure was high but these situations do not have inflated 
discriminative powers. Another interesting finding from the bias results was the sys-
tematic underestimation of π1 using the MaRR procedure. This suggests that the MaRR 
assumption yield a conservative estimator of π1 . In summary, FDR controls error rates 
well, has high power. The simulations confirm that the MaRR procedure performs suffi-
ciently well in most situations except for smaller values of π1 and/or when the reproduc-
ible and irreproducible components are overlapping.

We applied the MaRR procedure to measure reproducibility both within and across 
batches using technical replicates for the Tech and BioTech datasets and biological repli-
cates for the BioTech and Bio dataset. The MaRR procedure was originally developed to 
assess reproducibility of a pair of technical replicates (within labs and across labs vari-
ation) [26]. The MaRR procedure tends to favor highly expressed abundance measure-
ments. We extended the idea to pairwise combinations of multiple replicate experiments 
for both technical and biological replicate experiments. Our method does not require to 
have prior knowledge of the proportion of reproducible signals. We have shown in our 
simulation studies that our method can work well with values of proportion of repro-
ducible signals as low as 0.2 and as high as 0.99.

We compared the MaRR procedure to commonly used reproducibility method using 
the BioTech dat set. To compare the methods, we identified reproducible metabolites 
using the MaRR procedure and then computed RSD for both biological and technical 
replicates in the BioTech data set. Our results indicate that reproducibility score is not 
strongly associated with RSD. We also showed how our MaRR based data-driven filter-
ing approach has the ability to remove irreproducible metabolites and sample pairs while 
retaining reproducible metabolites and sample pairs based on simulations.

For the real data sets, we estimated the reproducible sample pairs per metabolite as 
well as reproducible metabolites per sample pair. The estimated proportion of repro-
ducible signals were considerably high. For MS-Metabolomics real data, we adopted a 
more conservative approach to identify reproducible signals, i.e., with an FDR control 
at α = 0.01 instead of α = 0.05 . In the Tech data set (Fig. 5), the reproducible metabo-
lites across all sample pairs (for operator layer and technical layer) were greater than 
70%, indicating very high reproducibility (Table  1). For the BioTech data set (Fig.  6), 
the percentage of reproducible metabolites per sample pair greater than 70% for tech-
nical replicates is much higher compared to their biological replicates. This result has 
also confirmed that there is higher reproducibility for technical replicates compared to 
their biological replicates from the same data set (BioTech). Similarly, the reproducible 
metabolites almost across all biological sample pairs (∼ 98.52%) were greater than 70% 
threshold (Table  1). This could be due to false identification of true reproducible sig-
nals as irreproducible when there is a strong biological difference for a metabolite across 
samples. In addition, to create data-dependent threshold values ( cs and cm ) in the MaRR 
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steps of the pipeline (Fig.  7), we also allow the users to visualize the histograms (e.g., 
Figs. 5 and 6) and subsequently choose the more appropriate threshold values.

In this paper, our goal was not to do a comprehensive evaluation of pre-processing 
steps, but instead to show how this measure can be used as a benchmark for compari-
son. We used the MaRR procedure to compare different pre-processing pipelines. Our 
results simultaneously provide a useful assessment of three different replicate data sets 
(Tech, BioTech and Bio) in terms of reproducibility. Furthermore, our MaRR-based 
approach also allows the users to select the filtering threshold values ( cs, cm ) for the 
identification of reproducible metabolites and sample pairs based on thorough output 
visualization checks (histograms of percent reproducible metabolites per sample pair 
and percent reproducible sample pairs per metabolite).

Conclusion
In this paper, we have developed a data-driven approach to select reproducible metabo-
lites and sample pairs as a post-processing step to performing further downstream anal-
ysis. The MaRR procedure can be applied to metabolomics studies to primarily assess 
the reproducibility of MS-Metabolomics data sets. In addition, the other potential use of 
the MaRR procedure could be flagging metabolites and samples that are less reproduc-
ible. As illustrated in this paper, the MaRR procedure can also be employed to evaluate 
different pre-processing pipelines (e.g., missing value imputation, normalization).

This research was motivated by reproducibility, which has proven to be a major obsta-
cle in the use of genomic findings to advance clinical practice [44]. We are hoping that 
this research will stimulate other groups to develop and evaluate new statistical frame-
works for reproducibility.
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