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frequency of mutations that occurred in the tumor. Although bulk sequencing data
can be used to provide that information, the frequencies are not informative enough
for identifying different clones with the same prevalence and their evolutionary rela-
tionships. On the other hand, single-cell sequencing data provides valuable informa-
tion about branching events in the evolution of a cancerous tumor. However, the tem-
poral order of mutations may be determined with ambiguities using only single-cell
data, while variant allele frequencies from bulk sequencing data can provide beneficial
information for inferring the temporal order of mutations with fewer ambiguities.

Result: In this study, a new method called Conifer (CIONal tree Inference For hEteroge-
neity of tumoR) is proposed which combines aggregated variant allele frequency from
bulk sequencing data with branching event information from single-cell sequencing
data to more accurately identify clones and their evolutionary relationships. It is proven
that the accuracy of clone identification and clonal tree inference is increased by using
Conifer compared to other existing methods on various sets of simulated data. In addi-
tion, it is discussed that the evolutionary tree provided by Conifer on real cancer data
sets is highly consistent with information in both bulk and single-cell data.

Conclusions: In this study, we have provided an accurate and robust method to
identify clones of tumor heterogeneity and their evolutionary history by combining
single-cell and bulk sequencing data.
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Background

Genetic mutation is a major cause of abnormal cell growth and cancer. Although can-
cer cells are usually derived from one mutated cell initially and therefore share mutated
genes, new mutations may happen in cancer development [1]. In other words, cancer
cells in a tumor are not homogeneous and tumor genomic heterogeneity is shown in
many studies [1-3]. A tumor consists of different clones, each of which is a set of cells
sharing a common genotype inherited from a common ancestor [4]. In order to under-
stand individual tumors heterogeneity and their phylogenetic inference which can prob-
ably be a helpful component for personalized cancer treatment, it is critical to properly
identify their clones, determine the development stage of cancer cells and identify early
single-nucleotide variants (SN'Vs) that have led to rapid cell growth [5-7].

Sequencing of bulk data that focuses on DNA of a mixture of thousands or millions
of cancerous and/or normal cells is widely used for providing a mixed signal of variant
allele frequencies (VAFs) for each somatic mutation. In order to discover the evolution-
ary history, bulk sequencing data needs deconvolution analysis [8], which often includes
two successive deduction steps. At the first step, co-occurred SNV clusters are deduced
by deconvolving the mixed signal of the bulk sample [9]. Afterward, the evolutionary
relationship between clusters is deduced by using SNV cluster frequencies [10]. How-
ever, in some methods such as PhyloWGS [11], these two inference steps are carried out
jointly to avoid SNV clusters that are phylogenetically incompatible. In most tumor het-
erogeneity analyses based on bulk sequencing data such as PyClone [9], PhyloSub [12],
Clomial [13], and AncesTree [14], it is generally supposed that SNVs with similar VAFs
belong to the same clone.

It is shown in various cases that only relying on frequencies observed in a bulk sam-
ple may not be enough to infer the evolutionary history, and taking multiple samples is
required [8]. In addition, the assumption that SN'Vs with similar frequencies belong to
the same clone may be violated, since a tumor may be composed of clones with similar
frequencies but different genotypes.

Moreover, even though low-frequency SNVs are common and can play a decisive role
in tumor diversity, the process of their prevalence discovery from bulk sequencing is not
accurate enough [15].

To achieve higher resolution for inferring evolutionary history, single-cell sequenc-
ing was introduced, which allows direct acquisition of cell genotypes without the need
to deconvolution of mixed signals [16-20], and resulted in reducing the possibility of
ignoring low-frequency SNVs. In addition, single-cell information about co-occurred
SNVs can be used to differentiate between clusters of SNVs with the same prevalence
[21].

Single-cell sequencing is well used in methods like SCITE [22], OncoNEM [23], and
SiFit [24] to infer mutational trees, though clonal frequencies are not reported in them.
Furthermore, in SiCloneFit [25], a nonparametric Bayesian mixture model based on a
Chinese Restaurant Process (CRP) is introduced to infer the clonal genotypes and their
evolution based on a finite-sites model. Although SiCloneFit has an assumption in
clonal tree inference that each node of the tree can only have up to two children (binary
tree), however the polytomies of the binary clonal tree can be inferred by removing the
branches which are unsupported by mutations in a post-processing step. On the other
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hand, Conifer can directly infer a tumor phylogeny with polytomy by the joint modeling
of bulk and single-cell sequencing data.

Despite all of its advantages, the single-cell sequencing approach is costly and error-
prone. False-positive errors occur due to the DNA amplification error, and false-negative
errors occur due to the missing of one or both alleles (dropout). Furthermore, another
type of noise may occur in data as a result of accidental sequencing of two or more cells.

Considering the advantages and disadvantages of bulk and single-cell sequencing data,
the idea of utilizing both data types is used in several studies, to reduce inaccuracies
in each approach and consequently achieve more accurate clonal tree inference. As an
example of the benefits of this combination, the temporal order of mutations can be
determined using decreasing VAFs from bulk sequencing data with fewer ambiguities
than using only single-cell data. On the other hand, branching events in the evolutionary
tree can be inferred more accurately with single-cell data.

ddClone [26] analyzes intra-tumor heterogeneity using single-cell and bulk sequencing
data and proposes a probabilistic model based on the nonparametric Bayesian method
to deduce tumor clones. The prior of the Bayesian method is obtained from single-
cell data, and the likelihood is obtained from bulk sequencing data. However, ddClone
does not infer tumor phylogeny and is not sufficient for understanding cancer tumor
evolution.

B-SCITE [21] is the first computational approach that infers tumor phylogeny from
combined single-cell and bulk sequencing data. This probabilistic method searches
for tumor phylogenetic trees to maximize the joint likelihood of the two data types. In
this method, tree search is carried out with a customized Markov chain Monte Carlo
(MCMC) algorithm over the space of labeled trees [21]. B-SCITE is mainly designed for
inferring mutational trees and straightforward clonal tree inference is not provided.

In addition, PhISCS [27] is a combinatorial approach that uses integer linear program-
ming for mutational tree inference based on single-cell and bulk sequencing data. How-
ever, PhISCS does not infer tumor subclones and their evolutionary relationship directly.

In this study, we have proposed a new method Conifer, which utilizes both single-cell
and bulk sequencing data to infer tumor clones and their evolutionary relationship. In
contrast to SiCloneFit, there is no limitation on the depth and number of branches of
the inferred tree of Conifer. In Conifer single-cell sequencing data is used to resolve the
challenge of identifying similar prevalent clones in the tumor and to resolve ambigui-
ties in the phylogeny inference. On the other hand, Conifer uses bulk sequencing data
to reduce the negative effects of sampling biases and false-negative mutations. Based on
our knowledge, Conifer is the first method that introduces the tumor clonal tree using
both single-cell and bulk sequencing data.

As clones and their evolutionary tree are not predefined, Conifer provides a Bayes-
ian nonparametric model and a tree-structure Chinese Restaurant Process (CRP) is used
as its prior. To approximate the posterior of the Bayesian model, the particular MCMC
algorithm that Conifer performs is a Collapsed Gibbs Sampling in which some of the
latent variables are marginalized out to speed up the coverage of the chain. As a result,
Conifer introduces a clonal tree in which each node represents the clonal genotypes
that have occurred together and are shared between different cells. It is noteworthy that
Conifer employs the infinite sites assumption (ISA) which implies that mutations persist
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once occurred. In nodes closer to the tree root, corresponding clonal genotypes are
shared between a larger number of cells, while moving away from the root and towards
the leaves, clones become more specialized to particular cells in those paths.

We evaluated Conifer performance in clone identification comprehensively on various
simulated datasets with different numbers of clones, bulk and single-cell samples, etc.
and compared it with the best methods such as B-SCITE [21] and ddClone [26] in the
field, based on V-measure [28] and adjusted rand score [29] criteria. Moreover, Coni-
fer introduces the clonal evolutionary trees on simulated data which are compared with
methods like B-SCITE [21], OncoNEM [23], and PhyloWGS [11] based on co-cluster-
ing accuracy and ancestor—descendant accuracy criteria (the definition of these criteria
are given in [21]). In conclusion, Conifer has higher accuracy in clone identification and
phylogeny inference than other existing methods in most cases. In addition, Conifer is
more evaluated on real data sets of cancer by comparing its evolutionary tree with other
methods. By deep investigation, it is shown that Conifer evolutionary tree is completely
consistent with VAFs of mutations in bulk data and also co-occurrence of mutations in

single-cell data.

Results and discussion

Conifer uses mutation co-occurrence information in single-cell data for inferring tree
branching alongside the VAFs in bulk sequencing data for identifying clones and their
temporal ordering. In Fig. 1, it is shown schematically how two data types are connected
to infer the clonal tree. As it is shown in Fig. 1a, single-cell data is represented as a matrix
with rows and columns showing SN'Vs and cells, respectively, and each element indicat-
ing the presence or absence of corresponding SNV in a cell. Moreover, bulk sequencing
data is considered as a matrix in which each element presents VAFs related to SNV in
different bulk sequencing samples (Fig. 1b).

In the Conifer method, it is assumed that SNVs with similar VAFs in different bulk
samples most likely belong to a common cluster, unless there is no single-cell showing
two SNVs have co-occurred. All co-occurred patterns in the single-cell profile are con-
sidered as the prior knowledge for mutation clustering. In Fig. 1c, the co-occurred pat-
terns are shown as dashed rectangles. Using these patterns, the clonal tree with attached
single-cell samples can be inferred, with the mutations of each pattern presented in each
of its path (Fig. 1d). Clustering technique and phylogenetic inference are described in
detail in the “Material and method” section.

Performance on simulated data
Since the clonal tree is not known for data of real cancer tumors, a complete set of data
is simulated and used to evaluate the performance of Conifer. To simulate data, the idea
of ddClone [26] and B-SCITE [21] studies are used (see Additional file 1 for details). The
simulated data covers various cell counts (25,50,100 and 500), numbers of clones (10, 15,
20, and 40), and different types of error in single-cell data. The root node of each clonal
tree represents a healthy cell population, and SNVs are randomly distributed between
other nodes.

For evaluating the accuracy of the Conifer inferred clonal tree, it is compared with
B-SCITE [21], OncoNEM [23], and PhyloWGS [11] according to the co-clustering
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Fig. 1 Schematic representation of combining single-cell and bulk sequencing data for clonal tree inference
in Conifer method, a n x m matrix in which each row and column represents SNVs and cell, respectively.
White elements show no mutation and blue ones show mutation has occurred. 1 and 0 with the red font
show false-positive and false-negative (drop-out events), respectively, b n x b matrix that its rows are SNVs
and its columns are bulk samples and Bj; is variant allele frequency in bulk samples, ¢ co-occurred patterns

of SNVs in single-cell profiles which are determined by dashed rectangles, d the inferred clonal tree and cell
attachment

accuracy measure. B-SCITE uses both single-cell and bulk sequencing data while Onco-
NEM and PhyloWGS use only single-cell and only bulk sequencing data, respectively.

In addition, the ancestor—descendant accuracy measure is used for comparing the
Conifer tree with B-SCITE in the presence of copy number variation (CNV). The plots
are generated by ggplot2 [30] to illustrate the accuracy of the methods on different
criteria.

Additionally, for evaluating the accuracy of clustering, the V-measure [28] and the
adjusted rand score [29] criteria are used which are implemented in scikit-learn Python
package 0.19.2. Their corresponding scores are between 0 and 1, which 0 represents ran-
dom labeling independent of the number of clusters and 1 shows the accurate clustering.

In order to measure the method sensitivity respecting errors in single-cell sequencing
data, different types of errors such as assortment bias and doublet rate are examined
and explained in Additional file 1. Assortment bias error is indicated by the parame-
ter A, large values of which present less assortment bias and equivalently less difference
between single-cell and bulk genotype prevalence.
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Clonal tree accuracy

Comparison of Conifer with B-SCITE and PhyloWGS methods using the co-cluster-
ing accuracy measure is shown in Figs. 2 and 3 for 100 simulated clonal trees with
10 clones and 25, 50, and 100 numbers of cells and 1 and 2 bulk sequencing samples
with coverage of 10,000. Simulated single-cell data which is used by both Conifer and
B-SCITE is generated with the false-positive rate of 107>, the false-negative rate of
0.2, the missing rate of 0.05, and the doublet rate of 0.1 with various ranges of val-
ues for A (A=1, 5, 10, and 1000), while PhyloWGS method uses only bulk sequenc-
ing data. Instead of only mutations which are common between single-cell and bulk
sequencing data, all mutations in bulk data are considered in this comparison. As it
is shown in Fig. 2 for one bulk sample and Fig. 3 for two bulk samples, although the
performance of all three methods is improved by increasing the number of bulk sam-
ples, Conifer shows the highest accuracy for different single-cell sequencing data and
different numbers of bulk samples. In addition, in both Conifer and B-SCITE meth-
ods, for a specific number of bulk samples, the accuracy is increased by increasing
the number of single cells. Also, the accuracy of B-SCITE is decreased by decreasing
the value of A while Conifer is almost stable for different values of A. Additionally,
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Fig. 2 Comparison of co-clustering accuracy in B-SCITE, Conifer, and PhyloWGS models for 100 clonal trees
simulated with 10 clones and 50 mutations and for A4=1, 5, 10 and 1000. For single-cell data 25, 50, and 100
genotypes are extracted for each clonal tree. There are two bulk sequencing samples with a coverage of
10,000. The following errors are added to the single-cell data: the false-positive rate of 107, the false-negative
rate of 0.2, the missing rate of 0.05, and the doublet rate of 0.1
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Fig. 3 Comparison of co-clustering accuracy in B-SCITE, Conifer, and PhyloWGS models for 100 clonal trees
simulated with 10 clones and 50 mutations. For =1, 5, 10 and 1000. For single-cell data 25, 50, and 100
genotypes are extracted for each clonal tree. The number of bulk sequencing samples is 2 with a coverage of
10,000. The following errors are added to the single-cell data: the false-positive rate of 107, the false-negative
rate of 0.2, the missing rate of 0.05, and the doublet rate of 0.1

it should be noted that although the doublet rate is not considered in the Conifer
model, it is accurate with doublet rate of 0.1 according to the results shown in Fig. 2.

The above comparison is repeated between Conifer and OncoNEM and shown in
Fig. 4. As OncoNEM uses only single-cell data, only SN'Vs which are common between
single-cell and bulk sequencing data are considered in Conifer to make the compari-
son meaningful. Conifer is run with one bulk sequencing sample and shows better
accuracy than OncoNEM for various ranges of values for A. Moreover, improved per-
formance of OncoNEM for larger values of A together with the high accuracy of Coni-
fer even for small values of A is evidence for the effectiveness of Conifer’s approach
in combining single-cell and bulk sequencing data, as large values of A indicate less
difference between single-cell and bulk genotype frequencies.

The presence of CNV

Although Conifer assumes that SNVs are obtained from the copy-number-neutral
regions and the VAFs are not affected by copy number variations, it is still accurate
regarding the alterations of CNV, on account of the fact that single-cell sequencing
data is also used for clone identification and tree inference. VAF alterations by CNV
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Fig. 4 Comparison of co-clustering accuracy in OncoNEM and Conifer models for 100 clonal trees simulated
with 20 clones and 100 mutations and for A=1, 5, 10 and 1000. For single-cell data 25, 50, and 100 genotypes
are extracted for each clonal tree. There is one bulk sequencing sample with a coverage of 10,000. The
following errors are added to the single-cell data: the false-positive rate of 107, the false-negative rate of 0.2,
the missing rate of 0.05, and the doublet rate of 0.1

can result in the incorrect inference of mutation clustering in models that only rely on
VAFs similarities in bulk sequencing data.

Comparisons of the ancestor—descendant accuracy measure for Conifer and
B-SCITE on two simulated data sets with 30% and 50% of CNV are shown in Addi-
tional file 1: Figs. S1 and S2, respectively. It can be concluded that the accuracy of
Conifer is not affected significantly by changing the proportion of CNVs and it is
more accurate than B-SCITE for various numbers of cells in both data sets.

Clone identification accuracy

Accuracy of Conifer, ddClone, and B-SCITE methods in SNV clustering is evaluated
and compared in Additional file 1: Figs. S3 and S4, for 100 clonal trees simulated with
10, 20, and 40 clones, 100 SN'Vs, one bulk sequencing sample with coverage of 10,000,
and 50 single-cell genotypes. Simulated single-cell data is generated with the follow-
ing errors: the false-positive rate of 107>, the false-negative rate of 0.2, the missing
rate of 0.05, and the doublet rate of 0.1. In this comparison, the mutations that are
not present in single-cell sequencing data are ignored. In Additional file 1: Fig. S3,
Conifer has outperformed both methods in various numbers of clones and various
ranges of values for A according to adjusted rand score measure. In Additional file 1:
Fig. S4, both Conifer and B-SCITE perform very well in detecting the correct clones
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according to the V-measure, while ddClone presents lower accuracy. As it can be con-
cluded from Additional file 1: Fig. S4, the results of all three methods are not highly
sensitive to different values of \.

Large false-positive rates

The performance of Conifer is more evaluated for larger values of false-positive rates.
The inferred trees of Conifer, B-SCITE, and OncoNEM are compared in Additional
file 1: Fig. S5 for the false-positive rate of 1%. With this relatively large false-positive rate
the co-clustering accuracy is slightly decreased for all three methods, however, Conifer’s
accuracy is still in an acceptable range. By increasing the value of A the accuracy of all
methods improves and Conifer has the largest accuracy among them for A=1000. In
addition, the clustering accuracy is compared between Conifer and ddClone using the
V-measure accuracy for larger values of false-positive rate of 5% and 10%. In Additional
file 1: Fig. S6 it is shown that although the V-measure accuracy is moderately decreased
by larger values of false-positive rates, Conifer is still accurate enough and outperforms
ddClone. However, this accuracy decrease is because false-positive errors can violate the
assumed co-occurrence of mutations which is used by Conifer as prior knowledge in
clustering of SN'Vs based on their VAFs.

Performance on real data

Colorectal cancer

Conifer performance is further evaluated on real data of a patient (CRC2) with colorec-
tal cancer which is provided in the study of Leung et al. [31]. It is noteworthy that in this
dataset there are two bulk sequencing data of primary and metastatic tumors together
with single-cell sequencing data.

For CRC2 patient, 182 cells are sequenced from the primary colorectal and liver met-
astatic tumors. The number of SNVs reported by the original study is 36. Genotypes
reported as binary values indicate the presence or absence of mutation in an SNV locus.
In this study, cells with no mutation are ignored and 25 SN'Vs and 86 cells are considered
for CRC2 patient.

The clonal tree inferred by Conifer for this dataset is shown in Fig. 5. Each branch in
the tree represents the mutation profile of one or a set of cells, and each clone is a set of
mutations that have occurred in a branch and their VAF frequencies are similar in differ-
ent bulk sequencing samples.

Conifer method introduces a tree with 7 nodes (clones) so that the root node is for the
non-mutant genotype (C1) and two nodes C2 and C3 are its descendants. C2 is a clus-
ter that contains somatic mutations (SPEN_1, NR3C2, EPHB6, ATR). It is different from
primary and metastatic tumor clones and has a separate branch in the clonal tree. This
clone and its separated branch are also mentioned in the original study of Leung et al.
[31]. C3 is the first evolved clone from healthy cells and has nine mutations, including
tp53 which is a tumor suppressor gene. The cell population CP3 is attached to C3 clonal
genotype.

In the evolutionary process after formation of the C3 clone and before tumor metas-
tasis, the C4 clone is formed with mutations (CHN1, ATP7B, APC: 1, LRP1B) and CP4
cell population. This clone is introduced as a result of VAFs similarity and mutation
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Fig. 5 Clonal evolution tree inferred by Conifer for CRC2 patient tumor data. For each SNV, two numbers are
reported: VAFs in colorectal tumor bulk sample and metastasis liver bulk sample

occurrence in one single-cell profile. In the original study of Leung et al. [31], SCITE
method [22] is used to infer the evolutionary tree of mutation, and two distinct branches
for metastatic cells are reported based on single-cell sequencing data, assuming that the
mutations are not missed during evolution.

Based on both bulk and single-cell sequencing data, Conifer method shows that a
group of cells of the primary clone C4 has migrated to the liver, and this migration has
occurred only once. Conifer concludes that the migrated cells are subjected to the FUS
mutation in the liver, creating the clone C5 and then evolved into two separate branches.
The reason that Conifer represents the FUS mutation as a separate clone is although the
FUS mutation should belong to the clone C6 considering neighboring mutations with
close frequencies based on single-cell data, as the VAF is not similar to other mutations
in that clone (NR4A3, HELZ, TSHZ3), a separate cluster is created. As it is shown in
Fig. 5, Conifer concludes that in addition to the clone C6, the clone C5 is also the ances-
tor of the clone C7, which can be explained by the false positives that occurred in the
profiles of eight cells. In fact, it indicates the possibility of co-occurrence of FUS muta-
tion with mutations of clone C7 (SPEN_2, F8, LAMB4).

Comparison of the Conifer inferred tree and the clonal tree introduced in SiCloneFit
[25], which is based on only single-cell sequencing data, shows some worth-mentioning
differences. In SiCloneFit [25] two “IL2IR” and “APC: 2” mutations are co-occurred in
the first clone of the primary tumor. On the contrary, Conifer concludes that they belong
to the second clone of the primary tumor according to the similarity of those two muta-
tions VAFs. Additionally, the clonal tree of SiCloneFit [25] for patient CRC2 represents
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polyclonal seeding. In other words, it shows the existence of two distinct branches for
metastasis. In fact, in SiCloneFit it is concluded that two distinct groups of cells with
different mutations have migrated from the primary clone and formed two independ-
ent metastatic clones, and the FUS mutation has occurred in both of them indepen-
dently and during two different evolutionary processes. However, Conifer inferred tree
is more likely to be consistent with VAFs similarity as the VAF value of FUS mutation in
the metastatic sample (29.1) is approximately equal to the total mean VAF value of C6
(2.36) and C7 (27.56). A recent study that proposes a method named SCARLET [32] also
shows monoclonal seeding by investigating changes in copy number variation of single-
cell sequencing data, which corroborates the Conifer’s tree.

Triple-negative breast cancer (TNBC)

The performance of Conifer is more evaluated on real data by analyzing the triple-neg-
ative breast cancer in the study of Wang et al. [33]. Single-cell profiles of 16 cells were
provided after performing copy number profiling and exome sequencing. Clonal trees
inferred by the original study, PhISCS [27], and Conifer for selected 18 mutations (with
coverage of 10°), are shown in Fig. 6. Conifer provides clonal tree based on bulk and sin-
gle-cell data while clonal evolution in the original study is inferred based on single-cell
exome and copy number data, and PhISCS has taken the matrix of single-cell sequenc-
ing data and the estimated noise rates of SCS experiment as its inputs (the clonal tree is
reported in the study of Karpov et al. [34]).

Mutations which are presented in the linear part of all trees (before branching) are
quite similar to each other except for the mutation ECM1 which is discussed in the
following.

As it is shown in Fig. 6¢c, Conifer introduces 4 different clones C1, C2, C3, and C4
for those mutations which all belong to clone C1 in the original study. This difference is

NOTCH2, AKAPY
CHD6, MAP3K4,
JAKI1, NOTCH3,
SETBP1, AFF4,
NTRKI, MAP2K7,
ECMI

\‘OTCH?

TGFB
(HRM‘ PPP2RIA -
SYNE2
AURKA
PPP2RIA ‘ @
S\'\E
‘ ,,,,,
T 16

Fig. 6 Clonal tree inference for a patient with triple-negative breast cancer, a Clonal tree Inferred in the
original study [33] based on single-cell exome and copy number data, b Clonal tree Inferred by PhISCS based

on single-cell data, ¢ Clonal tree inferred by Conifer based on bulk and single-cell data
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because the mutations in the clone C1 of the original study have different VAFs and as
Conifer uses bulk sequencing VAFs together with single-cell data, it proposes different
clustering which is more consistent with mutations VAFs similarity.

In addition, clones of the mutations SETBP1 with the VAF value of 35.3% and
NOTCH?2 with the VAF value of 42.2% are different between Conifer and PhISCS. In
PhISCS, they belong to clones C1 and C2, respectively while in Conifer they are clus-
tered oppositely. In other words, in the Conifer tree, the NOTCH2 mutation belongs
to the clone C1 with the mean VAF value of 39.05% and the SETBP1 mutation belongs
to the clone C2 with the mean VAF value of 35.7%. Moreover, in contrast to PhISCS in
which the mutation AFF4 with the VAF value of 35.4% belongs to the clone C3 (which
also contains the mutation NTRK1 with the VAF value of 26.1%), Conifer has put it in
the same clone of the mutations SETBP1 and NOTCH3 with the VAF values of 35.3%
and 36%, respectively which is more consistent with similarity of VAFs. The difference
in placement of the MAP2K7 mutation between Conifer and PhISCS is also worth men-
tioning. Conifer puts the mutation MAP2K7 with the VAF value of 13.4% in a distinct
clone C4 while in PhISCS tree it is in the same clone of the mutations NOTCH2 and
NOTCH3 with VAF values of 42.2% and 36% which are significantly different with VAF
value of the mutation MAP2K7 and seems to be inconsistent with VAF similarity.

Single-cell co-occurrence frequencies of the mutation ECM1 are not similar to muta-
tions of clone C5 (TGFB2, CHRMb5), therefore ECM1 and C5 (TGFB2, CHRMb5) are
placed in different branches in Conifer. On the other hand, the mutation ECM1 is similar
to mutations in clones C6 and C8 regarding single-cell co-occurrence frequencies and
consequently, Conifer introduces the clone C7 (containing the mutation ECM1) as the
ancestor of clones C6 and C8. The placement of this mutation clearly shows how Conifer
relies on VAFs similarity data for identifying clones and simultaneously uses single-cell
data for finding the most appropriate place for clones in the tree.

Finally, mutations in leaf clones of the original study tree (clones C2, C3, and C4) are
quite similar to mutations in leaf clones of the Conifer tree (clones C5, C6, and C8) and
slightly different from the PhISCS tree in which if clone pairs (C4, C5), (C7, C8) and (C9,
C10) are formed according to VAF similarity and then clones of each pair are merged,
the resulted clones will be equivalent to clones C2, C3 and C4 in the original study tree,

respectively.

Conclusion

In this study, a new reliable and effective method named Conifer is introduced for
inferring tumor clonal tree by combining single-cell and bulk sequencing data. Coni-
fer provides a generative nonparametric model for the identification of clones and their
evolutionary relationship based on single-cell and bulk sequencing data by considering
infinite site assumption (ISA).

Conifer method has the distinctive feature of simultaneously identifying both clones
and phylogenetic tree. Each tree branch contains mutations of one or more cells, and
their common clones are obtained by their VAFs similarity in different bulk sequencing
samples. In the Conifer inferred tree, clones with genotypes that are common in more
cells are closer to the root.
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In order to evaluate the performance of Conifer, comprehensive sets of single-cell and
bulk sequencing data are simulated with varying numbers of SNVs, cells, bulk samples,
and clones. Additionally, a wide range of error rates, assortment biases, and doublets are
considered. By studying the simulated datasets, it is shown that Conifer is more accurate
than other existing methods on different criteria for evaluation of clone identification
and clonal evolutionary tree. For assessing Conifer performance on real datasets, data of
a patient with colorectal cancer is used. In this investigation, Conifer provides the geno-
type of clones, cell population, and clonal tree by considering combined single-cell and
bulk sequencing data of the primary and metastatic tumors. In the obtained clonal tree,
the evolutionary stage in which the metastasis has occurred is clearly identified.

Additionally, the performance of Conifer is assessed on real data of a patient with
triple-negative breast cancer and it is shown that Conifer inferred tree is completely
consistent with VAFs and co-occurrence of mutations in bulk and single-cell data,
respectively.

In conclusion, Conifer provides a more accurate clonal tree of tumor heterogeneity
comparing to other existing methods. It is achieved by combining single-cell and bulk
sequencing data, the former of which is used for resolving the challenge of identifying
similar prevalent clones that co-occur in the tumor and, resolving the ambiguities of
phylogeny inference, while the latter is used to reduce the effects of single-cell sequenc-
ing errors such as false-negative rates and sampling biases.

Material and method

Conifer aims to introduce a rooted clonal tree T' with s nodes which are labeled as
N(T) = {99, 1, . .., Us}, by using single-cell mutation profiles and VAFs of different bulk
sequencing samples. Conifer provides a Bayesian nonparametric model for inferring
clonal trees without any knowledge of clones or their evolutionary tree. In the Bayes-
ian nonparametric model, the posterior distribution on infinite collections of tree hier-
archies and clones must be found. The inference of posterior distribution is performed
by the MCMC algorithm for approximating distributions over trees, clones, and SNVs
allocations.

Two main steps of the algorithm are sampling path assignments and sampling level
allocations, which are repeated successively for a sufficient number of iterations so that
the Markov chain converges to the stationary distribution. These two steps are explained
in this section.

The nested CRP introduced in the study of Blei et al. [35] is used as a prior of the
Bayesian nonparametric model provided by Conifer. In addition, the nested CRP model
is extended by Conifer in such a way that instead of ordinary CRP, distance-dependent
CRP [36] is used for level allocations. In order to review the main components of Coni-
fer, they are briefly explained below.

Nested CRP

It is a process for providing a prior on tree topologies without any limitation on its width
and depth. To understand nested CRP, the Chinese Restaurant Process (CRP) should be
defined first. The CRP is a stochastic process for introducing the distribution of cus-
tomers, which sequentially enter a restaurant with infinite tables and sit at a table. The
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probability of sitting at a table is proportional to the number of customers who have
already sat at that table. Customers can also sit at a new table with probability propor-
tional to the model parameter y. The formed sitting plans represent customer clustering.
For showing the formulation of CRP, the notation in the study of Blei et al. [36] is used.
The table assignment for customer i is ¢;, and at the time of customer i’s entrance, K
tables are occupied by customers 1 to i — 1. Assume #y is the number of customers sit-
ting at table k, then the ¢; is drawn as Eq. (1).

ng for k<K
p(ci = k|C1:(i—1)» 7/) X { yk ;0;/- k ; K+1 (1)

The nested CRP is an extended CRP in which instead of having only one restaurant, it
is assumed that there is an infinite number of Chinese restaurants with an infinite num-
ber of tables. A restaurant is selected as the root, on each table of which, there is a card
with the name of the next restaurant, to which those sitting on that table should go the
next night. In fact, as each restaurant is referred to only once, so the relations between
different restaurants form a tree structure. Therefore, the nested CRP provides a prior
on tree topologies and each node of the tree provides a CRP over its descendant.

Distance-dependent CRP

This process is a different representation of CRP in such a way that instead of joining
different tables, customers join each other. Distance-dependent CRP [36] implies that
if two customers have access to each other through a series of customer connections,
then they are sitting at the same table. Therefore, the customers’ seating assignment
depends on the distances between them. For representing customer connections, a
graph is defined in which nodes and edges represent customers and their connections,
respectively. In other words, if z; is the index of a customer joining the customer i, then
the binary (i, z;) is the directional graph edge. The clusters are defined according to con-
nected sub-graphs in this similarity graph. Let £ and f be the distance measurements
between customers and the decay function, respectively. The customer assignments are
drawn by distance-dependent CRP as Eq. (2).

i fleg) if i)
p(zl—jlt,n)oc{n if i=j (2)
The range of i and j is from 1 to the number of customers, and 7 is the model param-

eter that controls the self-loop in the connectivity graph. Additionally, the induced table
assignment is denoted by /(z).

Input data
Single-cell data is presented by a n x m matrix M in which each row and column rep-
resents SNV and cell, respectively, and its elements with a value of zero show that no
mutation has occurred in the corresponding position, while the value of one means a
mutation has occurred.

In addition, bulk data is presented by a n x b matrix B that its rows are SN'Vs and its
columns are bulk samples, and each element Bj; is a variant allele frequency that corre-
sponds to the ith SNV in the jth bulk sample.
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Sampling path

At the first iteration, Conifer uses nested CRP for generating a tree path in such a way
that each cell is considered as a customer. To represent each single-cell i, w, is defined as
a set of SNVs with the value of one in that cell. The process of generating path with
nested CRP is as follows: at the first step (the first night in nested CRP) the root node 9
does not have any child, therefore for wy (first customer) it generates node ; with the
probability of one. This process repeats for k steps (nights) and generates k levels which
k is a random number limited to the size of wi. The path corresponding to w1y is labeled
by ¢;. For generating the path of the next cells (w; with d > 1), there are two options;

Y

generating a node as a new child of the root node 9 with probability of JFa=T (y is the

model parameter), or choosing child 9; of the root node ¥ with probability of yJ|:Z|—1 (|nj|

is the number of cells that have chosen 1 so far) to go through. After processing each w,
and generating its corresponding path c,, its mutations are assigned to nodes of the path
¢, randomly. The probability of the generated tree is calculated by multiplying the prob-
abilities of all paths and is used as the prior probability of the Bayesian model.

For the sampling path step of the next iterations, Conifer removes the correspond-
ing path of each w,; with its mutations from the tree and deletes possible empty nodes.
Afterward, the removed path is added to the tree with the same procedure explained
above (except the random assignment of mutations).

In addition, for those SN'Vs which are not present in any single cell, Conifer adds extra
sets with one mutation and follows the same procedure for generating their path.

In order to make the sampling path clear, an example with defined inputs as single-cell
mutation matrix M and bulk data matrix B is illustrated in Fig. 7. In this figure
w1 = {M1, My, M3, My, Ms} is defined as a set of SN'Vs with the value of one in the first
cell (d = 1) and wq, w3 and wy are defined for other cells similarly. In Fig. 7b it is shown
that the first path of the tree corresponding to w; is generated with four levels and node
labels are {9, U1, 92, ¥3}. In Fig. 7c, the generated path for wy is shown. For generating
this path, wy is first assigned to the node ©¥; with the probability of ﬁ and then, instead
of assigning it to node 3, a new node ¥4 is generated with the probability of # Gener-
ating new nodes continues up to level kK = 4. The resulted tree after generating paths for
ws and w4 is shown in Fig. 7d. When the initial tree is generated, mutations of each w,
are assigned to the nodes of their corresponding paths randomly as shown in Fig. 7e.

Sampling level

Conifer clusters mutations for each path based on their VAFs similarity in different
bulk sequencing samples. The possibility of having two distinct clones with the same
mean value of VAFs makes their mutations clustering ambiguous. Considering the co-
occurrence patterns of these mutations in single-cell sequencing data with their VAFs
similarity is helpful to tackle this ambiguity. Therefore, Conifer performs sampling level
with distance-dependent CRP instead of ordinary CRP of study Blei et al. [35] to con-
sider the co-occurrence frequency of mutations as the distance between them. In other
words, patterns of joining mutations resulted from distance-dependent CRP is the prior
of Bayesian model which is based on single-cell data, and likelihoods of these patterns
are computed by connectivity strength between clusters based on the VAFs of mutations
in different bulk samples. Moreover, the posterior samples of SN'Vs level allocations for
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Fig. 7 A schematic example showing sampling steps of tree inference by Conifer, a the variables ww

w3 and wy are defined for cells 1 to 4 which are sets of SNVs with the value of one in corresponding cells.
Matrices A and B show the single-cell data and VAFs of SNVs in different bulk samples, respectively, b

the generated path ¢; corresponding to wiwith node labels of {#, #1, 9>, ¥3}, € the generated path ¢,
corresponding to w; with node labels of {, ¥, ¥4, 95}, d the generated paths ¢3 and ¢4 corresponding to
w3 and wy with node labels of {99, ¥, 7} and {o, ¥g, 99}, respectively, e initial tree with random mutation
assignment for each w4 to nodes of their corresponding paths, f result of sampling level for path ¢y, g result
of sampling level for path ¢, h result of sampling level for last two paths ¢3 and ¢4, i final tree after successive
iterations of sampling path and sampling level

Gibbs sampler are summarized by the Maximum Posterior Expected Adjusted Rand
(MPEAR) method [37]. Also, nodes are ordered according to the weighted average of
their mean VAF value and mean value of the number of SN'Vs occurrence in a level (ISA
assumption), so that nodes with the higher average mean value are placed in lower levels.

In the example of Fig. 7, the result of sampling level for path c; is shown in Fig. 7f in which
two clusters with mutations {M, Mo, M3} and {M4, M5} are generated and node 93 with no
mutation is removed. Then, clustering is performed for mutations {M1, M2, M3, Mg, M1o}
in nodes 91,04 and 95 in the path ¢y and the node 5 is removed and the resulted tree is
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shown in Fig. 7g. Result of sampling level for last two paths c3 and c4 is shown in Fig. 7h in
which nodes ©7 and 9 are removed as there is no mutation assigned to them. As it is shown
in Fig. 7h, at the end of the sampling level, two nodes 9 and 1 present same genotype and
will be merged together in the sampling path of the next iteration. Sampling path and sam-
pling level steps are performed iteratively resulting in the final tree which is shown in Fig. 7i.

To explain how the co-occurrence frequency of mutations is calculated to be used in dis-
tance-dependent CRP, a distinct path ¢, is considered. The co-occurrence frequency of all
pairs of SN'Vs in the path ¢, is defined by a n¢, x n, matrix £., which n, is the number of
SNVs in the path c¢;. Each element of £, is calculated by the number of cells that both SN'Vs
have occurred in divided by the total number of cells in single-cell matrix M.

To cluster SN'Vs based on the similarity of VAFs, a n., x n., connectivity matrix V', is
calculated for each distinct path ¢, in the tree. Each element of V', is the Euclidean distance
of VAFs for the corresponding SNV pair in the path.

As an example, the calculation of the co-occurrence frequency matrix £, and the connec-

tivity matrix V¢, for the sample inputs of Fig. 7 is shown in Fig. 8.

Formulation
Using the notation in the study of Baldassano et al. [38] for the connectivity clustering

model, Conifer’s generative model formulation is described as follows:

¢y ~ nCRP(y,w;) Nested CRP (Sampling path) (3)

Z¢;, ~ ddCRP(n,f,tc,;, Ve,) Distance - dependent CRP (Sampling level) (4)

b s
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Fig. 8 a A schematic example showing a clonal tree, b calculation of co-occurrence frequency of mutations
tc, for path c;in the clonal tree, ¢ calculation of connectivity matrix V, for path ¢;in the clonal tree
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Ve,ij ~ Normal (Al(%d%l(%d)j, 012<26d>i,l(z0d>j) (5)
Al (sz)i'l(sz)/, alz(’fcd),-’l (ch),- ~ Normal = Inverse = X2 (MO, o 0—02, Uo) (6)

exp (—te,ij + a)
1+ exp(—tcd,ij + a))

fi = ( (7)

In this model w, is defined as a set of SN'Vs with the value of one in cell d(d = 1tom)
and ¢ is its corresponding path generated by nested CRP with a parameter y following
Gamma distribution. 2z, is a vector with the size of the number of mutations in the path
¢4 which is generated by distance-dependent CRP. It defines the mutation links for all
mutations in the path c;. Also, l(zC d) is the level assignment derived from the z,, for
each mutation in the path ¢,.

Moreover, 1 is the model parameter following Gamma distribution and controls the
self-loop in the connectivity graph. The decay function is represented by f and the
hyper-parameter a. The variable £., denotes the co-occurrence frequency matrix of all
SNV pairs in the path c,. In addition, A denotes the connectivity strength of two clusters
l (zc d)t and l(zc d)}, and o2 is their connectivity variance. A and o2 follow the

Normal — Inverse — x? distribution function with scalar prior mean and precision of
(o, ko) and (602, vo), respectively.

Conifer probabilistic graphical model (Additional file 1: Fig. S7) and the table of nota-
tion reference (Additional file 1: Table S1) are provided in Additional file 1.

Inference

Clonal tree of the tumor heterogeneity is found by posterior distribution inference on
the path and level assignment of mutations from single-cell and bulk sequencing data,
which is shown by p(cg,zc,|v,n.f tc;s Vg wa). This posterior is approximated with
Collapsed Gibbs sampling by iteratively performing sampling paths and sampling level
assignments.

(1) Sampling path:

pleale_a,w,z,v,n) x p(cale_a, v)p(wale, w_q,2,1) (8)

In Eq. (8) which represents a Bayesian model, ¢_,; all paths existing in the tree
after removing the mutations in the path corresponding to the cell d. The term
p(wdlc, W_g4,%, r]) represents the probability that w; has created a specific path,
and p(cd|c,d, y) is the probability of prior which is based on the nested CRP and
can be calculated by Eq. (1). The computational details are provided in Additional
file 1.

(2) Sampling level assignments:
Conifer performs sampling on the mutation links z; as follows:
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p((ch)EneW)l(ch)_i’cd’ Ve n,f,tcd) 10

PPt Vet (e 0 ) e

In the Bayesian model of Eq. (9), (zc . )l. denotes a link to mutation i and (zc d) _, is the vec-

tor of mutation links from which (zc d). is removed. For considering different choices for

(new) !

sampling, the notation (zc d) is used to denote a new link to mutation i after removing
(new)

i
(zc d)i. In Eq. (9), the term p((zcd) P UN Y 2 d) is the probability of prior which is based
on the distance-dependent CRP and can be calculated by Eq. (2). The term

(new)

p(Ve,ll ((zc d) ;U (zC d)i ), ¢g) is the likelihood of V¢, according to the clusters given
byl ( (zC d) Y (zc d) (new)) in the path c,. The computational details are in Additional file 1.

i
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