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Background
Gene essentiality is a key concept in genetics with implications ranging from basic 
research on the principles of life to anti-cancer therapies [1–4]. A gene is considered 
essential for an organism if it is indispensable for its survival, that is, if its inactiva-
tion has a lethal effect. Building on this concept, the minimal genome is defined as the 
set of genetic elements necessary and sufficient to keep alive a modern-type cellular 
organism in ideal conditions, i.e. in a medium containing all essential nutrients and 
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without stresses [5]. Multiple experimental and computational methods have been used 
to propose a core of essential elements that must be present in a minimal genome. These 
attempts have followed comparative genomics strategies, manual curation of essential 
gene sets according to theoretically essential cellular functions, and systems approaches 
[6]. Moreover, systematic mutagenesis or knock-down experiments have helped deter-
mine sets of essential genes in specific organisms. These datasets have been compiled in 
biological databases such as the Database of Essential Genes (DEG) [7, 8]. Irrespective of 
the approach used and the global genome size, all essential gene sets share an approxi-
mate gene count (200–500 genes) and their contents can be mapped to three essential 
biological pillars [9]: the cellular genetic machinery (DNA, RNA and protein metabo-
lism), energetic and intermediary metabolism, and cell envelope.

There exist genomes that have been naturally minimised throughout evolution due to 
the establishment of close symbiotic relationships. The causes and consequences of this 
phenomenon, known as “genome reduction syndrome”, have been studied in detail in the 
past decade [10]. Many of these studies, focused on bacterial endosymbionts of insects, 
constitute a key tool in gene essentiality research, as they prove the viability of radically 
simplified genomes to support cellular life and give insight into which cellular functions 
need to be retained even in these conditions, an indication that they must be universally 
essential functions [6].

Reduced genomes have also been developed in vitro through elimination of dispen-
sable regions from natural genomes. These genome reduction projects are generally 
focused on organisms used as research models or of biotechnological interest, and aim 
either to explore the limits of genome minimisation or to optimise industrial strains 
for specific applications [11]. A literature review across these types of projects (Addi-
tional file 1: Table S1) shows that criteria for selection of non-essential regions in bac-
terial genomes are mostly based on functional annotation, comparative genomics, and 
essentiality classification of genes according to empirical data. Despite promising results 
from these projects, an increasing difficulty for further genome reduction beyond a cer-
tain point has been consistently found. This phenomenon may be attributed to unknown 
synthetic lethality relationships between genes [11], or under-studied negative effects 
of disturbing the three-dimensional chromosome structure [12]. It has been proposed 
that selecting a naturally reduced genome as a starting point may be advantageous, since 
it has already undergone a loss of genetic material in a timescale slow enough to allow 
evolution of robustness mechanisms that offset deleterious effects (e.g. constitutive 
over-expression of chaperones [13]), and are expected to show fewer synthetic lethal-
ity events [14]. On the other hand, some non-model organism may be of interest as a 
starting point due to intrinsic features or functionalities that are attractive for a potential 
application [12, 15]. In any of these cases, selection of a non-model bacterial platform 
for genome reduction restricts the availability of empirical data necessary for rational 
deletion design. Novel strategies are therefore needed for identification of dispensable 
genome regions.

Research lines focused on gene essentiality, minimal genomes, and large-scale genome 
reduction have a vast range of applications. On one hand, such studies are of crucial 
importance in order to define the basic fundamentals of cellular life [1, 2], a knowl-
edge which, in turn, is valuable for the development of anti-microbial and anti-cancer 
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therapies [3, 4]. Gene essentiality is also known to be associated with identification of 
human disease genes [16]. However, these studies have been most impactful in the field 
of synthetic biology, which holds the basic premise that comprehensive knowledge of the 
minimal components of a living system is the starting point for the synthesis of artificial 
life [3, 17]. One of synthetic biology’s main goals is to build a minimal cell which serves 
as a programmable chassis, i.e. a bare platform in which to implement any functionality 
of interest. Two types of strategies are proposed to achieve such chassis [18], known as 
bottom-up – the synthesis of a minimal cell from a set of basic known essential compo-
nents – and top-down – the streamlining of a natural genome down to only its essential 
parts by means of large-scale deletions. Despite much relevant progress in the former 
[19], top-down approaches are more popular nowadays given the lesser workflow com-
plexity and cost. A very similar concept, where large-scale genome reduction is also used 
as a fundamental tool, is the development of minimum genome factories [20] for biotech-
nological production of proteins or metabolites of interest. Here, sources of genomic 
instability (i.e. mobile genetic elements) and metabolic functions unnecessary for the 
specific application are deleted from the genome of industrial microorganism strains, 
while favourable features are retained [15, 21].

Accurate identification of essential genes is, therefore, of vital importance in many 
applications. However, experimental approaches are remarkably costly and slow, and 
may even be unfeasible for some organisms which are unculturable or when appropri-
ate genetic manipulation techniques do not exist [22]. For these reasons, computational 
strategies have emerged that aim to predict whether a gene is essential given a set of 
known features. This is possible because the sequences of genes that are essential are 
differentially shaped by evolution. Most remarkably, essential genes are more highly con-
served, both in the sense of there being more orthologs across diverse taxonomic groups 
(phyletic retention) [23] and sequence conservation (i.e. essential genes tend to evolve 
more slowly and be subjected to purifying selection [24], and are more likely to encode 
proteins with conserved domains [25]). Usually, many essential genes are also expressed 
at higher and less variable levels [26]. This, in turn, implies a preferential location in 
the leading strand of the chromosome [27] and differential values for multiple meas-
ures of codon and amino acid usage [26]. Regarding functionality, essential gene sets 
are enriched in functions related to the processing of genetic information [23]. In addi-
tion, essential genes tend to encode longer proteins [25, 28]. Most of the gene features 
mentioned so far can be deduced from the gene sequence, either directly or by com-
parison with databases. Some other features based on comprehensive functional annota-
tion and experimental data, such as graph centrality measures in gene networks, have 
also been associated with gene essentiality [26, 29]. In summary, gene features that may 
be used for essentiality prediction can be classified into sequence features, sequence-
derived features, and features derived from experimental data. Based on these predic-
tive variables, many models have been developed for in silico classification of genes as 
essential or non-essential (Additional file 1: Table S2). Most strategies integrate multiple 
features in order to increase model performance, and most of them make use of super-
vised machine learning methods, as well. The most commonly used algorithms for this 
purpose are support vector machines (SVM), Naïve Bayes, decision trees and logistic 
regression [30]. Regarding gene features, it has been consistently found that evolutionary 
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conservation, measured as phyletic retention, provides the greatest predictive power 
[30–32]. It has also been pointed out [28, 33–35] that models should strive to include 
only gene features that can be obtained without the need of experimental data—that is, 
exclusively sequence and sequence-derived features—in order to have a wider range of 
application, even for organisms with limited functional annotation (e.g. emergent patho-
gens for which it is key to find drug targets quickly).

In this article we describe DELEAT v0.1 (DELetion design by Essentiality Analysis 
Tool), an easy-to-use bioinformatic analysis pipeline that allows rational design of large-
scale deletions in bacterial genomes by means of previous detection of essential genes. 
Essentiality prediction is performed by a novel logistic regression model based on only 
six gene features which are not dependent on experimental data or functional annota-
tion. As a proof of concept, we used it to identify non-essential regions in the genome 
of Bartonella quintana strain Toulouse. This naturally-reduced 1.58  Mb genome was 
sequenced at the beginning of the genomics era, when the annotation tools were still not 
fully developed, and ca. 15% of its protein-coding genes lack any functional annotation.

Implementation
Data

All bacterial sequences and annotation data from DEG version 15.2 (essentialgene.org) 
were downloaded and used as reference data with known essentiality, both for the train-
ing of a gene essentiality classifier and for search of essential orthologs. These datasets 
were filtered to ensure their quality [36]: only the most recent experiment was selected 
for each species (in order to avoid bias and duplicated data in the training set), and data 
from plasmids and linear chromosomes, as well as from experiments in culture media 
other than “rich media”, were discarded. Because some datasets do not include all non-
essential gene sequences, those lacking more than half of such sequences were elimi-
nated, as well. Overall, 30 reference datasets were retained for analysis (Table 1).

Because DEG datasets include only amino acid sequence data, and both nucleotide 
sequence and strand location are needed for essentiality analysis, GenBank annotation 
files were downloaded for all selected reference organisms. As both sources (DEG and 
GenBank) do not share common identifiers across their annotations, genes were mapped 
by sequence alignment by BLASTp search, with a cut-off of 95% sequence identity and 
95% sequence length coverage.

The annotated genome of Bartonella quintana str. Tolouse [37] was obtained from the 
NCBI GenBank database (Accession number NC_005955.1).

Pipeline design
DELEAT has been designed as a pipeline which takes a GenBank annotation file (.gb) 
as initial input and performs a series of analyses resulting in a list of candidate genome 
deletions, as well as some complementary information useful for the genome reduction 
process (Fig. 1). The different steps in the pipeline communicate through modified Gen-
Bank files which are compatible with genome visualisation tools such as Artemis [38], 
so that results from every step can be inspected by the user. DELEAT has been imple-
mented for Linux systems, but can be run on any platform by means of a Docker image 
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built from the provided Dockerfile. Software dependencies are detailed in the “Availabil-
ity and requirements” section.

Step 1: predict-essentiality The first step calculates an essentiality score for each 
annotated gene in the analysed genome (Fig. 1). This score lies in the interval [0, 1] and 
represents the gene’s probability of belonging to the class “essential”, which is calculated 
from multiple gene features (see section “Gene essentiality classifier”). These features 
are:

Strand In prokaryotes, essential genes are preferentially located in the leading strand 
of the chromosome, which corresponds to the “+” strand between the ori and ter coor-
dinates (origin and terminus of replication, respectively), and to the “−“ strand on the 
other half (ter → ori). Therefore, these coordinates are needed in order to determine this 
gene feature. If they are not provided by the user, ori and ter are calculated automatically 
by the cumulative GC skew method [39].

Phyletic retention (essential orthologs) The Geptop 2.0 algorithm [32] was replicated for 
the calculation of this feature. For each protein in the genome, a BLASTp search is run 

Table 1  Reference bacterial genomes selected for this study

Organism DEG id RefSeq

Acinetobacter baumannii ATCC 17978 DEG1043 NC_009085

Acinetobacter baylyi ADP1 DEG1013 NC_005966

Agrobacterium fabrum str. C58 DEG1045 NC_003062

Bacillus subtilis 168 DEG1001 NC_000964

Bacteroides fragilis 638R DEG1034 NC_016776

Bacteroides thetaiotaomicron VPI-5482 DEG1023 NC_004663

Brevundimonas subvibrioides ATCC 15264 DEG1046 NC_014375

Burkholderia pseudomallei K96243 DEG1035 NC_006350; NC_006351

Burkholderia thailandensis E264 DEG1024 NC_007650; NC_007651

Campylobacter jejuni subsp. jejuni 81-176 DEG1050 NC_008787

Caulobacter crescentus DEG1020 NC_011916

Escherichia coli MG1655 II DEG1019 NC_000913

Francisella novicida U112 DEG1012 NC_008601

Haemophilus influenzae Rd KW20 DEG1005 NC_000907

Helicobacter pylori 26695 DEG1008 NC_000915

Mycobacterium tuberculosis H37Rv III DEG1027 NC_000962

Mycoplasma genitalium G37 DEG1006 NC_000908

Mycoplasma pulmonis UAB CTIP DEG1014 NC_002771

Porphyromonas gingivalis ATCC 33277 DEG1039 NC_010729

Pseudomonas aeruginosa PAO1 DEG1036 NC_002516

Rhodopseudomonas palustris CGA009 DEG1041 NC_005296

Salmonella enterica serovar Typhi Ty2 DEG1033 NC_004631

Salmonella enterica serovar Typhimurium SL1344 DEG1032 NC_016810

Sphingomonas wittichii RW1 DEG1028 NC_009511

Staphylococcus aureus NCTC 8325 DEG1017 NC_007795

Streptococcus agalactiae A909 DEG1042 NC_007432

Streptococcus pyogenes NZ131 DEG1038 NC_011375

Streptococcus sanguinis DEG1021 NC_009009

Synechococcus elongatus PCC 7942 DEG1040 NC_007604

Vibrio cholerae N16961 DEG1003 NC_002505; NC_002506
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against all reference proteomes and orthologs are identified by the reciprocal best hit 
(RBH) method. Once ortholog pairs are identified, a partial essentiality score is defined 
for protein i as:

Si =
N∑

j=1

Mij

Dj

where j is the reference proteome index, N is the total reference proteome count, the 
“mapping score” Mij is 1 if an essential ortholog exists in this proteome and 0 otherwise, 
and Dj is the evolutionary distance between the problem and reference species. This dis-
tance is calculated by the composition vector method [40], based on K-mer frequen-
cies in the proteome (here, K = 6). The composition vectors of all reference proteomes 
are pre-computed and provided with DELEAT in JSON format, in order to speed up 
the analysis. Once phyletic retention scores are obtained, they are scaled to the [0, 1] 
interval.

Codon usage, G + C content, length and hydrophobicity score. These gene features are 
calculated directly from the nucleotide sequences using the tool CodonW [41].

Scores for these 6 gene features are then pre-processed following the same steps as 
for the model training set, and a classifier is used to obtain essentiality scores for each 
gene annotated with a locus tag (see section “Gene essentiality classifier”). In the case of 
RNA genes and pseudogenes, they are assigned scores of 1 and 0, respectively, without 
the need for gene feature calculation. Essentiality scores are used for downstream analy-
ses in the pipeline, and they are added to the genome annotation resulting in a modi-
fied-1 GenBank file (.gbm1), which can be edited to manually correct scores if necessary. 
Results from step 1 are also exported in CSV format.

Fig. 1  Schematic representation of the DELEAT v0.1 pipeline and gene essentiality prediction algorithm
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Step 2: define-deletions The second step takes a modified-1 GenBank file as input, 
together with arguments L (minimum desired deletion length) and E (score threshold 
for considering a gene as essential). We provide general guidelines on how to adjust 
these parameters in the Discussion section. A list of deletions is proposed, where a 
deletion is defined as a region equal to or longer than L which does not contain any 
gene with an essentiality score equal to or higher than E. A default non-coding mar-
gin of 200 nucleotides around essential genes is taken into account to avoid disrup-
tion of cis-regulatory elements, although the size of this margin may also be modified 
at execution. Proposed deletions are added to the genome annotation, resulting in a 
modified-2 GenBank file (.gbm2). A CSV file is also created with information about 
each deletion: name, coordinates, fraction of genome coverage, and gene content 
(counts of pseudogenes, hypothetical proteins, and annotated genes).

Step 3: revise-deletions At this point, the user must manually curate the list of pro-
posed deletions by accepting, rejecting, modifying or renaming each one, and/or add-
ing new ones. Then, step 3 is run in order to update both the deletion data table and 
the annotation, which becomes a modified-3 GenBank file (.gbm3).

Step 4: summarise Once deletions are designed, the last steps in the pipeline are 
dedicated to providing complementary information about the genome reduction 
process. This fourth step builds a circular genome map where the original genome 
is compared to the fully reduced one, with the use of the tool pyCircos (github.com/
ponnhide/pyCircos). It also generates a report (in plain text format) which summa-
rises the deletion design process. This report includes the selected L and E param-
eters, the number of genes classified based on essentiality and gene type (RNA, 
hypothetical, annotated, pseudogene, total), and basic data about the proposed dele-
tions—total number of deletions, total size (in kb and % of genome) and total num-
ber of genes to be removed. Finally, an optimal deletion order is proposed according 
to the rule of minimising replichore imbalance at each step. A size difference large 
enough between the two halves of the genome delimited between ori and ter has been 
found to have deleterious effects on replication [1].

Step 5: design-all-primers This final step is optional and serves the purpose of 
designing PCR primers to carry out deletions by the method of megapriming [42]. 
This consists in amplifying the regions flanking the desired deletion, which are then 
concatenated and cloned into a plasmid to be introduced into the target organism, 
where the cloned sequence is integrated by homologous recombination and the 
region in between is eliminated from the genome. Primer design for this purpose 
must follow a set of rules, i.e. the flanking regions should span approximately 800 bp 
to facilitate recombination, and the cloned product cannot contain neither any target 
of the restriction enzyme used for cloning nor sequences that can be found repeated 
in the genome. Furthermore, appropriate tail sequences must be added to the prim-
ers in order for the method to function correctly (i.e. an adequate restriction site 
for cloning and complementary sequences for megapriming). Given these restric-
tions, an algorithm was designed that automatically calculates optimal primer pairs 
based on the coordinates of a deletion (Additional file  1: Figure S1). It makes use 
of Primer3-py (libnano.github.io/primer3-py), a Python API for the primer design 
tool Primer3 [43]. The primer design process is detailed in an output log file which 
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includes oligonucleotide sequences with added tails, as well as their coordinates in 
the genome. The flanking region sequences are also saved to a FASTA file. This step 
of the pipeline can be run either manually for specific deletions (design-primers) or 
automatically for all output deletions by step 3 (design-all-primers).

DELEAT usage documentation and code examples can be found in the GitHub 
repository (see “Availability and requirements” section).

Gene essentiality classifier: training and evaluation

A logistic regression model was trained in order to classify genes according to 
essentiality, based on the six gene features listed in Step 1: predict-essentiality. The 
Python package scikit-learn [44] (version 0.23.1) was used for model training and 
fine-tuning, prediction and evaluation. We followed a supervised machine learning 
approach, using DEG 15.2 datasets, where genes are labelled as essential or non-
essential (binary classification), as reference data. The logistic regression algorithm 
was chosen because it belongs to the family of linear models, which are widely used 
due to their interpretability and efficiency with very large datasets [45]. As such, it 
can be trained with the large dataset used here without the need for special compu-
tational resources, unlike other models. In addition, this algorithm is particularly 
well suited because it bases classification decisions on a probability value, which for 
this application is interpreted, and used downstream, as an “essentiality score” that 
allows filtering with any arbitrary threshold.

Gene feature selection was done based both on available literature and model eval-
uation. Among the gene features obtainable from CodonW calculations, a minimal 
set that optimises model performance was selected. As a measure of codon usage, 
we chose the effective number of codons Nc [46] because it does not need a refer-
ence codon usage table. From the available CodonW features we also selected GC 
content, protein length, and the hydrophobicity indicator Gravy. In addition, phy-
letic retention (as defined by the Geptop 2 algorithm) and strand location were 
determined. Once this gene feature list was defined, the complete table of all genes 
vs. all features was computed for each of the 30 reference organisms. The concatena-
tion of these 30 tables was considered as our reference dataset, which was split into 
60% training set and 40% test set after random shuffling.

A model training pipeline was defined as follows. First, because the feature Nc 
sometimes cannot be calculated for short genes, missing data are imputed – with the 
default method, the average of observed values. Then, all data are scaled to the [0, 1] 
interval, given that the regularised logistic regression model requires all variables to 
be in the same range. Finally, the model is trained on the training dataset, using L2 
regularisation to avoid overfitting, and rebalancing due to class imbalance (there are 
many more non-essential genes than essential). After designing this training proto-
col, a grid search was carried out to find the optimal value of C, the regularisation 
strength parameter.

Model evaluation was based on the area under the ROC curve (AUC) statistic, 
which is a well-suited metric for datasets with class imbalance and is a standard in 
the gene essentiality classification literature. Evaluation was carried out with three 
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different approaches: calculating the AUC only for the test set, with fivefold cross-
validation, and with leave-one-species-out cross-validation.

Results
Gene essentiality classifier

Calculation of reference dataset and model training Computing of the six selected fea-
tures for all genes labelled with a DEG identifier in the 30 selected reference organisms 
resulted in 91,748 total data points which were used for model training and evaluation, 
of which 79,906 are essential genes and 11,842 are non-essential. Value distributions of 
the six features for all reference genes are shown in Additional file 1: Figure S2.

A logistic regression classifier with L2 regularisation was trained on 60% of the refer-
ence dataset. This is a simple model, with only six features which can be deduced from 
gene sequences and which have low correlation among each other (Additional file  1: 
Table S3). Model coefficients (Additional file 1: Table S4) suggest that the phyletic reten-
tion feature bears most of the weight in classification decisions, which is in line with 
results obtained by Dong and co-workers [30] after assessing the integration of multiple 
indicators for gene essentiality prediction in prokaryote genomes.

Model evaluation On one hand, an AUC score of 0.8401 was obtained for the model 
when evaluated on the test set (Additional file 1: Figure S3), and fivefold cross-valida-
tion yielded AUC values of 0.8458 ± 0.005. In addition, we tested predictions following a 
leave-one-species-out protocol, where the model is iteratively trained on the data from 
all reference species except one, and tested on the left-out species. AUC values result-
ing from this evaluation (Additional file  1: Table  S5) are shown in Fig.  2, compared 
with other prediction models from the literature [32, 34–36, 47, 48]. Prediction scores 

Fig. 2  AUC scores obtained from leave-one-species-out model cross-validation. We compared our model 
with other 6 different strategies from the literature, which take into account evolutionary conservation 
only (Geptop 2); 40 (Liu et al. 2017, [40]), 91 (Nigatu et al. 2017, [41]) or 90 sequence features (Liu et al. 2020, 
[54]); 100 sequence and topology features (Azhagesan et al. 2018, [53]), or 15 sequence, topology and gene 
expression features (Cheng et al. 2014, [42]). AUC values are plotted organism-wise in the upper panel to 
illustrate the differences among models for each reference species, and aggregated for each model in the 
lower panel to show overall score distributions
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for DELEAT’s classifier are generally comparable to the other tools, and the best so far 
for 11 of the 30 reference organisms (Additional file 1: Table S5). Yet, the average AUC 
value for Geptop 2 is slightly higher than our classifier’s (0.838 ± 0.098 vs 0.834 ± 0.112), 
and the former performs the best for 13/30 organisms. We further compare results 
from both tools in the following section (“Proof of concept”) and argue that DELEAT 
shows a better general applicability (see “Discussion”). Remarkably, some of the classi-
fiers included in the comparison and which obtained similar prediction scores are much 
more complex, include features obtained from experimental data, and are presum-
ably more computationally intensive. This evidences the potential of using exclusively 
sequence-derived features and a streamlined prediction model to obtain good-quality 
gene essentiality predictions.

Proof of concept: genome analysis of Bartonella quintana str. Toulouse

B. quintana str. Toulouse, the causative agent of trench fever, was used as a model for 
the validation test of our tool. Bartonella spp. are vector-borne bacteria that infect mam-
malian erythrocytes. This genus was proposed a decade ago as a suitable model to design 
a customized endosymbiont chassis that could be used as a drug delivery system [54]. 
To do so, the genome needs to be stripped of all unnecessary genes, as well as those 
involved in virulence against the selected host.

The organism’s GenBank annotation file was used for analysis with DELEAT. Besides 
this, the only additional information needed as input are the genome replication ori-
gin (ori) and termination (ter) coordinates (1,581,000 and 723,000, respectively) and 
the name of the restriction enzyme to be used for vector cloning (BamHI in this case). 
Multiple essentiality score thresholds were explored taking into account the size of the 
resulting essential gene set. A cut-off of 0.75 was finally selected as it classified 460 genes 
as essential, a number comparable to gene sets obtained by experimental methods for 
other organisms. A minimum deletion length needs to be chosen based on the length of 
the genome, as small deletions will not have relevant consequences on the replichores 
equilibrium. We chose a minimum of 7000 bp, which is about 0,5% of the genome size of 
our model B. quintana (1.5 Mb). All analyses were run on a laptop with Ubuntu 18.04.3 
as the operating system, 4 GB RAM and Intel® Core™ i7-4510U 2.00 GHz CPU (2 cores 
with hyper-threading).

With an essentiality score threshold of 0.75, 460 genes were identified as essential in 
the first step of the pipeline, of which 408 are protein-coding and 52 are RNA genes. This 
set of genes was compared to the Core Minimal Genome (CMG) as defined by Gil et al. 
[6, 9] as a means of validation (Additional file 1: Table S6), since no experimental data 
exists on gene essentiality for this organism. Genes involved in metabolism and mem-
brane transport were excluded from the comparison, because transporters were not 
taken into account in the CMG and it is already known that there are many alternative 
minimal metabolisms [6]. Of 158 genes that were checked, 139 were identified as essen-
tial in B. quintana’s genome by our classifier (i.e. 88% sensitivity). Five of the 19 genes 
that DELEAT classified as non-essential were, in fact, described as putatively non-essen-
tial in the CMG. Additionally, we selected 59 B. quintana genes that we had previously 
classified as involved in pathogenicity or prophage-related, to use them as a reference 
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set of non-essential genes. Among them, 56 were correctly classified by DELEAT. The 19 
misclassified essential genes (false negatives) and the three pathogenicity-related genes 
misclassified as essential (false positives) were modified accordingly in the annotation 
for the subsequent pipeline steps, by manually correcting the essentiality scores in the 
modified-1 GenBank file (.gbm1).

In addition, gene essentiality prediction results were compared with those obtained 
by Geptop 2 for the same organism, using the default score threshold of 0.24 and com-
paring only protein-coding genes (the only ones analysed by Geptop 2). Of 408 pro-
tein-coding genes identified as essential by DELEAT, 336 (82%) are labelled equally by 
Geptop 2. Approximately half of the 44 genes classified as essential by Geptop 2 but 
not by DELEAT are involved in metabolic pathways, most of which are incomplete in 
the reduced metabolism of B. quintana, based on the data obtained from KEGG data-
base [50, 51] and, therefore, non-essential as their products can be obtained from the 
mammalian host. Essentiality prediction through ortholog mapping labels these genes 
as essential because, in most free-living species, these pathways are needed for sur-
vival. Therefore, only a multiple-feature strategy can identify this type of non-essential 
genes. On the other hand, genes classified as essential only by DELEAT are enriched 
in “hypothetical protein” and “domain of unknown function” annotations. Through 
BLASTp search, we found one third of these to have conserved orthologs in other spe-
cies, mostly restricted to the order Rhizobiales. This suggests that they may be taxon-
specific essential genes, which cannot be identified as such by ortholog mapping if there 
are no orthologs among the selected reference species, but exhibit other gene features 
which reveal them as essential. In short, integration of evolutionary conservation (by 
ortholog mapping with BLASTp) with other five gene features (chromosome strand 
location, codon usage, GC content, protein length and hydrophobicity) improves predic-
tive power, as has been pointed out before [30], particularly for species-specific essential 
and non-essential genes.

Execution of the define-deletions step with parameters E = 0.75 and L = 7000 yielded 
a list of 41 proposed deletions (Additional file 1: Table S7), spanning a total length of 
509.9 kb (32.3% of the genome) and averaging 12.4 ± 5.6 kb. Several of them match dele-
tions that were previously defined by manual inspection of functional annotation data in 
search of putative horizontally acquired regions. In fact, three of the proposed deletions 
correspond to the three pathogenicity islands which have been described in B. quin-
tana’s genome (Additional file 1: Figure S4) – the Vomp (variably expressed outer mem-
brane proteins) locus, a type V secretion system comprising multiple adhesins; the type 
IV secretion system VirB/VirD4 locus including the adjacent Bep effectors (Bartonella 
effector proteins), which are involved in endothelial cell invasion, and the type IV secre-
tion system Trw locus, responsible for intra-erythrocytic parasitism [52].

To test operation of step 3, we performed a manual curation of the set of proposed 
deletions and selected seven to be removed from the list, as they contained a DNA 
recombination system – which is necessary for a genome reduction process – and sev-
eral membrane transporters. This left a total of 35 deletions with an average length of 
12.9 ± 5.9 kb and a total of 452.8 kb (28.6% of the genome).

Execution of the summarise step produced a circular genome map displaying the 
potential genome reduction, which is shown in Fig.  3. According to the automatically 



Page 12 of 17Solana et al. BMC Bioinformatics          (2021) 22:444 

generated report, the essential gene count of the complete genome is 476, of which 52 
are RNA genes and 34 have no functional annotation. The non-essential gene count is 
912, of which 115 are pseudogenes and 162 encode “hypothetical proteins”. 492 of these 
non-essential genes are found within the 35 designed deletions. In addition, the report 
indicates an ideal order for deletion execution that minimises replichore size imbalance 
at each step.

Finally, the design-all-primers command was used for automatic PCR primer design. 
Repetitive regions and restriction enzyme target sites were successfully detected by the 
algorithm, and a set of appropriate PCR primers was generated in approximately one 
second for each deletion.

Discussion
DELEAT v0.1 aims to be a useful tool for bacterial genomics, particularly in the early 
stages of genome reduction projects for any application. The pipeline includes a novel 
gene essentiality prediction model, in the form of a logistic regression classifier trained 
on datasets from DEG 15.2 and with only six sequence-derived gene features.

Depending on genome size, the complete DELEAT pipeline can be executed in approxi-
mately an hour on a standard personal computer running Linux. For organisms with a 
small genome such as B. quintana str. Toulouse (1.58 Mb), it can take as little as 15 min. 

Fig. 3  Comparison of original (exterior rings) and reduced (interior rings) genomes, according to proposed 
deletions. In each case, protein-coding genes in the + and – strands are shown in purple and green, 
respectively; RNA genes are represented in black, and a GC skew graph (100,000 bp window and 100,000 bp 
step) is included, as well. In between both genomes, proposed deletions are shown in red
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The first step in the pipeline (predict-essentiality) comprises most of the total calculations, 
and therefore takes the longest to run (the execution time was 14:05 min in this exam-
ple, running the essential orthologs search with 4 threads). Our novel implementation 
of the Geptop 2 algorithm improves efficiency relative to the original one. On one hand, 
the inclusion of pre-calculated composition vectors for all reference proteomes notably 
speeds up the analysis, since only the reference species composition vector needs to be 
computed at runtime. It also makes use of the native BLAST + job concurrency in threads 
instead of parallelising Python code, which has a lower computational cost. All things 
considered, the new implementation can be run faster and with less memory usage.

As opposed to other gene essentiality prediction tools, step 1 of DELEAT provides 
scores for all genes annotated in a GenBank file, including non-coding genes. This 
allows the determination of non-essential regions in the genome directly based on 
results from this step. Regarding deletion design parameters, we recommend explor-
ing different values of E by comparing the resulting essential gene set size to sets 
determined experimentally in the literature, taking into account that raising the cut-
off value will minimise false positives and lowering it will reduce false negatives, the 
latter being a more conservative approach from the perspective of genome reduction 
(i.e. lesser probability of eliminating a gene that is essential). The L parameter can be 
explored by visually inspecting the proposed deletions on the genome of interest. We 
suggest taking into account the relative size of the complete genome, as large dele-
tions can cause replichore imbalances during replication and have deleterious effects.

It is worth noting that the precise coordinates of each deletion in the genome are 
ultimately dependent on primer design, and the values given by DELEAT at the pro-
pose-deletions step correspond to the longest possible span. These coordinates are the 
ones used to generate the circular genome map in step 4.

The gene essentiality classification model developed here heavily relies on evolution-
ary conservation as a predictive gene feature, which is known to be the best indicator in 
prokaryotic genomes [30]. However, it also integrates other sequence-derived features 
with the aim of overcoming the limitations of exclusively using phyletic retention – and, 
in general, of inferring gene essentiality from comparative genomics strategies. Wide-
spread conservation of a gene does not necessarily imply that it is essential [53], since 
non-orthologs can fulfil the same essential function in different organisms (i.e. non-
orthologous gene displacement), and very divergent orthologs may not be identified as 
such because of low sequence identity. Most remarkably, the predictive power of phyletic 
retention decays with evolutionary distance between the query and the reference spe-
cies, and homology mapping is inherently unfit for the identification of species-specific 
essential genes [25, 29–31]. Several other essentiality prediction models have previously 
been developed that also integrate evolutionary conservation with other gene features 
[25, 28, 33, 42, 54–57]. Analysis of gene essentiality predictions in B. quintana str. Tou-
louse suggests that our classifier succeeds in improving these limitations, while being 
based on a very simple model with easy-to-calculate gene features, both in the sense of 
requiring little annotation data and of computational speed.

AUC scores from leave-one-species-out cross-validation for DELEAT’s classifier are very 
similar to those for Geptop 2, which is explained by the fact that this feature is included in 
DELEAT’s logistic regression model and has a strong weight in classification. However, by 
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integrating other gene features, an essentiality score is provided for every analysed gene, 
unlike the Geptop 2 algorithm, which assigns a score of 0 to all genes lacking any essential 
ortholog among the reference organisms. Because this is the case for more than half of 
the genes studied here, it can be argued that DELEAT’s classifier is globally more informa-
tive. Furthermore, it has the potential to avoid false negatives among essential genes which 
do not have essential orthologs in the reference species but can be identified as such by 
analysis of other gene features, and species-specific essential genes in general. This model 
design may also prevent false positives, as a gene which is largely evolutionarily conserved 
may not be essential in a particular organism, which can be detected through the rest of 
gene features included here (e.g. low GC content, location in the lagging strand, etc.).

Because the essentiality analysis performed by DELEAT is based on sequence-derived 
features alone, this tool is applicable to any bacterial species having a GenBank annota-
tion file, even if functional annotation of the genome is not comprehensive. Nonetheless, 
manual curation of results is strongly encouraged, as in silico gene essentiality classifica-
tion tools, no matter how accurate the algorithm, are bound to yield some false positives 
and, remarkably, false negatives, which must be avoided at all costs in a genome reduc-
tion project. As a limitation, the essentiality analysis performed by DELEAT is done on a 
gene-by-gene basis, an approach which is unable to take into account gene interactions 
that may lead to synthetic lethality events.

Finally, it is worth noting that the later sections of the pipeline can be useful beyond 
the canonical use of DELEAT, e.g. starting at step 2 (define-deletions) from a GenBank 
file containing essentiality scores obtained with a different tool, using only step 4 (sum-
marise) to build a circular genome map from a list of deletions determined by any other 
means, or running step 5 (design-primers) to perform PCR primer design for deletion of 
any desired genome region.

Conclusions
Building on the idea of in silico gene essentiality prediction, we have developed a tool 
that makes use of these predictions to define contiguous regions in a bacterial genome 
which can be considered non-essential and, therefore, are deletion candidates in the 
context of genome minimisation efforts. Our tool allows classification of all genes in a 
bacterial genome according to essentiality, automatic design of large-scale genome dele-
tions based on this data, and assistance in the genome reduction process through com-
plementary information. DELEAT incorporates a novel logistic regression model for in 
silico gene essentiality prediction, which is based on six sequence-derived gene features 
and provides AUC values competitive with other, more complex models in the literature. 
Finally, we have applied our tool to the analysis of the genome of a non-model bacterial 
organism, Bartonella quintana str. Toulouse, and shown its potential for rational, auto-
matic design of genome deletions in the context of lack of full functional annotation. 
We hope DELEAT will be valuable for researchers in the field of bacterial genomics, and 
encourage its use even if only as a complementary source of information, given its ease 
of installation and use.
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Availability and requirements

Project name: DELEAT.
Project home page: https://​github.​com/​jime-​sg/​deleat.
Operating system(s): Linux.
Programming language: Python.
Other requirements: Python (python.org) 3.7.6, BLAST + (blast.​ncbi.​nlm.​nih.​gov/​Blast.​
cgi?​PAGE_​TYPE=​Blast​Docs&​DOC_​TYPE=​Downl​oad)2.9.0, CodonW (codonw.​sourc​
eforge.​net) 1.4.4, Vmatch (vmatch.​de) 2.30, Artemis (sanger.​ac.​uk/​tool/​artem​is) 18.1.0, 
Biopython (biopy​thon.​org) 1.77, Joblib (joblib.​readt​hedocs.​io) 0.15.1, Matplotlib (matpl​
otlib.​org) 3.2.2, more-itertools (more-​itert​ools.​readt​hedocs.​io) 8.4.0, NumPy (numpy.​
org) 1.18.5, pandas (pandas.​pydata.​org) 1.0.5, Primer3-py (libna​no.​github.​io/​prime​
r3-​py) 0.6.0, PyCircos (github.​com/​ponnh​ide/​pyCir​cos), and scikit-learn (scikit-​learn.​
org) 0.23.1. All dependencies are available as packages through the management sys-
tem Conda (docs.​conda.​io) and can be installed automatically in a Conda environment 
as detailed in the documentation. A Dockerfile is also provided which allows to build 
a Docker image with all dependencies, allowing for cross-platform execution. License: 
GNU GPL. Any restrictions to use by non-academics: none.
    

Abbreviations
AUC​: Area under the ROC curve; CMG: Core minimal genome; CSV: Comma-separated values; DEG: Database of essential 
genes; DNA: Deoxyribonucleic acid; DELEAT: DELetion design by Essentiality Analysis Tool; JSON: JavaScript object nota‑
tion; PCR: Polymerase chain reaction; RNA: Ribonucleic acid.
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