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Background
Glioblastoma multiforme (GBM) is the most common and deadly brain tumor and is 
classified as a grade IV glioma [1]. It is a highly invasive cancer that is characterized by 
changes in cerebral vessels and the gradual invasion of surrounding tissues along the 
perivascular space [2, 3]. GBM cells typically invade up to several centimeters away from 
the tumor mass and can even cross into the contralateral hemisphere [4, 5]. Although 
the current most advanced therapeutic treatment combining surgical resection, radio-
therapy and chemotherapy [6], due to the radiotherapy resistance of GBM stem cells 
(GSCs) to traditional treatment, GBM patients are prone to relapse after treatment, and 
the median survival time is only 14.6 months [7, 8]. Therefore, there is an urgent need to 
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make new progress in the study of accurate molecular mechanisms and reliable thera-
peutic targets of GBM.

In recent years, targeted therapies have made great progress in many types of cancer. 
Aberrant gene expression can be used as a target to develop new biomarkers for dis-
ease monitoring and prognosis or treatment response. The extensively studied mRNA in 
GBM is O6‐methylguanine‐DNA methyltransferase (MGMT). The expression of MGMT 
is highly regulated by a variety of transcription factors, which activate the MGMT pro-
moter and induce more expression of MGMT [9]. Besides, biomarkers are not limited 
to protein-coding genes, and lncRNAs have become a hotspot of current research. For 
instance, overexpression of TP73-AS1 predicts poor prognosis in primary GBM cohorts 
and that this lncRNA promotes tumor aggressiveness and TMZ resistance in GSCs [10]. 
However, most of the current studies are limited to the expression of target genes in 
GBM, and few studies focus on the regulation mechanism of gene expression, particu-
larly the regulation of DNA methylation on the expression of target genes in GBM.

DNA methylation is one of the most common epigenetic events in the mammalian 
genome. It is well known that aberration of DNA methylation contributes to carcino-
genesis and it frequently occurs in the promoter region of genes [11]. In addition to 
promoters, enhancers have important roles in gene regulation that bind tissue-specific 
transcription factors and can regulate transcription at distant loci through chromosome 
looping [12]. Increasing evidence demonstrates that the methylation status of enhancer 
regions correlates better with target gene expression than promoters [13]. Aberrant 
methylation patterns in enhancers contribute to aberrant gene expression in multiple 
diseases, including many kinds of cancers [14–16]. For instance, Ying et al. [17] found 
that histone variants and different histone modifications interact with aberrant DNA 
methylation and cause perturbed enhancer activity in cytogenetically normal acute 
myeloid leukemia that contributes to a leukemic transcriptome. Recently, several studies 
have revealed aberrant DNA methylation in GBM, particularly methylation dynamics in 
gene promoters [18–20]. Nevertheless, few studies focused on enhancer regions, and the 
genome-wide enhancer methylation patterns in GBM remain unclear.

With the advancement of high-throughput sequencing technology, large-scale Illu-
mina Infinium Human Methylation 450 BeadChip (Illumina HM450k) has been applied 
to cancer analysis. It contains 485,577 probes, which can target 99% of RefSeq genes 
and several other locations on the genome [21]. In this study, we developed an inte-
grated model combining multi-omics data for identifying genes that might be regulated 
by differential methylation enhancer regions (DMERs) that might lead to tumorigene-
sis. The workflow of our study was shown in Fig. 1. Our study identified 191 lncRNAs 
and 1052 mRNAs whose expression might be regulated by hypomethylated enhancer 
regions. Then, an enhancer region hypomethylation-mediated regulatory network 
(hypo-EMTRN) was used to elucidate the regulatory mechanism of enhancer region and 
predict the biological function of target genes. Also, we used the biclique algorithm to 
identify 2651 synergistic, competitive modules, and then performed survival analysis 
to obtain 22 modules that might have clinical prognostic value. In particular, a higher 
degree of gene in the two modules might have better diagnostic and prognostic func-
tions. Finally, through the construction of drug-target association networks, we iden-
tified potential small-molecule drugs for GBM treatment. This study shed light on the 
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relationship between aberrant enhancer methylation and gene expression in GBM, and 
it might be of great help to the study of how methylation of enhancer regulates gene 
expression.

Results
Characterization of DMERs‑driven target genes in GBM

To characterize the DNA methylation pattern of enhancers in GBM, we applied a com-
putational strategy to map the enhancer probes to the Infinium 450k array, thereby 
constructing the enhancer region methylation profile in GBM (described in the meth-
ods for details). In this study, we obtained overall CpG probes localized in enhancer 

Fig. 1  Workflow of our study. A Identification of genes regulated by DMERs through integrating multi-omics 
data. DMERs differential methylation enhancer regions. B Construction of lncRNA-mRNA co-expression 
networks. C Module mining and biomarker identification. hypo-EMTRN enhancer hypomethylation-mediated 
regulatory network
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regions from the GPL13534 comment file and the supplemental file of a previously 
published study [22]. 113,178 non-overlapping enhancer regions were constructed by 
using the calculation strategy. 79.99% of the regions had a length of 1000 bp, 17.79% a 
length > 1000 bp and < 2000 bp, and other regions accounted for 2.22% (Fig. 2A). Simi-
larly, we used a computational method in the previous study to reannotate Infinium 
450K arrays into promoter region of the gene [23]. In the present study, 54,477 probes 
were located in 20,386 gene promoter regions. Although each gene had several probes 
mapping to the corresponding promoter region, only the average value of DNA methyla-
tion probes in promoter of the was calculated as the DNA methylation level of the gene.

After preprocessing the methylation profiles, DMERs and differential promoter meth-
ylation genes (DPMGs) were recognized respectively between 136 tumor samples and 58 
normal samples. In total, 44,841 DMERs were identified, including 7024 hypermethyl-
ated DMERs and 37,817 hypomethylated DMERs. Similarly, we obtained 4889 DPMGs. 
Globally, a clear hypomethylation pattern in the tumor group was observed when com-
pared with the non-tumor group (Fig.  2B).  144 hypomethylated genes and 23 hyper-
methylated genes that might be regulated by promoter were identified by calculating the 

Fig. 2  The DNA methylation pattern of enhancer region in GBM. A The pie chart shows the proportions of 
DMERs length. DMERs differential methylation enhancer regions. B A circos plot showing genomic regions 
that are significantly hypomethylated (37,818 regions, in green) or hypermethylated (7024 regions, in red) 
in the tumor group as compared to non-tumor group. C The volcano map shows the top 500 DMERs 
of significant difference. DMERs differential methylation enhancer regions. D Unsupervised hierarchical 
clustering analysis of the top five hundred DMERs with significant difference in GBM. On the x-axis, yellow 
represents the GBM samples and green represents the normal controls. The y-axis represents DMER. DMERs 
differential methylation enhancer regions
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Pearson correlation coefficient (PCC) between the methylation value of each DPMG and 
the corresponding expression value. In order to further analyze the methylation pattern 
of the enhancer region, we used the DNA methylation data between the tumor and the 
normal control sample to explore the changes in its methylation level. Figure 2C showed 
the volcano map of the two elements (log2(FC) and adjusted p value) in the differential 
analysis of the DMERs (the top 500 rank of adjusted p value). The result showed that the 
number of hypomethylated enhancer regions in the top 500 rank of adjusted p value was 
much more than that of hypermethylated enhancer regions. Furthermore, the methyla-
tion levels of these DMERs with significant difference are shown in a heatmap (Fig. 2D). 
It was noted that these DMERs markedly differed between the tumor and normal tis-
sues, and the number of hypomethylated enhancer regions was much greater than that 
of hypermethylated enhancer regions.

Aberrant enhancer methylation is common in many cancer types, is more closely 
related to target gene expression changes than promoter methylation, and might occur 
even when the promoter is constantly unmethylated [13]. To identify genes which might 
be regulated by the DMERs, we combined multi-omics data to build a model for asso-
ciating enhancers with their target genes (DMERs-associated genes) (described in the 
methods and Additional file 1: Fig. S1A for details). Since it is known that there is an 
inverse correlation between methylation level of enhancer and chromatin activity [24], 
we retained only inversely correlated DMER-gene pairs. Finally, we obtained 5429 
DMER-lncRNA pairs of which there were 4613 DMERs and 2819 lncRNAs, and 8909 
DMER-mRNA pairs of which there were 6657 DMERs and 4440 mRNAs.

The identification of cancer‑related hallmarks in the regulatory network

Previous studies have demonstrated that enhancers dysregulate the expression of tar-
get genes through methylation-mediated epigenetic regulation and cause human dis-
ease [13, 17, 25]. Increasing evidence has shown that lncRNAs are involved in tumor 
growth, cell-cycle, and apoptosis through interactions with mRNAs [26, 27]. Hence, we 
constructed a lncRNA-mRNA co-expression regulatory network to study how these tar-
get genes that might be regulated by DMERs act synergistically to regulate the process 
of GBM, and found some biomarkers closely related to the occurrence and development 
of GBM.  These target genes were matched with background network genes to obtain 
lncRNA-mRNA pairs. Then, the PCC of each lncRNA-mRNA pair was calculated based 
on the lncRNA and mRNA expression profiles. We used PCC > 0.5 and p value ≤ 0.05 as 
thresholds to screen out 3271 lncRNA-mRNA interactions. Finally, we constructed the 
enhancer region methylation-mediated target gene regulatory network (EMTRN) based 
on these relationship pairs (described in the methods and Additional file 1: Fig. S1B for 
details). The EMTRN contained 220 lncRNAs, 1173 mRNAs, and 3271 lncRNA-mRNA 
pairs. Since the lncRNAs and mRNAs in these relationship pairs were regulated by the 
hypermethylated enhancer regions or the hypomethylated enhancer regions, we divided 
the EMTRN into the hypermethylation-mediated regulatory network (hyper-EMTRN) 
and hypo-EMTRN. There were 29 lncRNAs, 121 mRNAs, 176 lncRNA-mRNA pairs 
in the hyper-EMTRN (Additional file  2: Fig. S2A and Additional file  4: Table  S1) and 
191 lncRNAs, 1052 mRNAs, 3095 lncRNA-mRNA pairs in the hypo-EMTRN (Fig. 3A 
and Additional file 5: Table S2). Obviously, we obtained many more target genes which 
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might be regulated by hypomethylated enhancer than target genes which that might be 
regulated by hypermethylated enhancer in GBM. In general, inactive enhancers display 
higher levels of DNA methylation, whereas hypomethylation of enhancer is associated 
with transcription factor binding and subsequent transcriptional activation [28–30]. As 
can be seen from Fig. 2B, there was an overall hypomethylation pattern in GBM, and 
we identified far more genes that might be regulated by the hypomethylation enhancer 
regions than those that might be regulated by the hypermethylation enhancer regions. 
Besides, Studies have shown that a variety of cancers are identified many more hypo-
methylated enhancers than hypermethylated enhancers [22, 25]. Therefore, we focused 
on hypomethylated enhancer regions and conducted further research on them.

Despite tumorigenesis is a complicated dynamic process, recent studies proved that 
the dysregulation of target genes plays critical and complex roles during the develop-
ment of tumors [31]. To evaluate the biological characteristics of these target genes 
that might be regulated by hypomethylated enhancer regions, the mRNAs in the hypo-
EMTRN were taken to implement the function enrichment analysis. In this study, the 
top 20 Gene Ontology (GO) functional terms and pathways of enrichment results were 

Fig. 3  Construction of cancer-related target genes in regulatory network and Functional enrichment 
analysis. A lncRNA-mRNA co-expression network regulated by hypomethylated enhancer regions. The 
node degree is indicated by the node size. lncRNA long non-coding RNA. B The top 20 enriched BP items of 
upregulated genes. BP biological processes. C The top 20 enriched KEGG items of upregulated genes. KEGG 
Kyoto Encyclopedia of Genes and Genomes
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displayed according to p value and gene enrichment ratio (Fig. 3B, C, Additional file 2: 
Fig. S2B and S2C). A sum of 680 GO terms and 34 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways were identified to be associated with these target genes 
(Additional file  6: Table  S3). The results showed that the enriched GO terms were 
involved in cellular process (such as GO:0048522), cell migration (such as GO:2001224), 
cell adhesion (such as GO:007045), cell differentiation (such as GO:0030182 and 
GO:0030099), cellular metabolic process (GO:0031324 and GO:0051253), and other bio-
logical processes (BP), which were deeply correlated with the progression of GBM devel-
opment [32, 33]. Epigenetic modifications to the genome, especially DNA methylation 
and histone modifications, affect gene expression causing increased risk for cancers and 
other diseases. Previous study [34] have shown that methylation of lysine occurs on two 
different histones (H3 and H4), and exists at six different sites between the two histones 
(H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20). This study found that the signifi-
cantly enriched GO terms of these target genes were related to histone H3-K4 demeth-
ylation (GO: 0034720) and H3-K79 methylation (GO: 2001160). The results suggested 
that the changes in the histone methyltransferase activity might regulate the expres-
sion of related target genes in GBM. Interestingly, we also found that the significantly 
enriched GO terms in these target genes included some biological processes of demeth-
ylation (such as GO:1901537 and GO:0070076), which might be related to the regulation 
of hypomethylated enhancer regions.

For the KEGG pathway analysis, we found that these target genes that might be regu-
lated by hypomethylated enhancer regions were enriched in some GBM-related KEGG 
pathways. As the significantly enriched pathway (hsa04020, hsa04724) in this study, 
Afshari et  al. [35] showed that calcium signaling pathway is involved in the processes 
of cell proliferation, metastasis, angiogenesis, migration, and invasiveness. Moreover, 
glutamatergic and calcium  signaling may promote glioblastoma formation by meta-
bolic reprogramming and genetic switching or upregulate the levels intracellular Ca2+ 
to increase glutamate release [36]. The role of ErbB [epidermal growth factor receptor 
(EGFR)] in GBM and glioma has also been extensively studied. EGFR could encourage 
tumor progression by promoting angiogenesis and cell invasion in GBM, and EGFR 
amplification could be a marker that played a role in prognostication, treatment, clini-
cal trial eligibility [37, 38]. In this study, ErbB signaling pathway (hsa04012) was also an 
important pathway enriched by us.

Identification of highly synergistic, competitive modules and prognostic related 

biomarkers

To further investigate the modularity feature of hypo-EMTRN and how lncRNAs and 
mRNAs synergized with each other. In this study, we used a novel maximal biclique enu-
meration algorithm to extract synergetic lncRNA–mRNA competitive modules. The 
maximal biclique enumeration algorithm is to find all maximal bicliques in a bipartite 
graph and generate both edge maximum and vertex maximum bicliques [39]. A biclique 
module is a complete bipartite graph in which an edge is realized from every vertex of 
a miRNA set to every vertex of a target gene set. In total, 2651 synergistic, competitive 
modules were identified from hypo-EMTRN. Subsequently, to evaluate whether these 
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modules were prognostic factors for GBM, we performed survival analysis on these 2651 
modules. Finally, 22 modules could significantly classify GBM patients into high and low 
risk groups in both the training set and the test set (Additional file 7: Table S4).

Previous research discovered that hub genes play essential roles in networks, and the 
degree of the node in the top 10–20% of the network are usually defined as hub nodes 
[40]. Our results showed that  most of the genes in module 1 (Fig.  4A) and module 2 
(Fig. 4B) had high degrees in the hypo-EMTRN. As shown in Fig. 4C, D, patients in the 
low‐risk group had significantly longer overall survival time than those in the high‐risk 
group. The diagnostic value of the modules was further appraised to see whether they 
could be used as cancer biomarkers for early diagnosis of GBM. In order to ensure the 
accuracy of the research results, we collected an independent dataset of genome-wide 
lncRNA and mRNA expression level (GSE4290) in GBM to perform Receiver Operating 
Characteristic (ROC) curve analysis for the two modules by using the “ROC” function in 
the pROC package [41]. The overall area under the ROC curve of the diagnostic poten-
tial of module 1 and module 2 in GBM was 0.9286 and 0.6651, respectively (Fig. 4E, F). 
The result indicated that modules might effectively discriminate tumor samples from 
normal ones, and genes in modules might be potential diagnostic cancer hallmarks for 
GBM. Salhia et al. [42] reported that the expression of TRIO was upregulated in GBM 
tissues, and  depletion of  TRIO markedly suppressed cell migration and invasion. The 
present study found that TRIO was also up-regulated in module 1, and its increased 
expression in GBM might be affected by the corresponding hypomethylated enhancer 
regions. Some studies have reported that CELF1, DDX17 and ZNF326 are overexpressed 
in glioma [43–45]. Additionally, ATXN3 was highly expressed in breast cancer and it 
promotes tumor tissue metastasis by deubiquitinating and stabilizing KLF4 [46]. These 
genes were also highly expressed in module 1 in our study, but their expression status in 
GBM has not been reported. PRKCE kinase is involved in many different cellular func-
tions, such as neuron channel activation, apoptosis, cardioprotection from ischemia, 
heat shock response, and insulin exocytosis [47]. Moreover, PRKCE is associated with 
prognosis of GBM. Wan et  al. [48] found that HECTD4 was prominently elevated in 
CHOL tissues. Zhang et  al. [49] used bioinformatics analysis to identify RAPGEF2 as 
potential target genes in the Wnt and MAPK signaling pathways of Medulloblastoma. 
These genes were also highly expressed in our study, but their expression status in GBM 
has not been reported. The expression of these genes had a synergistic effect with lncR-
NAs, and their expression might also be influenced by the high expression of lncRNA. 
More importantly, their expression might be simultaneously regulated by several hypo-
methylated enhancer regions. As shown in the boxplot, this study validated the expres-
sion states of these genes were also upregulated in GBM tissues compared to normal 
brain tissues (Fig. 4G). The result suggested that their upregulation could be used as a 
reliable clinical predictor for tumor diagnosis and to predict survival in patients with 
GBM. Hence, CELF1, DDX17, ZNF326, ATXN3, HECTD4, RAPGEF2 are promising 
diagnostic biomarkers specific for GBM.

Prediction of small molecule drugs for GBM treatment

As precision medicine becomes increasingly relevant in healthcare, the field of pharma-
cogenomic also continues to gain prominence in the clinical setting [50]. Meanwhile, 
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Fig. 4  Gene co-expression modules associated with GBM. A Visualization of the lncRNA-mRNA co-expression 
network of module 1. B Visualization of the lncRNA-mRNA co-expression network of module 2. C Survival 
analysis curves of the module 1 in the training set. D Survival analysis curves of the module 2 in the 
training set. E Receiver operating characteristic analysis of some genes in module 1. F Receiver operating 
characteristic analysis of some genes in module 2. G Boxplots are presented with comparisons of expression 
levels between GBM and normal samples of hallmarks
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multiple studies have demonstrated that small molecule drugs can modify lncRNA 
expression, which suggests a promising therapy for human diseases [51, 52]. Thus, based 
on the hypo-EMTRN and the information in D-lnc, we inferred that some potential 
drugs could be used for the treatment of GBM patients by constructing the drug-target 
association network targeting lncRNAs (Fig.  5, described in the methods for details). 
Totally, we obtained 11 candidate drugs and 23 lncRNAs in the drug-target association 
network. In this network, these potential drugs could achieve the purpose of treatment 
by inhibiting the expression of the corresponding lncRNA. For example, Panobinostat 
can down-regulate the expression of multiple lncRNAs (down-regulated HIF1A-AS2, 
ANKRD10-IT1, BDNF-AS), genistein and Propofol can down-regulate the expression of 
HOTAIR. Previous studies have shown that panobinostat exposure induces aneugenic-
ity, clastogenicity, oxidative DNA damage, DNA hypomethylation, and down-regulation 
of repair gene expression [53]. Javier De La Rosa et al. [54] found that Panobinostat could 
be used in combination with other drugs to reduces clonogenicity and induces apoptosis 
in glioblastoma cells. Besides, experiments have demonstrated that treatment of breast 
cancer MCF-7 cells with genistein resulted in decreased phosphorylation of Akt, and 
decreased expression of HOTAIR [55]. It was deduced that Propofol might be a novel 
potential small-molecule treatment for GBM. In this study, we identified some biomark-
ers of GBM. HOTAIR is a biomarker for multiple cancers and is highly expressed in can-
cer tissues compared to normal tissues [55, 56]. Ting Ma et al. revealed that Diosgenin 

Fig. 5  Construction of the drug-target network based on the lncRNAs regulated by hypomethylated 
enhancer regions
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inhibits gastric tumor proliferation through regulating the high expression of lncRNA 
HOTAIR [55]. There was also a study that showed that HOTAIR levels in serum samples 
from GBM patients was significantly higher than in the corresponding controls and it 
could be a novel diagnostic and prognostic biomarker in GBM [57]. In addition, Su et al. 
[58] elucidated that overexpression of BDNF-AS inhibited the proliferation, migration, 
and invasion, as well as induced the apoptosis of glioblastoma cells. The expression level 
of BDNF-AS in GBM was consistent with our study. We inferred that the high expression 
of these genes in GBM is regulated by hypomethylated enhancer regions. The expression 
of HIF1A-AS2, LINC00507, LINC00299 and RMST in GBM was not reported in any 
study and these genes could be Clinical diagnosis and prognostic biomarker in GBM.

Discussion
With the advancement of high-throughput sequencing technology, the amount of 
genome-wide methylation data in public databases has increased exponentially, pro-
viding sufficient data for screening ideal diagnostic biomarkers. Meanwhile, epigenetic 
regulation has become a hotspot in biomedical research, especially DNA methylation. 
Abnormal changes in DNA methylation are considered to be one of the most power-
ful means for the development of tumor diagnosis, prognosis and predictive biomarkers 
[59]. Generally, DNA methylation-based biomarker studies has mainly been focused on 
the effects of hypermethylation of promoter in tumor suppressor genes, and there are 
few studies on enhancer methylation [60]. To our knowledge, the methylation dynamic 
in enhancers is still unclear so far. Thus, we systematically analyzed the methylation 
dynamics in enhancers in GBM.

In this study, we characterized genome-wide aberrant enhancer region methylation 
patterns in GBM based on multi-omics data. 7024 hypermethylated DMERs and 37,817 
hypomethylated DMERs were identified by differential methylation analysis. From this 
result, we can see that the hypomethylated enhancer might be the main regulator of 
gene expression and they more often correlates with gene expression than hypermeth-
ylation. Activated enhancers are characterized by increased H3K27ac levels surrounding 
the enhancers and will lead to elevated transcription of their target genes. The activated 
K-M enhancer appears to overcome the promoter hypermethylation and drives the 
MGMT expression in GBM. Moreover, deletion of the K-M enhancer reduces MGMT 
and Ki67 expression, decreases cell proliferation, and sensitizes cells to TMZ to a clini-
cally relevant level [61]. Therefore, it is critical to study the interplay between DNA 
methylation of enhancers and their effects on the regulation of target gene expression. 
Moreover, the change of DNA methylation pattern is one of the first detectable tumor-
specific changes associated with tumorigenesis [62]. It is suggested that our results are 
valuable for the identification of tissue-specific biomarkers in GBM.

Next, we constructed a co-expression network regulated by the hypomethylated 
DMERs, in which there were 3095 lncRNA-mRNA relationship pairs. It can be clearly 
seen from hypo-EMTRN that most lncRNAs are hub nodes, indicating that lncRNAs 
play an important role in gene expression regulation. For example, the high expres-
sion of LINC01094 in the hub node of this network has been reported to promote the 
growth and invasion of GBM cells [63]. The results suggested that the lncRNAs screened 
in the present study might be biomarkers of GBM prognosis. And our analysis on the 
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co-expression of genes would give insight into additional layers of regulation of the 
lncRNA-mRNA association network. Genes play a regulatory role through different bio-
logical functions and signaling pathway networks. We wondered how important roles 
these target genes whose expression might be affected by hypomethylated enhancer 
regions played in the pathogenesis of GBM. Through enrichment analysis, we found 
that the target genes in the hypo-EMTRN participated in many biological processes 
and pathways related to tumorigenesis and progression in GBM, such as thyroid hor-
mone signaling pathway (hsa04919), insulin secretion (hsa04911), Wnt signaling path-
way (hsa04310). Previous study has shown that the disturbances in the thyroid hormone 
signaling may activate growth and proliferation of neoplastic cells, and would inhibit 
processes of differentiation and apoptosis [64]. In addition, thyroid hormones directly 
and indirectly stimulate the process of angiogenesis in GBM [65]. Gong et al. [66] has 
suggested that insulin may promotes survival and proliferation of glioblastoma by acti-
vating the downstream Akt signaling the and the InsR/IGF1R pathway in tumor cells. 
Lee et al. [67] suggested that Wnt signaling is aberrantly activated in GBM and that it 
promotes GBM growth and invasion via the maintenance of stem cell properties. These 
results help to understand the occurrence and development of glioblastoma to some 
extent.

Following, we used a maximal biclique enumeration algorithm to identify synergisti-
cally competitive modules. 22 modules can significantly classify patients into high-risk 
and low-risk groups in both the test set (Additional file  3: Fig. S3 A and B). In addi-
tion to the genes in module 1 and module 2 mentioned in the results, the remaining 
genes in these two modules were also likely to become novel biomarkers. As we can see, 
the overall area under the ROC curve of these genes in GBM greater than 0.9, such as 
ANKRD10-IT1, AP1G2, CRY2, SAMD12 (Additional file 3: Fig. S3C and D). Finally, the 
drug-target association network was constructed to provide potential small molecule 
drugs and targets for the precise treatment of GBM. We found that HOTAIR expression 
is regulated by a variety of small molecule drugs in the drug-target network. Cisplatin is 
a chemotherapeutic drug used for treating numerous human cancers, such as prostate 
cancer, ovarian cancer and bladder cancer [68–70]. In recent years, studies have found 
that Cisplatin has been shown to be effective in combination with other drugs in treat-
ing patients with GBM [71–73]. It was inferred that cisplatin might downregulate the 
expression of HOTAIR. Additionally, as a well-known antimalarial drug, artesunate has 
clear side effects, and recently it has been reported to have antitumor effects. Although 
studies have shown that Artesunate can inhibit the overexpression of HOTAIR and 
thereby reduce the metastasis of cervical cancer cells [74]. At the same time, artesunate 
could significantly reduce the clonal formation ability and proliferation of glioblastoma 
cells by arresting cell cycle [75]. However, no studies have shown which gene expression 
can be regulated by artesunate, and our study found that artesunate may be a drug to 
inhibit high expression of HOTAIR.

Unfortunately, this study has some limitations that need to be highlighted. Since GBM 
is different from general tumors, sample acquisition is a problem, and this deficiency is 
likely to have affected the final results to some degree. Moreover, the mechanistic results 
from the current study were based on bioinformatics analysis. Meanwhile, the lack of 
analyzing the hypermethylated enhancer regions was a limitation to the present study. 
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Due to technical and time constraints, we did not validate our results in animal models 
of GBM and brain tissues from patients with GBM. Future functional investigations and 
molecular experiment are still required to explore the mechanisms underlying the roles 
of novel biomarkers.

Conclusion
In summary, we successfully constructed the lncRNA-mRNA regulatory network iden-
tified by analysis of DMERs in multi-omics data and confirmed that the deregulation 
of enhancers might lead to tumorigenesis. Furthermore, we identified survival prognos-
tic modules by analyzing the genome‐wide lncRNA and mRNA expression profiles. The 
modules could serve as potential prognostic indicators alone or in combination with 
other clinicopathological for patients with GBM. Besides, the identified genes could 
be further evaluated for use as cancer biomarkers. Meanwhile, our study provides an 
insight into the discovery of potential drug targets for GBM treatment.

Methods
Data source and pre‑processing

The DNA methylation data (level 3) generated from HM450K platform was downloaded 
from GEO database for all samples, with 136 tumor samples (GSE36278) and 58 normal 
samples (GSE42861). The methylation level of each probe was represented by the β-value 
(from 0 to 1). Beta value = Imeth/Imeth + Iunmeth , where Imeth is the intensity of methyla-
tion and Iunmeth is the intensity of unmethylation. To ensure the accuracy of methyla-
tion level, we removed CpG sites with missing value > 30% of samples. Then, we used the 
k-nearest neighbors method [76] with the knnImputation function in the ‘DMwR’ pack-
age for filling the missing value of methylation data. Clinical data of patients and expres-
sion data of 136 tumor samples were downloaded from GDC Data Portal. The expression 
level was quantified as fragments per kilobase per million reads mapped (FPKM). The 
expression profile of the validation dataset (GSE4290) was downloaded from GEO data-
base, with 81 tumor samples and 23 normal samples.

The annotation file for lncRNAs and mRNAs was derived from GENCODE database 
[77]. The experimental interactions between lncRNAs and miRNAs were collected from 
the starBase v2.0 [78], LncBase v2 [79] and RNAInter database [80]. Human miRNAs 
and their targets were downloaded from starBase v2.0, miRTarBase (release 8.0) [81] 
and RNAInter database. These databases store manually curated collections of experi-
mentally supported miRNA targets. The drug target information was downloaded from 
D-lnc [82].

Construction of enhancer region and promoter region

In order to obtain a more comprehensive probes located in the enhancer region, the 
probes were derived from two parts: first, the GPL13534 (the platform file for the 
HM450K data we used) Comment file in GEO database contains the enhancer probe 
information, and a total of 102,559 enhancer probes were obtained; second, in the 
previously published literature, a total of 102,499 enhancer probes were annotated 
from the HM450K probe by Yao et al., and these probes have been used in enhancer-
related research [83]. We merged the two parts of the probes and then removed the 
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duplicated probes. Finally, we obtained 161,708 enhancer probes for subsequent 
analysis. Previous studies have suggested that the median size of the typical enhancer 
is around 1000  bp [84, 85]. Therefore, we constructed intervals using a window of 
500 bp directly upstream of and downstream from the CpG coordinate. Overlapping 
intervals were joined, and extended into a larger interval. Then, the average value of 
enhancer probes in enhancer region was calculated as the DNA methylation level of 
enhancer region.

Since genes are regulated not only by enhancer methylation but also by promoter 
methylation. To obtain genes regulated by aberrant enhancer methylation, we needed to 
reannotate the promoter region. Since the regulatory mechanism of lncRNA was similar 
to the mRNA in promoter, the region 2 kb upstream from TSS of genes was regarded 
as the promoter region and the DNA methylation probes in promoter regions were 
obtained [86, 87]. Then we deleted the enhancer probes in promoter region and probes 
which mapped to more than one gene. Next, the DNA methylation level of a gene was 
defined as the average -values of probes that mapped to its promoter region.

Identification of genes regulated by promoter methylation

We used the R package ‘limma’ [88] designed based on the generalized linear model 
to identify DPMGs between the tumor and normal samples with an adjusted p 
value ≤ 0.05 and the difference of median DNA methylation level between the tumor 
and normal samples ≥ 0.1. The p value was adjusted using the Benjamini–Hoch-
berg (BH) method [89]. Similarly, we also identified DMERs for further analysis. We 
selected the enhancer regions with log2(FC) ≥ 0.01 and adjusted p value ≤ 0.05 as 
hypermethylated enhancer regions, and those with log2(FC) ≤ − 0.01 as hypomethyl-
ated enhancer regions. Meanwhile, PCC was calculated for each DPMG between the 
methylation value and the corresponding expression value. We obtained target genes 
that might be regulated by differential promoter methylation by retaining genes that 
were significantly negatively correlated (PCC < 0 and p value ≤ 0.05).

Identification of target genes regulated by DMERs

To obtain genes that are only regulated by enhancer methylation, we removed genes 
whose expression is regulated by promoter methylation. We calculated the distance 
between the central site of DMER and TSS of lncRNA or mRNA. Previous research 
suggested that the greatest known distance between an enhancer and a gene was 
about 1 Mbp [90]. In addition, it is difficult to know which gene is regulated by each 
enhancer, since enhancers can work remotely in any orientation and do not necessar-
ily regulate the closest gene [22]. Therefore, we selected DMER-lncRNA and DMER-
mRNA pairs located on the same chromosome, with a maximal linear distance of 
1  Mbp between the center [91]. We used PCC to calculate the correlation between 
the DMER and gene expression. Gene expression is negatively regulated by enhancer 
methylation, and the hypermethylated enhancer region can downregulate or even 
silence gene expression, while the hypomethylated enhancer region tends to activate 
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gene expression [15, 92]. So we retained only negatively correlated DMER-lncRNA 
pairs and DMER-mRNA pairs with p value ≤ 0.05.

Regulatory network construction and visualization

We collected and integrated 69,622 non-redundant lncRNA-miRNA interactions 
and 795,761 miRNA-mRNA pairs from multiple databases. A total of 4,563,164 pairs 
between lncRNAs and mRNAs that shared with the same miRNA were obtained.

The EMTRN was constructed as follows: First, a lncRNA-mRNA pair which interacted 
with more than one same miRNA and whose hypergeometric test based on lncRNA-
miRNA pair and mRNA-miRNA pair was significant (false discovery rate (FDR) ≤ 0.05) 
was considered as a candidate interaction pair. These candidate interaction pairs formed 
the background network needed for the research. Second, we matched the above rela-
tionship pairs with the lncRNA and mRNA pairs regulated by the differential enhancer 
methylation regions. 308,314 lncRNA-mRNA pairs were screened for further analy-
sis. Third, the PCC of each lncRNA-mRNA pair was calculated based on the lncRNA 
and mRNA expression profiles. A previous study has indicated that increased lncRNA 
expression can enhance corresponding mRNA expression [93]. Therefore, PCC > 0.5 and 
p value ≤ 0.05 were used as thresholds to screen out 3271 lncRNA-mRNA pairs. Finally, 
the lncRNA-mRNA pairs were used to construct the lncRNA-mRNA network which 
was visualized through the software Cytoscape [94].

Functional prediction of genes regulated by DMERs

As the functional prediction of lncRNAs is hampered by the shortage of annotated 
information, functional annotation analysis of lncRNAs has frequently been conducted 
based on the guilt by association principle [95]. The mRNAs co-expressed with lncRNAs 
in the regulatory network were used to perform functional enrichment analysis.  GO 
and KEGG pathway enrichment analyses were performed to identify the significantly 
enriched GO terms and pathways, using the R package ‘clusterProfiler’ [96]. The BP, 
cell components (CC), molecular function (MF), and KEGG pathways of mRNAs were 
retrieved with a cut‐off criterion of p value ≤ 0.01 and visualized by the R packages 
‘ggplot2’.

Identification of modules associated with GBM prognosis

The regulatory network of lncRNA-mRNA in this study is a typical bipartite graph. By 
identifying the largest binary group in these regulatory relationships, we could find lncR-
NAs and mRNAs which are more closely and cooperatively regulated. So we adopted 
maximal biclique enumeration algorithm to identify synergistically competitive modules 
by using package ‘biclique’ [39]. The module was a complete bipartite graph in which 
all lncRNAs are connected with all mRNAs. We set the least number of nodes in the 
mRNA or lncRNA set to two.

To identify the clinical effect of modules, the patients were randomly divided into 
a training set and a test set, based on all the expression profile data (the sample sizes 
were the same in both groups). A cox proportional hazards regression model was fit-
ted to evaluate the association between the expression profile of genes in the module 
and patient survival in GBM. The risk score was adopted to classify the risk groups, as 
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follows: riskscore = β1X1 + β2X2 + · · · + βiXi , where βi was the cox regression coeffi-
cient for genei and Xi was the expression level of genei in a corresponding patient. The 
median risk score was used as a cut-off to divide patients in the training set into high- 
and low-risk groups. This risk score model and cut-off point were also applied to the test 
set to divide the patients into high- and low-risk groups. Kaplan–Meier survival analy-
sis and the log-rank test (p ≤ 0.05) were performed to estimate the survival difference 
between the two patient groups.

Prediction of small molecule drugs for GBM treatment

D-lnc is a comprehensive platform that can detect the modification of drugs on lncRNA 
expression [82]. It contained 4960 experimentally validated lncRNA-drug regulatory 
association for Homo sapiens. Since the expression of lncRNA in hypo-EMTRN might 
be up-regulated by the influence of hypomethylated enhancer regions, we screened out 
and integrated non-redundant 2366 lncRNA-drug associations and the drugs in these 
associations could downregulate the lncRNA expression. Then, we matched the 2366 
lncRNA-drug associations in D-lnc with the lncRNAs in hypo-EMTRN to obtain the 
drug-target association network. Finally, the drug-target association network was con-
structed and illustrated by the Cytoscape software. All analyses were performed using R 
4.0.2 software.
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