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Background
Microscopy can be used to capture images which contain a wealth of information that 
can inform biomedical research. Image analysis software can allow scientists to obtain 
quantitative measurements from images that are otherwise difficult to capture via sub-
jective observation. The increasing use of automated microscopy now allows research-
ers to capture images of samples treated with many thousands of individual compounds 
or genetic perturbations. Scientists increasingly image cells in 3D or across time series; 
this expanding bulk of raw data necessitates automated processing and analysis. Such 
analysis is best achieved through using software to perform automated detection of cells 
or organisms and extract quantitative metrics which objectively describe the specimens.
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Background:  Imaging data contains a substantial amount of information which can 
be difficult to evaluate by eye. With the expansion of high throughput microscopy 
methodologies producing increasingly large datasets, automated and objective 
analysis of the resulting images is essential to effectively extract biological information 
from this data. CellProfiler is a free, open source image analysis program which enables 
researchers to generate modular pipelines with which to process microscopy images 
into interpretable measurements.

Results:  Herein we describe CellProfiler 4, a new version of this software with 
expanded functionality. Based on user feedback, we have made several user interface 
refinements to improve the usability of the software. We introduced new modules to 
expand the capabilities of the software. We also evaluated performance and made 
targeted optimizations to reduce the time and cost associated with running common 
large-scale analysis pipelines.

Conclusions:  CellProfiler 4 provides significantly improved performance in complex 
workflows compared to previous versions. This release will ensure that researchers will 
have continued access to CellProfiler’s powerful computational tools in the coming 
years.
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Many microscopes are now sold with accompanying proprietary analysis packages, 
such as MetaMorph (Molecular Devices), Elements (Nikon), Zen (Zeiss) and Harmony 
(Perkin Elmer). These ecosystems are powerful but can lack the flexibility to work with 
data from other manufacturers’ equipment. Cost of these proprietary solutions can 
also limit accessibility, and their closed-source nature can obscure exactly how scien-
tists’ data is being analyzed. Free, open-source software packages such as ImageJ, Cell-
Profiler, QuPath, Ilastik and many others have therefore become popular analysis tools 
used by researchers [1]. ImageJ is the most widely-used package and excels in perform-
ing analysis of single images, assisted by a vast array of community-developed plugins 
[1]. Numerous smaller packages are tooled towards specific types of data: for example, 
QuPath is a popular program geared specifically towards pathology applications [2], 
while Ilastik delivers an interactive machine learning framework to assist users in seg-
menting images [3].

In 2005 we introduced CellProfiler, an open-source image analysis program which 
allows users without specific training to automate their image analysis by using modular 
processing pipelines [4]. CellProfiler has been widely adopted by the community, and is 
currently referenced more than 2000 times per year. Built-in modules provide a diverse 
array of algorithms for analyzing images, which can be further extended through the use 
of community-developed plugins. In an independent analysis of 15 free image analy-
sis tools CellProfiler scored highly in both usability and functionality [5]. Our previous 
release, CellProfiler 3, introduced support for analysis of 3D images to further expand 
the tool’s applications [6]. However, some popular features from CellProfiler 2 could not 
be brought forward into that release and certain modules struggled to operate efficiently 
in 3D pipelines.

Implementation

CellProfiler was originally written in MATLAB, but in 2010 was rewritten in Python 2, 
which reached its official end-of-life in 2020. In order to ensure ongoing compatibility 
with future operating systems we ported the software to the Python 3 language to create 
CellProfiler 4. This provided the opportunity for a broader restructuring of the software’s 
code to improve performance, reliability and utility. CellProfiler 4 is available for down-
load at cellprofiler.org.

As part of the migration to Python 3, we split the CellProfiler source code into two 
packages: cellprofiler and cellprofiler-core. The new cellprofiler-core package contains 
all the critical functionality needed to execute CellProfiler pipelines, whereas the cell-
profiler repository now primarily contains the user interface code and built-in modules. 
The core package has been developed to introduce a stable API which will allow users 
to access CellProfiler’s functionality as a Python package within popular environments 
such as Jupyter [7] and for future integration with other packages and software suites.

User interface refinements

Guided by feedback from biologists, we have made several improvements to the Cell-
Profiler user interface with the goal of making the software more accessible and eas-
ier to use. The basic 3D viewer introduced in CellProfiler 3.0 has now been replaced 
with a more fully-featured viewer which allows users to inspect any plane in a volume 
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(Fig. 1a). We have also expanded the figure contrast dialogs to give users more granu-
lar control over how images are displayed in both 2D and 3D mode (Fig. 1b). These 
changes will help users to better visualize and understand their data.

Other changes make it easier to develop and configure pipelines. We added an 
interface to visualize which modules produce inputs needed by, or use outputs from, 
a module of interest, which will aid in modifying complex pipelines (Fig.  1c). We 
also revised the interface for selecting multiple images for analysis within a module, 
replacing dropdown menus with a checklist in which multiple images can be selected 
quickly and efficiently (Fig. 1d). Furthermore, a new search filter in the “Add module” 
popup allows users to more easily find desired modules by module name rather than 
by category (Fig. 1e).

We also restored some features which were previously lost in the migration from 
CellProfiler 2 to CellProfiler 3. Most notably, we rebuilt the Workspace Viewer, where 
users construct a customized view of their data and can stay focused on a specific 
region of interest as the pipeline is modified (Fig.  1f ), making it much simpler to 
monitor and refine segmentation of problematic regions of an image. In addition, new 
icons in the Test Mode pipeline interface provide a stronger visual indication of which 
module is currently about to be executed, and provide the ability to return to and 
execute earlier modules in the pipeline. This replicates and replaces the functionality 

Fig. 1  User interface refinements in CellProfiler 4. a The new 3D viewer window with plane controls in the 
top right. b Contrast and normalization adjustment popup available with any image window. c Interface 
displayed when the “trace” command is called on a module. Arrow icons on the left represent modules which 
provide data to or use data from the selected module (dot icon). d Selection widget for choosing multiple 
images for analysis. Images sourced from disabled or missing modules are highlighted. e “Add modules” pane 
in search mode, the modules list is filtered based on the text entered into the search box. f The Workspace 
Viewer module displaying a custom overlay of data from the example pipeline
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of the slider widget from CellProfiler 2, which could not be carried forward into Cell-
Profiler 3 but was popular with users.

New and restored features

In CellProfiler 4 we introduced several new analysis features and settings. A common 
workflow issue we identified was that analysts often segment highly variable objects in 
multiple stages (such as segmenting and masking out bright objects to aid segmenta-
tion of similar-but-dimmer objects), but previous versions could not simply treat result-
ing segmentations as a single object set when performing and exporting measurements. 
To resolve this we added the CombineObjects module to allow users to merge sets of 
objects which have been defined separately. A key issue when designing this module was 
how to handle objects that would overlap if the sets were merged, therefore we built 
several strategies detailed in Fig.  2. The resulting merged set can then be carried for-
ward throughout the pipeline without the need to merge measurement tables outside of 
CellProfiler.

Many users were disappointed with the loss of the RunImageJ module [8] in CellPro-
filer 2.2; we have now replaced it with the new RunImageJMacro module. The new mod-
ule allows a user to export images from CellProfiler into a temporary directory, execute 
a custom ImageJ macro on that directory and then automatically import resulting pro-
cessed images back into CellProfiler. In practice this will allow users to access ImageJ 
functions and plugins within a CellProfiler pipeline, greatly expanding its interoper-
ability. Unlike its predecessor, the RunImageJMacro module relies on the user’s copy of 
ImageJ rather than a built-in copy. This allows users to take advantage of any new ImageJ 
upgrades and simultaneously poses less danger to CellProfiler’s stability because releases 
between the two softwares need not be kept in sync.

We also upgraded several existing modules. We rewrote the Threshold module to 
allow all pre-existing threshold strategies to be used in ‘adaptive’ mode, giving users 

Fig. 2  Approaches for combining object sets within the CombineObjects module. Results represent the 
output from different methods available within the module. “Merge” will join touching objects and distribute 
conflicting regions to the nearest object from the initial set. “Preserve” will add only regions of objects from 
the second set which did not overlap with the initial set. “Discard” will only add objects with no overlap. 
“Segment” will add both object sets and re-segment disputed regions
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more options in images with highly-variable background. We have also added the Sau-
vola local thresholding method as an alternative adaptive strategy [9]. Previous versions 
of CellProfiler 2 shipped a version of the Otsu thresholding method that log-transformed 
the data before applying the threshold; this assisted in the thresholding of dim images, 
but led users to question why our Otsu values did not match those from other libraries 
such as scikit-image [10]. This inconsistent behavior could be confusing to users, so we 
began the process of updating that implementation in CellProfiler 3 and completed it in 
CellProfiler 4. We added a dedicated setting to log transform image data during applica-
tion of any thresholding method. These new options will assist users in segmenting chal-
lenging images.

New measurements

We overhauled some measurement modules in CellProfiler 4. We redesigned Measu-
reObjectSizeShape to record additional measurements now available in scikit-image, 
including bounding box locations, image moments and inertia tensors, producing up to 
60 new shape measurements per object. We anticipate that these new features may be of 
particular value for training machine learning models, which play an increasingly impor-
tant role in performing object classification on large data sets. In addition to new fea-
tures, several of the previously 2D-exclusive measurements, such as Euler Number and 
Solidity, are now also available when working with 3D images. Together these expanded 
measurements provide researchers with even more metrics with which to investigate 
cellular phenotypes.

Results
Performance improvements

A key focus in producing CellProfiler 4 has been improving performance of the soft-
ware and addressing common issues encountered by users. We revised our build pack-
aging process to more reliably bundle CellProfiler’s Java dependencies so that additional 
software and system configuration is no longer required to use the program. In doing 
so we also optimized the program’s startup sequence, which provided a substantial 

Fig. 3  General performance in CellProfiler 3 versus CellProfiler 4. Results represent independent runs on a 
machine running Windows 10, using 1 worker process. a Time from launching the CellProfiler executable to 
display of the full GUI (n = 5). b Time taken to run the ExampleFly pipeline in Analysis Mode (n = 3). c Time to 
run the ExampleFly pipeline in Test Mode (n = 5). d Time to run the 3D monolayer tutorial pipeline in Analysis 
Mode (n = 3)
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improvement in the time taken to initialize the software (Fig. 3a). Another critical area 
of focus for improvement has been in file loading (input/output, or I/O operations). 
Combined improvements in Python’s underlying directory scanning functions and opti-
mizations to CellProfiler’s image loading procedures have dramatically reduced the time 
needed to add large folders of images to the file list. This is particularly noticeable when 
using networked storage.

In our performance testing of an example analysis pipeline, overall performance was 
similar to CellProfiler 3 (Fig.  3b). However, executing this pipeline in Test Mode was 
inhibited by unnecessary user interface updates between running individual modules. 
Optimizing the UI updates sent during test mode reduced the time taken to run an 
image set in this mode (Fig. 3c).

Running more complex analysis workflows such as 3D segmentation and the com-
monly used Cell Painting assay [11] was time-consuming in CellProfiler 3. We there-
fore aimed to identify and refine modules which displayed long execution times in these 
scenarios.

Optimizations across all modules produced a 50% performance improvement when 
running 3D pipelines such as the 3D monolayer tutorial dataset (Fig. 3d) [12]. Within 
3D workflows we had identified the MedianFilter module as being particularly slow to 
process. By switching to the new scipy.ndimage filter implementation we were able to 
substantially reduce the time taken to process each image (Fig. 4a).

Another key target was the MeasureTexture module, which exhibited long run times 
when performing per-object measurements. Analysis revealed that this was caused by 
per-object functions processing full-size masked arrays for each object to be measured. 
To improve performance we adjusted these functions to produce and process arrays 
cropped down to the particular region of interest for each object. In our testing this 
reduced the time taken to analyze each image from minutes down to seconds, without 
any change in the resulting measurements (Fig. 4b).

Major gains were also made in measurement of the Costes Colocalization Coef-
ficient in the MeasureColocalization module. This statistic requires the calculation 
of Costes’ automatic threshold, which is generated by thresholding the two images 
to be compared and then serially reducing the thresholding value until the Pearson 

Fig. 4  Module-specific performance improvements. Results from individual module testing on a machine 
running Windows 10. a Execution time for the MedianFilter module running within the 3D Monolayer 
pipeline (n = 5). b Execution time when running per-object texture measurements on data from the 
ExampleFly pipeline (n = 5). c Execution time when running MeasureColocalization on 8-bit images from the 
ExampleFly pipeline (n = 5)



Page 7 of 11Stirling et al. BMC Bioinformatics          (2021) 22:433 	

R correlation between the two thresholded images drops below a value of 0. Our 
original implementation would reduce the candidate value in images scaled 0–1 by 
1/255 at each step, which was inappropriate for 16-bit images containing 65,536 grey 
levels rather than the 256 present in 8 bit images. Testing 65,536 candidate thresh-
olds in 16-bit images would be excessively slow, so we introduced optional alterna-
tive implementations of the Costes automated thresholding method to resolve this 
inefficiency. Our first optimization maintained the canonical strategy of evaluating 
every possible threshold, but only measured the Pearson R correlation of the thresh-
olded images if the new value produced a different total number of thresholded pixels 
than the previous value. We termed this “accurate” mode, but in images with large 
numbers of unique pixel values performance was unacceptably slow. We therefore 
introduced “fast” mode to the module, in which the candidate threshold is decreased 
in larger steps if the previous Pearson R value was substantially higher than 0. This 
improved performance when working with 8-bit images (Fig. 5a), but was still inef-
ficient with 16-bit images (Fig.  5b). We subsequently devised an alternative imple-
mentation, dubbed “faster” mode, in which a weighted bisection search algorithm is 
used to consecutively narrow a window of possible target thresholds. By reducing the 
candidate window by 1/6 each cycle, we were able to calculate identical thresholds to 
the “accurate” method in seconds rather than hours. This opens up the ability to per-
form efficient Costes Colocalization calculations on 16-bit images (Fig. 5b). In theory 
these accelerated methods could ‘overshoot’ the target threshold by a small margin 
in rare instances, but in our testing they consistently produced identical results to 
the “accurate” implementation. Nonetheless we have made all three strategies (“accu-
rate”, “fast” and “faster”) available within the module settings. Other colocalization 
methods did not suffer from the same degree of performance issues, but additionally 

Fig. 5  Performance of alternative Costes automated thresholding strategies. Execution times for the 
MeasureColocalization module performing 1 pairwise comparison with Costes features enabled, using each 
algorithm on a 8-bit images from the ExampleFly pipeline (n = 6) or b 16-bit images from the example Cell 
Painting dataset (n = 8). On 16-bit images results from CellProfiler 3 are calculated incorrectly, but shown to 
illustrate relative performance
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updating them to newer implementations reduced the time taken for the module to 
process without Costes features enabled (Fig. 4c).

Together, these improvements will substantially reduce the computational time and 
power necessary to process images, particularly when working with large, complex data 
sets. This will have the added benefits of reducing resource costs for researchers, making 
large-scale analysis with CellProfiler more affordable and accessible. The reduction in 
analysis time will also reduce the environmental impact of running such pipelines.

Performance in common workflows

To examine the impact of our changes on performance on a large heterogeneous 
workflow, we compared the performance of CellProfiler 3 to CellProfiler 4 when run-
ning the Cell Painting assay protocol [11]. This workflow is typically performed on 
large datasets in a cluster environment, so we selected a sample of 48 image sets from 
a published dataset and measured processing times on a single machine. Execution 
times were captured for each module across three independent runs of this dataset. 
The sum of these timings represents the total workload executed by each module, 
excluding file I/O operations. These measurements revealed a tenfold reduction in 
total CPU time required to analyze each image (Fig. 6a).

Fig. 6  Performance of selected modules within the Cell Painting assay protocol. Numbers in brackets within 
panel titles correspond to modules in Additional file 1: Figure S1. a Total module execution time (measured 
in CPU time) per image set for all modules in the pipeline. b Execution time for the MeasureTexture module 
per image set. c Execution time for the MeasureImageQuality module per image set. d Execution time for 
the IdentifyPrimaryObjects module per image set. e Execution time for the MeasureGranularity module per 
image set. f Execution time for the MeasureObjectSizeShape module per image set
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In keeping with our expectations, the refinements to MeasureTexture contributed 
the majority of the performance improvements that we observed (Fig.  6b). We also 
noted small improvements in the MeasureImageQuality (Fig. 6c), IdentifyPrimaryOb-
jects (Fig.  6d), MeasureGranularity (Fig.  6e) and MeasureObjectSizeShape (Fig.  6f ) 
modules. Other modules in the pipeline exhibited similar performance in both ver-
sions or took negligible time to execute (Additional file 1: Figure S1).

Discussion
As the adoption of high content microscopy methods continues to expand there may 
be several areas where CellProfiler could be expanded with new functionality. Anal-
ysis of tissue sections stands out as a potential area of improvement. The large file 
sizes associated with tissue specimens pose a challenge for image analysis, as system 
memory typically is not sufficient to load the entire image at once, a bottleneck which 
could be avoided by adopting packages such as Dask [13] as a means of handling such 
images by loading subsections of an image on-demand. This would expand the utility 
of CellProfiler within the digital pathology field.

We also aim to continue adding support for 3D analysis to modules that currently only 
support 2D workflows. While segmentation is possible in 3D pipelines, additional tools 
and measurements will be valuable for laboratories using CellProfiler. Alongside this, 
further performance improvements will continue to benefit researchers, particularly 
when working with large datasets.

The splitting of cellprofiler-core into a standalone package has also laid the ground-
work for producing a stable API for use in other Python-based applications. This will 
eventually allow users to modify and execute pipelines from within environments such 
as Jupyter, which may be of benefit to researchers looking to automate complex work-
flows. This API could provide a higher-level interface for common image processing 
tasks such as object segmentation, which would simplify the workflow for analyzing 
images directly within a Python environment and could serve as a bridge to Python tools 
whose GUI is incompatible with CellProfiler’s, such as Napari [14]. The current imple-
mentation provides access to all of CellProfiler’s important classes and the ability to run 
pipelines or individual modules. For future development we would like to introduce a 
more convenient system for programmatically generating image sets without the need 
for the original input modules or CSV files.

In recent years there has been considerable development towards deep learning mod-
els which can perform image segmentation in an automatic manner. Providing access to 
these algorithms would be of substantial benefit to CellProfiler’s users, however the need 
for dedicated hardware and software to run these models poses a challenge for pack-
aging and distribution. To avoid compatibility issues with older hardware, as well as to 
minimise the software dependencies needed to run CellProfiler, our approach has been 
to develop independent plugin modules which are distributed separately from the main 
CellProfiler program. For CellProfiler 3 we previously released a plugin for NucleAIzer 
[15], and in the future we hope to investigate integrations with other popular models 
such as Cellpose [16] and Stardist [17].
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Conclusions
The migration of CellProfiler to Python 3 will ensure that the software will remain acces-
sible and maintainable in the coming years. In CellProfiler 4 we have further refined the 
user interface and introduced new modules and features to help scientists to develop 
and execute their analysis workflows. The targeted performance improvements in this 
version will substantially reduce computational costs associated with high throughput 
image analysis, broadening the potential applications for this open-source software 
package.

Availability and requirements

Project name: CellProfiler.
Project home page: https://​cellp​rofil​er.​org/
Operating system(s): Windows, MacOS, Linux.
Programming language: Python 3.
Other requirements: Java 1.6 + (JDK 14 bundled with builds).
License: BSD 3-Clause License.
Any restrictions to use by non-academics: None.

Abbreviations
API: Application Programming Interface; CP3: CellProfiler 3; CP4: CellProfiler 4; I/O: Input/output.
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Additional file 1: Figure S1. Execution times of all modules within the Cell Painting example pipeline. Measured as 
per-image CPU time taken for each module in the Cell Painting assay protocol (n = 48). I/O loading operations in the 
Images module are not recorded by these measurements.
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