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Background
Admixture has played an important role in shaping patterns of genetic variation among 
humans and other species. It is of interest at both population and individual levels and 
has motivated a large body of research into population demography [1, 2] and popula-
tion stratification [3] in association studies. It has also fueled public interest in direct-to-
consumer services that provide estimates of ancestry proportions. In such applications, 
a consumer typically submits a DNA sample through a saliva collection kit and receives 
an individual-level report of their ancestral make-up based on genotype data.

Over the past decade, many tools have been developed to infer individual-level ances-
try. One set of methods only infers global ancestry proportions, some of which model 
the probability of the observed genotypes using ancestry proportions and population 
allele frequency [4], while others use cluster analysis and principal component analysis 
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[5]. Another set of methods infer ancestral origin for genomic segments, which are then 
averaged over the entire genome. These methods use either SNPs (Single Nucleotide 
Polymorphisms) or a sequence of SNPs (i.e. haplotypes) as the observed variables, and 
estimate ancestry in each segment of the genome (called local ancestry). Compared to 
SNPs, haplotypes contain richer information, and can be especially powerful in differen-
tiating geographically close populations [6]. Among existing haplotype-based methods, 
both Chromopainter [6] and HAPMIX [7] use the Li and Stephen’s haplotype copying 
model [8], whereas RFMix [9] uses a random forest approach, training classifiers on hap-
lotype features in a reference panel and using a linear-chain conditional random field to 
model the conditional distribution of local ancestry given observed haplotypes.

As the size of public and private genotype datasets grows (e.g., Ancestry has processed 
over 15 million human genomes), there is an increased need for methods that can effi-
ciently and accurately perform ancestry inference on a large number of samples. Here we 
describe ARCHes (Ancestry inference using Reference labeled Clusters of Haplotypes), 
a method that leverages reference panel labeled haplotype models to estimate diploid 
ancestry locally throughout the genome. ARCHes first uses a large cohort of unlabeled 
haplotypes to create BEAGLE haplotype-cluster models [10], which are efficient at phas-
ing and measuring haplotype frequency, for each of a number of local “windows” across 
the genome. The haplotype clusters of the BEAGLE models are then annotated with 
the probability that haplotypes from various populations belong to those clusters. For 
a given test individual, ARCHes computes a probability distribution over the possible 
population assignments for the test individual’s two haplotypes, and uses a genome-wide 
hidden Markov model to assign diploid ancestry.

Previous studies have shown that RFMix [9] outperforms ADMIXTURE [4] in both 
global and local ancestry estimation [11]. RFMix generally performs well at assigning 
ancestry at continental level but, we will demonstrate, can struggle at regional level 
assignment, where populations may not be very differentiated. ARCHes is capable of 
differentiating nearby populations and performing recent ancestry inference (e.g., 1–12 
generations ago) at a much finer scale.

Results
A summary of our approach

Our approach can be divided into two major phases, training and testing. The training 
phase consists of (1) building BEAGLE [10] haplotype models from a large cohort of 
phased data that do not have population labels, and (2) “annotating” those models with 
population-haplotype information from a separate population reference panel consisting 
of unphased examples each labeled with a population. We build a haplotype model for 
each 1001 windows that collectively cover the entire autosome (each window is about 75 
SNPs and 3.5 cM). These models are built from phased data, which can be phased with 
BEAGLE or other phasing software. In our experiments, we build them from a cohort 
of 50,000 individuals (100,000 haplotypes) phased with Eagle [14]. The haplotype mod-
els are directed acyclic graphs with nodes that represent clusters of similar haplotypes 
and have probabilistic transitions between nodes. Next in the training phase, we record 
how likely the genotypes of an unphased reference panel are to belong to each of these 
haplotype clusters. We refer to this process as annotating the haplotype models—it gives 
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us a probability for each node in the haplotype models and each population in our refer-
ence panel, that a haplotype from that population belongs to the haplotype cluster the 
node represents. Once the training phase is complete, we use only the annotated hap-
lotype models which are fixed throughout the testing phase. The testing phase involves 
computing the likelihood that a test genotype has a haplotype belonging to any haplo-
type cluster (node in the models) and, using the population annotations for the cluster, 
computing the likelihood that the two haplotypes of the test genotype are explained by 
any pair of populations. We then use a genome-wide hidden Markov model (HMM) to 
model the changes in population assignment across the genome that best explain the 
test genotype.

The details of this approach are given in the Methods section below. We emphasize 
that the training phase need only be carried out once, and that the testing phase can 
then be applied to efficiently classify an arbitrary number of test genotype examples. If 
we obtain new population reference panel examples, we can use them to supplement the 
model annotations, even introducing new populations, but we must retrain completely 
to change the unlabeled phased cohort or window definitions.

Accuracy for single‑origin individuals

We built our reference panel using genotypes from proprietary data representing 32 
population regions. We then applied ARCHes on individuals from 1000 genomes [12] 
and HGDP [13], representing 15 regions. (Lists of populations and associated sample 
sizes for both training and testing data are in Additional file 1: Tables S1 and S2, and 
we describe all experimental methodology in detail, including the parameter settings for 
both ARCHes and RFMix in the Methods section below.) ARCHes predicts on average 
66.1% of the ancestry in this test set to be from the correct region (Fig. 1). The rest of the 
ancestry mainly came from nearby regions (Additional file 1: Fig. S2). ARCHes performs 
well at separating different countries within Africa, Europe, and Asia. In comparison, 
RFMix predicts on average 43.5% of the ancestry to be from the correct region, and the 
rest of the ancestry mainly came from neighboring regions, suggesting that RFMix is 
accurate for continental level assignments but performs less well at finer scales (Table 1).

Accuracy for simulated admixed individuals

In order to evaluate the global and local accuracy on admixed individuals, we need to 
know the correct ancestry throughout the genome, so we manufactured test examples 
from the 1000 Genomes and HGDP data. We simulated 100 individuals using forward 
simulation with a pedigree mimicking Latino population history in which founders 
admixed 12 generations ago with 45% Native American, 50% European and 5% African 
ancestry. This dataset tests ARCHes’s power to differentiate continental level admixture 
as well as its ability to differentiate the subregions that an individual’s continental ances-
try comes from.

To evaluate overall global performance on these test sets, we compute concordance 
as the size of the intersection between true and estimated proportions, which is the 
sum, for each population, of the smaller of the true global proportion and the esti-
mated global proportion. We measured local accuracy as the proportion of genomic 
windows with correct diploid population assignments regardless of phase, with half 
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credit given to a window assignment that has one population correct but the other 
incorrect. We find that ARCHes accurately recovers both global ancestry assignments 
and diploid local ancestry assignments, with average concordances of 72.3% and 
47.8%, respectively (Additional file 1: Fig. S4). RFMix achieves 65.7% global ancestry 
concordance but failed to infer the local assignments correctly, with average diploid 

Fig. 1  Boxplot of the estimated ancestry proportions for single-origin individuals from each testing 
population comparing ARCHes and RFMix

Table 1  The performance of ARCHes and RFMix on various test sets

Global concordance is the intersection between the estimated amounts for each region and the amount present in a test 
example, and local concordance is the number of correct assignments to each genomic window. For single-origin test 
examples, these measures are the same

Test set group Test set Global concordance, 
average over test sets 
(proportion of test sets 
with superior performance)

Local concordance, average 
over test sets (proportion 
of test sets with superior 
performance)

ARCHes RFMix ARCHes RFMix

1000 Genomes and 
HGDP

Single-Origin Testset 
Examples

66.1% (13/15) 43.5% (2/15) 66.1% (13/15) 43.5% (2/15)

Simulated admixture 45% Native American, 
50% European, 5% 
African

72.3% (1/1) 65.7% (0/1) 47.8% (1/1) 18.5% (0/1)

Simulated admixture 
from 16 Pairs of neigh-
boring regions

50%-50% admixed (2 
simulation founders)

60.1% (11/16) 48.9% (5/16) 58.8% (14/16) 41.8% (2/16)

Approx. 25%-75% 
Admixed (4)

63.6% (13/16) 51.8% (3/16) 60.1% (14/16) 44.7% (2/16)

Approx. 12.5%-87.5% 
Admixed (8)

65.2% (13/16) 51.2% (3/16) 62.6% (14/16) 46.0% (2/16)

Approx. 6.25%-93.75% 
Admixed (16)

66.2% (14/16) 50.0% (2/16) 64.5% (14/16) 47.0% (2/16)
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local ancestry concordance of 18.5%. This is due to difficulties that RFMix has in dif-
ferentiatiating subregions within Europe and between Maya and Peru. The continen-
tal-level global and local concordance is 89.1% and 64.1% respectively for ARCHes, 
and 73.1% and 34.2% respectively for RFMix.

Distinguishing sub‑continental regions

Next, we simulated genotypes for individuals with ancestry from 16 pairs of neigh-
boring regions to test each approach’s ability to distinguish between them at global 
and local genomic scales. Specifically, we construct test examples that are 1/2, 1/4, 
1/8, or 1/16 from one region of the pair and the rest from the other region.

We measure precision and recall for each of the 11 unique regions in the set of 
16 pairs (Fig.  2). Precision is the amount of correctly identified ancestry divided by 
the amount estimated for that region and recall is the amount of correctly identified 
ancestry divided by the total amount of ancestry from that region that is present in 
the test example. ARCHes outperforms RFMix in terms of both precision and recall in 
eight of the 11 regions, and outperforms it in terms of precision in two more, and in 
terms of recall in one.

Overall, ARCHes achieves more than 50% global ancestry concordance and diploid 
local ancestry concordance (Additional file 1: Fig. S3). There is only a small difference 
between global ancestry concordance and diploid local ancestry concordance on this 
test set, indicating that ARCHes achieves its global ancestry accuracy by estimating 
local ancestry accurately. It is also encouraging that ARCHes is capable of differenti-
ating populations not only on a continental level but also on sub-continental and even 
country levels.

Fig. 2  Precision/Recall for each population calculated from estimated ancestry proportions of simulated 
admixed individuals with ancestry from a pair of neighboring population
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Separate training and test phases to facilitate high‑throughput ancestry estimation

The ARCHes software represents a change in design that explicitly separates two phases, 
first model creation and annotation and second ancestry estimation, in order to make 
ancestry estimation both efficient and distributable. The first phase, learning the hap-
lotype models from a large unlabeled training set and then annotating them with the 
reference panel populations, need only be carried out once. In order to estimate ances-
try on subsequent instances, ARCHes software need only reload models and can be run 
on new examples at any time, distributed as necessary, and the running time depends 
only on the number of the number of individuals to be processed and labeled, not the 
size of the reference panels. In contrast, the training and testing processes of RFMix are 
not separate and require significantly more time per individual. We compare ARCHes’s 
runtime and memory usage with RFMix in Additional file 1: Table S3.

Discussion
Ancestry inference in large, heterogeneous sample sets is becoming increasingly impor-
tant for academics, clinicians, and consumers. We developed a new approach, ARCHes, 
that models ancestry using rich haplotype models coupled to genome-wide information 
sharing. Our experiments show that ARCHes performs decisively more accurately than 
a state-of-the-art approach, in terms of both global and local estimation, both within and 
among continental scales, and among varying levels of admixture. Moreover, because 
our approach separates the time-consuming training step from the fast testing step, it is 
well-suited to apply to large scale databases.

Our approach works because haplotypes contain rich information for distinguishing 
subpopulations, and ARCHes’s haplotype model annotations allow it to quantitatively 
compare haplotypes to those of several reference panels without requiring that those ref-
erence panels be phased, contain haplotypes that are identical to that of an individual, 
or have similar size or diversity. Indeed, ARCHes can achieve high accuracy with ref-
erence panels containing fewer than 50 genotype examples (Additional file 1: Fig. S5). 
We also note that ARCHes can make use of admixed reference panel members. A gen-
otype example for which we know the diploid (or haploid) population in just a subset 
of genomic windows can be used in a reference panel to annotate only those windows 
(though we don’t use this technique in our experiments here).

Our benchmark experiments show that ARCHes is able to capture admixture from a 
few to several generations removed by learning the genomic scale of admixture on an 
individual-by-individual basis: more recently admixed samples have relatively longer 
contiguous blocks of ancestry. This shows that ARCHes is able to be applied broadly 
without specific, a priori, parameter tuning. This feature is important for analysis of 
large, heterogeneous databases where it may be difficult to know the specific history of 
all samples involved.

ARCHes provides a fast and accurate method for inferring unphased local ancestry 
and combining that into estimates of diploid global ancestry. There are nonetheless sev-
eral opportunities for future research. First of all, the confidence intervals provided by 
ARCHes are underestimated; it is possible that they can be improved by using a recali-
bration procedure on simulated data. Second, despite the fact that using unphased local 
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ancestry in ARCHes helps it to overcome phasing errors, it may be desirable to provide 
phased local ancestry in some circumstances. Because of the modular nature of the 
ancestry hidden Markov model, it may be possible to extend this framework to provide 
phased local ancestry estimates.

Conclusions
One of the keys to estimating population-level admixture is to measure the similarity 
between the haplotypes in an individual of unknown origin and those of a reference 
panel. ARCHes leverages the data from hundreds of thousands of haplotype instances 
to create haplotype models, and uses a novel approach for employing those models to 
carry out the comparison. ARCHes can then efficiently estimate population assign-
ments across the genome for large test sets. Our experiments show that across varying 
amounts of recent admixture, ARCHes outperforms RFMix, a state-of-the-art method 
in population genetics for local ancestry inference, both in terms of estimating genome-
wide population admixture amounts, and at labeling specific genomic regions.

Methods
Overall ARCHes method

Our approach begins with dividing the genome into a large number of small windows 
(e.g., 3–4 centimorgans each), such that, in a recently admixed individual, each of the 
maternal and paternal haplotypes in a given window are likely to each come from a sin-
gle population. For each window, we construct a BEAGLE haplotype-cluster model [10] 
from a large, unlabeled training set of haplotypes. A BEAGLE haplotype-cluster model 
is a directed acyclic graph with haplotype represented as a path traversing the graph. 
Each node of the graph represents a cluster of haplotypes. A BEAGLE model is often 
interpreted as Markov model where the states are the nodes (Additional file 1: Fig. S1), 
and thus as an “arbitrary order Markov model” of SNPs along a haplotype. Using a ref-
erence panel of genotypes from individuals whose ancestry is known in each window, 
we then annotate each state in the haplotype models with the probability that genotype 
sequences from a given population belong to the haplotype cluster represented by the 
state (Fig. 3).

Given a new potentially admixed genotype sequence x , we assume that the ancestors 
of x are all ultimately from the K  origin groups, and that x is admixed recently enough 
that haplotypes from each group are longer than genomic windows mentioned above, 
and those haplotypes are much more likely to span an entire window than part of one—
i.e., the size of the windows is chosen based on the expected age of admixture. We run 
a genome-wide hidden Markov model (HMM) whose hidden states are the true assign-
ment (population label pairs) in each window. The emission probabilities are the prob-
ability distributions of diploid population assignments for each window arising from 
the annotated BEAGLE models and the transition probabilities (the probability that the 
population assignment will change at any point along the genome) are learned through 
an expectation–maximization (E–M) algorithm. We assign diploid ancestry to each win-
dow and estimate the global assignment based on the Viterbi path through this HMM. 
We also sample paths through the HMM to estimate the uncertainty of assignment 
amounts.
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We describe our detailed method in the following sections, and provide pseudocode 
in Additional file 1: Appendix S1.

Annotating haplotype cluster models

We follow Browning and Browning [10] in building haplotype cluster models. Briefly, 
we divide the genome into W partially overlapping windows with approximately the 
same number of SNPs. Within each window, we build a haplotype cluster model from 
a large, unlabeled set of training phased haplotypes. For simplicity, we restrict to bial-
lelic variants, and code them as 0 and 1. Building this haplotype cluster model from 
a large, unlabeled set of individuals provides a “background” of haplotype diversity 
against which we can measure the informativeness of different haplotypes.

With a haplotype cluster model built for each window, we can then annotate popu-
lations using the haplotype cluster model. Recall that each path through a BEAGLE 
model corresponds to a realization of a haplotype, and each node at a given SNP rep-
resents a cluster of haplotypes that are similar near that SNP. For the genotypes of a 
reference individual in window w, xw, we compute the probability that the individual’s 
two haplotypes pass through two specific nodes in the graph, u and v, at SNP d,

where we compute Pd(u, v|xw) and P(xw) using a modification of the forward–backward 
algorithm for hidden Markov models, treating the node as a hidden state (see Additional 
file 1: Appendix S1 for pseudocode). In the following, we will refer to the HMM used 
to analyze the BEAGLE models as the haplotype HMM, and its properties as haplotype 
emission probabilities, and haplotype probabilities. This contrasts with the ancestry 

Pd(u, v|xw) =
Pd(xw ,u, v)

P(xw)

Fig. 3  Illustration of annotating haplotype-cluster model representing one genomic window with D SNPs (in 
our experiments D is about 75–80, about 3-4 cM). Each box illustrates the expected proportion of haplotypes 
in all the genotypes of different populations that include a certain model state at a certain level
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HMM we use to smooth ancestry estimates across the genome, which is described in the 
subsequent section.

We then marginalize over one of the haplotypes of each diploid to create a haplotype 
posterior probability that the genotypes xw in window w passes through node u at SNP 
d,

Finally, we annotate a node u by its average haplotype probability in a set of individuals 
belonging to a reference population p, Rp = {xi,p,w , i ∈ 1, 2, . . . , np} where np is the total 
number of reference samples in population p. Then, we compute

This equation gives us the probability that an individual drawn from population p will 
pass through node u at SNP d of the haplotype cluster model for window w.

During the annotation process, we may choose to downsample the genotypes of the 
reference panel by setting some genotypes at random to ‘missing’ and annotating states 
of the model by summing over the possible genotypes at those locations. Doing this has 
the effect of annotating states that represent haplotypes that are similar to those of a 
reference genotype, but not exactly the same, and is intended to boost performance in 
reference panels that have few representative examples. We may use the same reference 
panel individual several times in the annotation process, with a different downsampled 
genotype each time.

Ancestry emission probabilities for test individuals in windows

With Eq. (1) in hand, we can compute the probability that a test individual’s genotypes in 
a given window w descend from a specific pair of populations. Letting t be the unphased 
genotype of our test individual, we first compute the probability of t given that the two 
haplotypes in window w belong to clusters u and v of the haplotype cluster model at SNP 
d,

where Pd(tw ,u, v) is computed using the haplotype forward–backward algorithm and 
Pd(u, v) is obtained by multiplying the transition matrices of the haplotype cluster model 
up to SNP d (equivalent to running the haplotype forward algorithm up to SNP d with 
all haplotype emission probabilities set equal to 1).

We then want to know the probability that the individual’s two haplotypes come from 
populations p and q using the information around SNP d. We compute this quantity by 
first computing the probability that a haplotype passes through nodes u and v and SNP 
d of window w given underlying populations p and q by averaging over the equally likely 
combinations of whether node u corresponds to population p and node v corresponds to 
population q or vice versa,

Pd(u|xw) =
∑

v
Pd(u, v|xw)

(1)Pd(u|p) =
1

np

∑np

i=1
Pd

(

u|xi,p,w
)

Pd(tw|u, v) =
Pd(tw ,u, v)

Pd(u, v)
,
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Pd(u, v|p, q) =
1
2
(Pd(u|p)Pd(v|q)+ Pd(u|q)Pd(v|p)).

Note that this result is equivalent to assuming that the two haplotype clusters that make 
up a diploid sample are independent, and that the two populations that make up those 
haplotypes are also independent.

Now, we use the law of total probability to average over all haplotype clusters at SNP 
d, and compute the probability that the individual’s haplotype clusters at that point arise 
from populations p and q,

Pd(tw |p, q) =
∑

u,vPd(tw |u, v)Pd(u, v|p, q).

This probability weighs similarity to haplotypes in population p and q more strongly for 
SNPs closest to SNP d in window w, because we have no a priori knowledge of which 
part of a window is most informative about population membership, we finally compute 
our ancestry emission probability for a window by averaging over the population prob-
ability for every SNP in the window,

where D is the total number of SNPs in window w. This process can then be repeated for 
every window in the genome to obtain the probability of the test individual’s genotype in 
each window, given that the two haplotypes arose from any pair of populations p and q.

Smoothing ancestry estimates using a genome‑wide ancestry hidden Markov model

In principle, the ancestry emission probabilities computed in the previous section could 
be used to compute maximum likelihood estimates of diploid local ancestry in each win-
dow, one at a time. However, doing so would result in highly noisy ancestry estimates. 
Instead, we share information across the genome using an additional layer of smoothing 
via a genome-wide hidden Markov model (Fig. 4). Moreover, because ancestry segments 
from recent admixture are expected to be longer than a single window, this model helps 
reduce false ancestry transitions.

If we wish to assign ancestry to K  populations, the hidden states of our hidden Markov 
model are the 

(

K
2

)

+ K  possible unphased ancestry pairs, (p, q) , with ancestry emission 

probabilities window w given by Eq. (2). Because we model unphased diploid ancestry, 
we define a population pair as unordered, i.e. (p, q) is the same ancestry assignment as 

(2)P(tw|p, q) =
1

D

∑

d
Pd(tw|p, q)

Fig. 4  Illustration of genome wide HMM where each window has a series of emitting states, which 
corresponds to a population assignment (p,q) with 1 ≤ p ≤ q ≤ K 
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(q, p). Our ancestry hidden Markov model assumes that between windows ancestry can 
change for one of the two haplotypes with probability τ . The assumption that ancestry 
switches only for one of the two haplotypes within an individual is both biologically real-
istic (assuming individuals are admixed relatively recently) and greatly reduces the com-
plexity of the hidden Markov model. Thus, a change occurs from (p, q) to 

(

p
′
, q

′
)

 to any 

pair such that exactly one of p′ or q′ is different from p or q . Each new ancestry pair is 
drawn with probability proportional to the stationary probability of that ancestry 
pair,πp,q . In full, the transition probabilities are

where the normalizing constant Zp,q is given by summing over all accessible unphased 
haplotype pairs.

Between chromosomes, both ancestry pairs are allowed to change, and the ancestry at 
the start of each chromosome is drawn independently from that individual’s global dis-
tribution of ancestry pairs, πp,q . For a more formal description of how changes between 
chromosomes are handled, see Additional file 1: Appendix S1.

We initialize the πp,q to a uniform distribution and τ to some low value, and use a 
modified Baum-Welch algorithm to update πp,q and τ (see Additional file 1: Appendix 
S1). Empirically, we observed a tendency to overfit by estimating a large τ parameter, 
resulting in inference of a large number of different ancestries; thus we run a fixed num-
ber of update steps, rather than stopping at convergence.

Estimating ancestry proportions in individuals

In principle, the value πp =
∑

qπp,q could be used as an estimate of the admixture pro-
portion from population p in an individual. However, we instead opt to use a path-based 
approach that also allows us to obtain credible intervals of the ancestry proportions con-
ditioned on the inferred parameters. Specifically, we provide a point estimate of global 
ancestry proportions by computing the maximum probability path through the HMM 
using the Viterbi algorithm, and computing the proportion of windows (weighted by 
their length) that are assigned to population p . We then provide a credible interval by 
then sampling paths from the posterior distribution on paths, and for each one can com-
pute the ancestry proportion in the same way as from the Viterbi path.

Below we describe experiments we did for benchmarking ARCHes and RFMix [9].

Reference panel and testing data

We build our reference panel using genotypes from proprietary candidates who explic-
itly provided prior consent to participate in this research project and have all family line-
ages tracing back to the same geographic region. All the candidates were genotyped on 
Ancestry’s SNP array and were analyzed through a quality control pipeline to remove 
samples with low genotype call rates, samples genetically related to each other, and sam-
ples who appear as outliers from their purported population of origin based on Principal 
Component Analysis. The reference panel contains 11,051 samples, representing ances-
try from 32 global regions (Additional file  1: Table  S1). We then use 1705 individuals 

(3)P
�

p′, q′|p, q
�

=







1− τ if p′ = p, q′ = q

τ
πp′ ,q′

Zp,q
if p′ �= p, q = q′ or p′ = p, q′ �= q

0 otherwise



Page 12 of 14Wang et al. BMC Bioinformatics          (2021) 22:459 

from 1000 Genomes [12] and HGDP Project [13] from 15 populations as testing data. 
We use SNP array data of individuals from the 1000 Genomes [12] and HGDP [13] pro-
jects and limit them to around 300,000 SNPs that overlap with Ancestry’s SNP array. 
Lists of populations and associated sample counts included in reference panel and test-
ing data are specified in Additional file 1: Tables S1 and S2, respectively. We align pop-
ulations that come from different data sources, in some cases combining populations 
together. For example, we combined the ancestries that are assigned to ‘England, Wales, 
and Northwestern Europe’ and ‘Ireland & Scotland’ to represent ancestry for ‘Britain’. 
We combined the ancestry that are assigned to ‘Benin & Togo’ and ‘Nigeria’ to represent 
ancestry for ‘Yoruba’.

Simulation

We simulate 100 individuals with an admixture history similar to modern Latinos that 
admixed 12 generations ago with 45% Native American, 50% European and 5% African 
ancestry. We constructed 100 12-generation pedigrees and randomly selected founders 
from the reference panel, with the ratio of 45% Native American (from the Maya and 
Peru regions), 50% European (from the France, Britain, Italy, Spain and Finland regions), 
and 5% African ancestry (from the Yoruba region). We then simulate the DNA recom-
bination process and obtained the genotypes of the descendant in each pedigree, which 
are admixed at roughly 45% Native American, 50% European and 5% African.

We simulate genomes of admixed individuals with ancestors from a pair of neighbor-
ing populations by simulating genotypes where 1000 Genomes and HGDP test examples 
serve as the two parents, four grandparents, eight great-grandparents, or 16 great-great-
grandparents of a pedigree and the admixed example evaluated is the lone descend-
ant of that set. The examples in this test set are, on average, 50–50% admixed, 25–75% 
admixed, 12.5–87.5% admixed, or 6.25–93.75% admixed. We simulate 20 individuals for 
each of the 16 different pairings and 4 different levels of admixture, with half of them 
representing a minority admixture from one region, and half of them representing a 
minority admixture from the other region.

Since RFMix requires phased haplotypes for both query and reference individuals, we 
use Eagle [14] v2 with the HRC [15] reference panel to get phased haplotypes of the sim-
ulated individuals as well as for the individuals in the reference panel. However, ARCHes 
requires only the unphased, diploid genomic sequences for both query and reference 
individuals.

RFMix parameters

We first used default parameters in RFMIX v2.03-r0 (https://​github.​com/​slowk​oni/​
rfmix). We then performed a parameter sweep using different number of generations 
since admixture (the -G parameter), with value of 2, 4, 6 and 8 coupled with different 
window sizes (set both conditional random field window size and random forest window 
size) with values of 0.2 cM, 0.5 cM, 100 SNPs (roughly 1 cM) and 300 SNPs (roughly 
3 cM) on chromosome 1 of simulated pair admixed individuals. We then selected the 
parameters with the best performance, namely 4 generations since admixture and a win-
dow size 0.2 cM, and ran RFMix on the whole genome of simulated pair admixed indi-
viduals. For simulated latino individuals, we used 12 generations since admixture and a 

https://github.com/slowkoni/rfmix
https://github.com/slowkoni/rfmix
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window size 0.2 cM. For single origin individuals, we used 2 generations since admixture 
and a window size 0.2 cM. None of the RFMix runs used the E-M procedure or phase 
error correction.

Note that for both RFMix and ARCHes, we use the HapMap [16] genetic recombina-
tion map for GRCh37 to estimate recombination distance.

ARCHes parameters

We divide the genome into 3882 windows of 80 SNPs each, overlapping by 5 SNPs (with 
some adjustments made near chromosome boundaries). We build a haplotype model 
for each of these windows from a separate cohort of 50,000 haplotypes selected from 
the Ancestry database that are not already in the population reference panel. We phase 
these genotypes with Eagle [14], although we do not find that the particular phasing 
method, or even the diversity of this cohort has a measurable impact on the accuracy 
of our approach. We tie small groups of 3–4 windows together by disallowing popula-
tion assignment transitions within those groups, which allows us to set the granularity 
with which we assign local population assignments (there are 1001 such window groups) 
and has the benefit of increased computational efficiency. ARCHes’s haplotype model 
annotation process is robust to missing data, which is handled by marginalizing over all 
possible genotypes. In fact, the annotations may benefit from intentionally downsam-
pling reference panel genotypes so that variations in haplotypes are considered as well, 
and the amount of downsampling and the number of downsampled genotypes used for 
annotation are tunable parameters of the annotation process. In our experiments, we 
sample each reference panel genotype sequence 100 times, each time setting 20% of gen-
otypes to missing and annotating the 3882 haplotype models with them. This training 
process takes approximately 15 to build each haplotype model and 15 min to annotate 
it, although that process is parallelizable and need not be carried out again, regardless 
of the size of the test set. We set the initial τx parameter to be 0.01 and learned this 
parameter using 10 iterations of the E-M approach described above. ARCHes assigns 
diploid local ancestry to 1001 windows of the genome and the global ancestry estimates 
are summarized from these 1001 windows.
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