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Abstract 

Background:  With the broad application of high-throughput sequencing and its 
reduced cost, simple sequence repeat (SSR) genotyping by sequencing (SSR-GBS) has 
been widely used for interpreting genetic data across different fields, including popula-
tion genetic diversity and structure analysis, the construction of genetic maps, and the 
investigation of intraspecies relationships. The development of accurate and efficient 
typing strategies for SSR-GBS is urgently needed and several tools have been pub-
lished. However, to date, no suitable accurate genotyping method can tolerate single 
nucleotide variations (SNVs) in SSRs and flanking regions. These SNVs may be caused by 
PCR and sequencing errors or SNPs among varieties, and they directly affect sequence 
alignment and genotyping accuracy.

Results:  Here, we report a new integrated strategy named the accurate microsatellite 
genotyping tool based on targeted sequencing (AMGT-TS) and provide a user-friendly 
web-based platform and command-line version of AMGT-TS. To handle SNVs in the 
SSRs or flanking regions, we developed a broad matching algorithm (BMA) that can 
quickly and accurately achieve SSR typing for ultradeep coverage and high-throughput 
analysis of loci with SNVs compatibility and grouping of typed reads for further in-
depth information mining. To evaluate this tool, we tested 21 randomly sampled loci in 
eight maize varieties, accompanied by experimental validation on actual and simulated 
sequencing data. Our evaluation showed that, compared to other tools, AMGT-TS pre-
sented extremely accurate typing results with single base resolution for both homozy-
gous and heterozygous samples.

Conclusion:  This integrated strategy can achieve accurate SSR genotyping based on 
targeted sequencing, and it can tolerate single nucleotide variations in the SSRs and 
flanking regions. This method can be readily applied to divergent sequencing plat-
forms and species and has excellent application prospects in genetic and population 
biology research. The web-based platform and command-line version of AMGT-TS are 
available at https://​amgt-​ts.​plant​dna.​site:​8445 and https://​github.​com/​plant​dna/​amgt-​
ts, respectively.
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Background
Simple sequence repeats (SSRs), also named microsatellites or short tandem repeats 
(STRs), can be widely found in eukaryotic genomes [1]. The sequences that flank an SSR 
may be sufficiently conserved to allow specific amplification primers to be designed; 
thus, SSRs can be detected through conventional PCR amplification and typed based 
on the amplification products. The majority of SSRs are noncoding and thus can affect 
the expression, splicing, protein sequence, and genome structure of genes [2, 3]. SSRs 
makers are commonly used in genome-related studies [4, 5]. SSR genotyping has also 
become an extensive application in different fields and has been used for population 
genetic diversity and structure analysis, the construction of genetic maps, and the inves-
tigation of intraspecies relationships [6–8].

All applications of SSRs are based on accurate SSR genotyping methods, and less 
accuracy may have serious consequences [9, 10]. Moreover, the construction and appli-
cation of DNA databases also require the accurate SSR genotyping of samples [11, 12]. 
Factors influencing accurate SSR genotyping include the following: 1) The slippage of 
polymerase is inherent to in  vitro SSR polymerase PCR amplification, which leads to 
incorrect SSR alleles and makes it challenging to genotype SSRs accurately; and 2) the 
occurrence of variations in the SSR or flanking region will directly affect the genotyping 
results (Fig.  1) [13, 14]. These problems accompanied the SSR genotyping technology 
development. The technology has experienced the initial gel electrophoresis, capillary 
electrophoresis, the first- and second-generation sequencing, and the high-throughput 
amplicon sequencing stage. At present, amplicon sequencing technology is widely used 
in genetic disease screening and gene diagnosis, as well as in other research [15, 16]. 
However, there is still no suitably accurate SSR genotyping method that can tolerate 
nucleotide variations in SSRs and flanking regions which may affect the sequence align-
ment and genotyping accuracy.

Here, we developed a new open-source microsatellite genotyping strategy that 
includes an accurate microsatellite genotyping tool based on targeted sequencing 
(AMGT-TS) and a user-friendly web-based version. AMGT-TS can quickly perform 
precise SSR genotyping with ultradeep coverage and high locus throughput, and it 

Fig. 1  Schematic diagram of error-prone SSR typing caused by variations in SSR or flanking regions. Take a 
site with CAGCC SSR motif as an example, for Seq1 (from reference genome), it’s clear that its SSR region is 
with three times repeats of CAGCC; for Seq2 with a G- > A variation in SSR region, the regular exact matching 
algorithm will type it as two repeats of CAGCC, while fault-tolerant algorithm could recognize it as three 
repeats; for Seq3 with a T- > C variation in right flanking region, flanking boundary-based algorithm will treat 
it as three repeats of CAGCC, however, the regular exact matching algorithm will recognize it as four times of 
repeat. When comparing different samples, especially different varieties, this discordance of SSR typing will 
cause misunderstanding of genetic information
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includes a broad matching algorithm (BMA) that can handle situations with nucleo-
tide variations in the SSR and flanking regions. We also performed a comprehensive 
assessment of AMGT-TS using internal laboratory testing and simulated data test-
ing. The results showed that AMGT-TS could achieve nearly 100% typing accuracy. 
Although AMGT-TS developed on plants, which is the focus of our current work, the 
new method is generic and can be used as a new tool for many biological fields. All 
completed codes, sample data, and documentation have been submitted to GitHub.

Implementation

AMGT‑TS tool design

The process of AMGT-TS has three main steps to obtain accurate genotyping infor-
mation (Fig.  1). For each sample: first, reads are mapped to their bona fide loci 
according to the reference sequences; then, the SSR regions are determined by the 
loci’s flanking information; and finally, AMGT-TS obtains accurate SSR genotyping 
results based on the dissection of read information, such as read number and primary 
SSR typing.

In detail, after obtaining raw sequencing data (usually in FASTQ format), we use 
FASTX (http://​hanno​nlab.​cshl.​edu/​fastx_​toolk​it/) to remove low-quality data. Then, 
we perform the "Alignment to loci" processing step with bwa-mem [17], based on the 
read information for the loci in the reference sequence file. After this step, reads will 
be grouped to a locus. Next, Picard (https://​broad​insti​tute.​github.​io/​picard/) is used 
to group reads in the same locus together. At the same time, SAMtools [18] is used 
to index the data to improve the efficiency of subsequent processing. Next, we use 
SAMtools to “Split by direction,” separating the forward and reverse data. Then, we 
use SEQTK (https://​github.​com/​lh3/​seqtk) to “Adjust direction,” which flips reverse 
sequences into forward sequences. After that, we use the BLAST tool [19] to perform 
the “Find SSR region” operation according to the 20-bp sequences of the left and right 
flanking sequences of SSR regions in the reference sequence to obtain the SSR region 
of each read. Finally, we use Python scripts to “Find SSR typing” in the SSR region to 
obtain SSR typing information.

Here, as an example of the AMGT-TS processing workflows, two actual experimen-
tal datasets are provided for result 1 and 2 in Fig.  2. For result 1, an SSR genotyping 
result of AGAGA*6 for locus s4121 in B73 (a model variety of maize) is shown (Fig. 3). 
We used the AMGT-TS web platform (https://​amgt-​ts.​plant​dna.​site:​8445/) to gener-
ate the alignment figure for the reads. The platform grouped the read files to align the 
heap sequences in Fig. 3, which shows the results of the classification alignment. Each 
line is one read, and the yellow background region is the SSR region being typed. The 
genotype is exactly six repeats of 5 bases. For result 2, the typing result of locus s17883 is 
shown in Additional file 1: Table S1. An SSR length of 12 (ATA*4) was found for 98.20% 
of the reads, so we can obtain the result ATA (4,4) (maize is a diploid plant, so each locus 
has two alleles). In addition, we obtained the SSR typing result of AGG (4,4) for locus 
s691405. Finally, the genotype of the third locus (s838417) was a homozygous type CTC 
(5,5), which is a 15 bp long repeat, and the corresponding reads accounted for 98.70% of 
the total reads. Overall, the typing strategy of AMGT-TS is clear and satisfactory.

http://hannonlab.cshl.edu/fastx_toolkit/
https://broadinstitute.github.io/picard/
https://github.com/lh3/seqtk
https://amgt-ts.plantdna.site:8445/
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Evaluation of typing error

The typing error can be measured in two ways. One is the false-positive rate of SSR typing 
and the other is the rate of the error reads found for the correct typing result. Equation (1) 
can be obtained, where j represents the index of the locus, k represents the typing index, 
and Ramgt(j, k) represents the reads of the k-th typing of the j-th locus from AMGT-TS.

Sra represents the sum of reads from artificial data and Er represents the error of the 
reads. Equation (2) can be obtained as follows:

In the same way, Et represents typing error, Ta represents the sum of typing of artificial 
data and Tamgt represents the correct typing result count from AMGT-TS. Equation (3) can 
be obtained as follows:

(1)Sum of Ramgt =

∑

j

∑

k

Ramgt

(

j, k
)
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j
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Fig. 2  The processing flow of AMGT-TS. Green bar: reads of Locus 1 (L1), blue bar: reads of Locus 2 (L2), 
orange bar: reads of Locus 3 (L3). Gray bars indicate low-quality reads. The solid arrow represents step-by-step 
operations in the process. The dotted arrows represent the data information referenced by the corresponding 
step. The small white arrows within the color bars pointing to the right represent forward sequences and 
those pointing to the left represent reverse sequences
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Precise and broad matching algorithms

To archive both the high accuracy of SSR typing and tolerance of the variations in SSRs 
and flanking regions, we respectively developed two different algorithms, precise and 
broad matching strategies (Fig. 4). The analytical strategy of precise matching is divided 
into three steps. The first step is "grouping." For multilocus amplicon sequencing data, 
sequencing reads are first assigned to the corresponding loci according to the reference 
sequences. AMGT-TS uses bwa-mem to implement data mapping. The second step is 
"SSR boundary determination". After extraction of sequences for each locus, AMGT-
TS uses flanking sequences of the SSR region of each locus in the reference sequences 
to determine the boundaries of the left and right flanking sequences, which indirectly 
determines the boundaries of the SSR region and further extracts the sequence of the 
SSR region by calling BLAST. The third step is "SSR genotyping." After the SSR sequence 
has been determined, the repetition number of SSRs is determined by using the precise 

Fig. 3  Read alignment of locus s4121 for the motif AGAGA of B73 repeated six times (SSR region of 30 bp; 
yellow background)
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match method of repeated sequences, and the SSR repetition length is used to name the 
SSR genotype. For example, the motif of a certain SSR was ATC, with a repetition num-
ber of three times, so the SSR was named SSR9.

The broad matching algorithm (BMA) has the same first step as the precise match-
ing algorithm. However, in the second step, BMA directly processes the information of 
BAM files and uses the Concise Idiosyncratic Gapped Alignment Report (CIGAR) infor-
mation for each read to mask the classification information, which makes it compatible 
with the variation within a certain error range and results in better fault-tolerant clas-
sification information. As shown in Fig. 4, the SSR motif represents the repeating unit in 
the SSR region. The SSR region represents the region where the SSR sequence is located. 
For example, when a sequence of an SSR is AGC​AGC​AGC, the SSR motif is AGC, and 
the SSR region is AGC​AGC​AGC. The precise match identifies only contiguous motifs, 
so in read 2, only the last 10 bp is identified as two replicates. Read 3 has only one motif 
repeat. For the broad match, the results identified were identical to those for the precise 
match, except for read 1, which is a perfectly repeated sequence; different results were 
obtained for the other two reads. For read 2, when the two red bases are considered to 
be two SNPs, 5 repeats of the motif are obtained. For read 3, when the region is consid-
ered to be an InDel, is the motif is considered to contain 3 repeats.

Simulation test of AMGT‑TS

To better simulate different situations, each read was divided into five parts (Additional 
file 1: Figure S1). Five different categories of reads were considered in our simulation, 
named Classes A to E. The detailed method of generating these data was as follows:

Fig. 4  The different approaches of precise and broad matching strategies. The arrow to the left is pointing 
the result of the precise method, and the right to the broad method. We can see genotyping of Read1 and 
Read3 is the same, but not with Read2. For there are variants in the SSR region, the precise method can only 
identify 2 motif repeats, while the broad method can identify 5 repeats
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•	 Class A: We created the SSR_Region according to 3 repeats of the motif of s17883. 
We then added 35 bp from the left and right flanking sequences of the SSR_region of 
the reference sequence as Flank_L and Flank_R, respectively. Finally, we added one 
SNP on the left flank and one SNP on the right flank. There were 2000 artificial reads 
for this dataset.

•	 Class B: We created the SSR_Region according to 5 repeats of the motif (AGCT) and 
6 repeats of the motif of s423645. We then added 35 bp from the left and right flank-
ing sequences of the SSR_region of the reference sequence as Flank_L and Flank_R, 
respectively. There were 1000 artificial reads for this dataset.

•	 Class C: We created the SSR_Region according to 4 repeats of the motif (CGCAT) 
and 3 repeats of the motif (CGCAT) + CACAT + 2 repeats of motif s566749. We 
then added 35 bp from the left and right flanking sequences of the SSR_region of the 
reference sequence as Flank_L and Flank_R, respectively. There were 2000 artificial 
reads for this dataset.

•	 Class D: In the SSR_Region of this type, Flank_L and Flank_R are also random bases. 
With the addition of Random_L and Random_R, the total length was randomly 
extended to 180 ~ 220 bp. There were 1000 artificial reads for this dataset.

•	 Class E: The rule is the same as for Class A, but There were 2000 artificial reads for 
this dataset. Random_L and Random_R are random bases and the total length was 
randomly extended to 180 ~ 220 bp.

Classes A to C combined contained a total of 8000 reads. Random_L and Random_R 
regions were random bases, and the total length was randomly extended to 180 ~ 220 bp. 
Classes A to D combined contained a total of 9000 reads. The quality information from 
Class A to Class D was marked as the highest. The quality information of Class E was 
marked as the lowest. For the read numbering rule, numbering is divided into three seg-
ments. The first segment is fixed: @BMSTC (Beijing Maize Seed Testing Center), repre-
senting the artificial sequence. The second segment is category information, using 1, 2, 
3, 4, and 5 to represent A, B, C, D, and E, respectively. The third is the ordinal number, 
starting from 1 in each category and ending with the maximum number of entries in the 
current category. After 10,000 reads were created, they were randomly distributed into 
FASTQ files.

Software and package dependencies

AMGT-TS was verified on Ubuntu Server 14.04.4 LTS and 18.04.2 LTS. AMGT-TS relies 
on various tools including Bamtools (v2.5.0) [20], BLAST tool suite (v2.6.0 +) [19], BWA 
(v0.7.17-r1188) [17], fastx_toolkit (v0.0.13), Picard (v2.15.0), SAMtools (v1.3.1) [18], and 
SEQTK (v1.2). The Java version used in AMGT-TS is OpenJDK1.7. The Python version 
is 2.7 + . Pandas are required in Python and can be installed using PIP.

AMGT‑TS implementation details

AMGT-TS runs on Linux, and Ubuntu 18.04 has been tested. After downloading the 
code from GitHub, the user needs to install the dependent components as described 
in the README.md file. The ENV_FILE variable in the launch.sh specifies the loca-
tion of the configuration file. In the configuration file, the user must configure the 
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corresponding component location. The targeted sequencing sample files are placed in 
the “working/00_fastq” directory. Under the directory “REF_DIR” of the configuration 
file is the reference sequence file information for each locus. Once this information is 
configured, the user can execute the launch.sh file to run the tool. Before running the 
program, the user can specify the different algorithms: precise or broad. When the tool 
is finished running, a log file will be generated. In the “working/04_reads” directory, 
the locus typing information of the whole sample is present. In the directory of each 
locus is the typing information of the current loci and reads corresponding to each type. 
For each subheap read file, the user can use the Reads Alignment tool for a graphical 
presentation.

Results
Overview

Currently, no suitable genotyping method can achieve tolerance of single nucleotide 
variations (SNVs) in the SSRs and flanking regions, which may be caused by PCR and 
sequencing errors or SNPs among varieties and can directly affect the sequence align-
ment and genotyping accuracy. As shown in Fig.  1, taking a site with a CAGCC SSR 
motif as an example, for Seq1 (from the reference genome), its SSR region has three 
repeats of CAGCC; for Seq2 with a G- > A variation in the SSR region, the regular exact 
matching algorithm will type it as two repeats of CAGCC, while the fault-tolerant algo-
rithm can recognize it as three repeats; and for Seq3 with a T- > C variation in right 
flanking region, the flanking boundary-based algorithm will treat it as three repeats of 
CAGCC, however, the regular exact matching algorithm will recognize it as four repeats. 
When comparing different samples, especially different varieties, this discordance in 
SSR typing will cause a misclassification of the genetic information.

To address this issue, in this study, we developed a broad matching algorithm (BMA) 
that can quickly and accurately achieve SSR typing for ultradeep coverage and high-
throughput loci with SNV compatibility and grouping of the typed reads for further in-
depth information mining. We also designed the AMGT-TS tool incorporating the BMA 
for targeted microsatellite genotyping. Below, we tested the AMGT-TS tool using both 
experimental data and simulated data. We also compared AMGT-TS with other SSR-
typing tools, as well as the popular commercial SSR-typing software, NextGENe.

Experimental evaluation

We used three genetically related samples to map the genotyping information of 50 loci 
(Fig. 5 and Additional file 1: Table S2). The typing results of the offspring samples were 
100% found in the two parents, indicating that the typing outcomes of AMGT-TS are 
precise and that AMGT-TS is potentially useful for genetic analysis. Furthermore, we 
used AMGT-TS to analyze targeted sequencing data of 8 samples and 21 randomly sam-
pled loci and compared the results with resequencing results (Additional file 1: Figure 
S2, Table S3 and S4). We compared loci that produced valid data at the same locus in 
both experiments. If any experiment did not produce a result at a certain locus, then 
the locus was not included in the comparison. In Additional file 1: Fig. S2, the minimum 
number of loci for comparison in the sample was 11, and the maximum number was 18. 
The results of all compared loci were 100% consistent.



Page 9 of 14Huo et al. BMC Bioinformatics          (2021) 22:429 	

Simulated data test

To further verify the precision of the AMGT-TS results, we used a manual method 
to create the original data of simulated targeted sequencing with 10,000 reads. The 
average read length of these data was around 200  bp, based on the information of 
three example loci (s499955, s423645, and s996971) from B73 (details in Implemen-
tation, artificial read composition design in Additional file 1: Figure S1).

For the simulated data, the results of AMGT-TS analysis are shown in Additional 
file 1: Table S5. Using the above calculation for the error rate evaluation, we obtained 
Er = 0 and Et = 0; in other words, for the typing results of the simulated targeted 
sequencing data, the accuracy of reads and SSR typing was 100%. As shown in Addi-
tional file 1: Table S5, 1000 low-quality points were filtered correctly, whereas 1000 
random reads were not recognized. In addition, the precise matching algorithm did 
not deal with SNPs in the SSR region and identified these SRRs only as three repeats 
of the motif. However, the broad matching algorithm could tolerate these SNPs and 
identified these SSRs as 6 repeats of the motif, which are shown in Additional file 1: 
Figure S3A. Then Additional file 1: Figure S3B shows the situation with SNPs in the 
flanking region. The broad matching algorithm has robust fault tolerance.

Fig. 5  Allele variants for each locus of three example samples detected by AMGT-TS. To evaluate the 
AMGT-TS tool, an example for analyzing the three samples with a genetic relationship is given and a total of 
50 loci is selected to verify the genetic relationship. The three samples are Jingke968 and its parents Jing724 
(female parent) and Jing 92 (male parent). To visually observe the genetic compatibility, panels (A) and (B) 
refer to the first and second allele results of the 50 loci, respectively. In the figure, the abscissa shows the 50 
loci; the longitudinal coordinates are the length of the genotyping fragment (bp) of each sample. The 50 loci 
are 100% following the genetic relationship, indicating that the AMGT-TS analysis results are accurate
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Comparison with other SSR‑typing tools

To determine the detection accuracy of AMGT-TS, we made an integrated comparison 
with other published SSR typing tools, SSRseq [21], MicNeSs [22] and CHIIMP [23], 
with different simulated datasets (Table 1). To provide a more rational comparison, we 
carried out simulations based on three bona fide loci from the Maize B73 V3 reference 
genome (Additional file 1: Table S6); these three loci have different motif lengths (from 
3 to 5 bp) and the different polymorphism information contents (PICs). For each locus, 
we simulated four situations (Additional file 1: Table S7): no variant in the SSR or flank-
ing region (Dataset A, as a control), one SNP site in the SSR region (Dataset B), one SNP 
site in the flanking region (Dataset C) and a 2 bp deletion in the flanking region (Dataset 
D). There were 10,000 reads for each locus in each dataset. After simulation and SSR-
typing by each tool (Table 1), we found that SSRseq has good performance on Datasets 
A to C, while it is poor for SSR tying of the locus with flanking variants. MicNeSs was 
designed to screen perfect SSR sites and has poor performance for SSR typing of the 
long motif (> 3 bp). CHIIMP has poor performance for SSR tying of the SSR region with 
SNPs. Among these four tools, only AMGT-TS can deal with all four situations; specifi-
cally, this tool has excellent performance for SSR tying of the loci with variants in flank-
ing or SSR regions.

Table 1  Comparison of AMGT-TS with other SSR-typing tools

Dataset A: No variants in SSR region; Dataset B: One SNP in SSR region; Dataset C: One SNP in flanking; Dataset D: 2-bp 
deletion in flanking. Details of simulation information are listed in Additional file 1: Table S6 and S7 and simulation data was 
uploaded to https://​amgt-​ts.​plant​dna.​cn/​data/

Tool Dataset Locus1 Locus2 Locus3 OS/
development 
language

Note

Correct/
total

Accuracy 
(%)

Correct/
total

Accuracy 
(%)

Correct/
total

Accuracy 
(%)

AMGT-
TS (this 
study)

A 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100 Linux/
Python

High-through-
put; good 
performance 
for SSR-tying 
of the locus 
with variants 
in flanking and 
SSR regions

B 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

C 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

D 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

SSRseq 
[21]

A 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100 Linux/
Python

High-through-
put; poor 
performance 
for SSR-tying of 
the locus with 
flanking variants

B 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

C 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

D 0/10 k 0 0/10 k 0 0/10 k 0

MicNeSs 
[22] 

A 10 k/10 k 100 0/10 k 0 0/10 k 0 Linux/
Python

Reference-free 
and motif 
information-
free; Only 
one locus per 
process; poor 
performance 
for SSR-tying of 
the long motif 
(> 3 bp)

B 10 k/10 k 100 0/10 k 0 0/10 k 0

C 10 k/10 k 100 0/10 k 0 0/10 k 0

D 10 k/10 k 100 0/10 k 0 0/10 k 0

CHIIMP 
[23]

A 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100 Linux, 
Windows/R

Only one 
locus per 
process; poor 
performance for 
SSR-tying of SSR 
region with SNP 
variants

B 0/10 k 0 0/10 k 0 0/10 k 0

C 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

D 10 k/10 k 100 10 k/10 k 100 10 k/10 k 100

https://amgt-ts.plantdna.cn/data/
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We also made a comparison with a popular commercial SSR typing software, Next-
GENe (https://​softg​eneti​cs.​com/​NextG​ENe.​php), using three sets of Ion Torrent 
sequencing data (Additional file 1: Figure S4 and Additional file 2: Table S8-S13), includ-
ing data from Jingke968, a hybrid from two different maize varieties; Jing724, a selfing 
variety; and the genome-sequenced variety B73. In a total of 484 evaluated SSR loci, 
more than 96% of the alleles detected by NextGENe were also detected by AMGT-TS. 
In contrast, more than 100 alleles were detected exclusively by AMGT-TS (Additional 
file  1: Figure S4). After manual validation, we confirmed that the missing alleles from 
the NextGENe results are caused by a short flank size: NextGENe cannot handle reads 
with only 5–330 bp on the left or right flank, while AMGT-TS can. Overall, these results 
show that AMGT-TS is accurate and highly capable of SSR variant genotyping detection.

Discussion
The development of multiplex PCR technologies has made it possible to amplify multiple 
target sites at once. Moreover, the development of amplicon sequencing technology has 
made large-scale high-throughput SSR typing possible. At present, amplicon sequenc-
ing technology is widely used in genetic disease screening and gene diagnosis, as well as 
plant breeding [15, 16]. Our study breaks through the limitations of traditional typing 
methods and achieves large-scale typing of SSR at the single-base level; this method is 
fast, accurate, and low-cost, and can be widely applied in genetic diversity studies, highly 
precise gene localization, and molecular-assisted selection of new varieties [21]. Here, 
we propose a tool for developing new SSR-seq approaches and we demonstrated its effi-
ciency for a range of species with different levels of genomic resource availability. The 
most important feature is that this tool provides strategies to optimize locus selection 
and primer design. This tool can be used for locus selection and merit selection. AMGT-
TS can analyze three error-prone and complicated cases, including cases with too many 
dominant SSR types of certain loci, an extremely low ratio of reads of the dominant SSR 
types and too much variation within the SSR region. Then, researchers can treat these 
loci as low-quality loci based on the information provided by AMGT-TS. By filtering 
the above three types of information, high-quality SSR sites can be obtained, which is 
important for accurate typing [9, 10]. Since genotyping data consist of simple nucleotide 
character strings that do not need to be encoded or encapsulated in special data types, it 
is easier to use existing bioinformatics tools to perform pipelining, resulting in easier for 
data sharing between different laboratories and storage in different databases for differ-
ent applications.

AMGT-TS can use the precise matching algorithm to accurately obtain SSR classifi-
cation, based on the premise that there is no change in the SSR region. However, poly-
morphisms in the repeat motif are hard to determine and will affect the accuracy of SSR 
detection. When there are variations in the SSR region or base changes due to experi-
ments, AMGT-TS can use the broad matching algorithm to account for the variation in 
the SSR region. The broad strategy used in AMGT-TS differs from the methods imple-
mented in other SSR genotyping software, such as MicNeSs [22] which can also identify 
the SSR genotypes based on sequencing data while accounting for up to one substitu-
tion within the SSR regions. In addition, AmpSeq-SSR is a microsatellite genotyping tool 
with similar functions as AMGT-TS [24]. When AmpSeq-SSR encounters motif repeats 

https://softgenetics.com/NextGENe.php
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with base variation in one of the intermediate repeats, the result is an identification 
errors and complete motif repeats are lost, thus directly affecting genotyping results. 
For AMGT-TS, resource data can be either FASTA or FASTQ files, and especially for 
FATSQ files, a quality-based filtering process could not only increase the accuracy of the 
results, but also reduce the analysis time. The data processed by AmpSeq-SSR are only in 
FASTA format, which contains no quality information, so the above optimization cannot 
be performed.

Usually, for ultradeep sequencing, the prominent peak(s) will be considered the bona 
fide SSR genotype(s). The remaining genotypes tend to be caused by amplification stut-
ter or sequencing error. Take two loci as examples, as shown in the Additional file  1: 
Figure S5. Jing724 and Jingke968 are a selfing maize variety and a hybrid from two dif-
ferent maize varieties, respectively. Thus, loci in Jing724 and Jingke968 are expected to 
have one genotype and two genotypes, respectively. As found here, the s994429 locus 
in Jing724 and the s677195 locus in Jingke968 have one peak (TCAT*3) and two peaks 
(AAG*4 and AAG*6) detected by AMGT-TS, respectively. These results indicate that 
AMGT-TS has an excellent ability to accommodate amplification stutter or sequencing 
error.

Previous tools based on targeted sequencing can only identify consecutive SSR motifs. 
They cannot deal with cases where there is variation in the SSR region (possibly due to 
an experimentally introduced error) [22, 24]. In contrast, AMGT-TS can obtain consec-
utive SSR motif sequences and deal with cases containing variations in the SSR region, 
to allow us to have a clear, intuitive and comprehensive understanding of the actual situ-
ation of SSR genotyping. AMGT-TS is a powerful and robust tool for applications that 
require precise knowledge of SSR genotyping, such as diagnosing diseases. AMGT-TS 
has the robustness of classification recognition so that even when there are a few errors 
in the data, complete repetitive information is not lost. AMGT-TS analyzes the CIGAR 
information of the BAM file to carry out processing compatible with the variation in SSR 
regions. Furthermore, the different results produced by these two algorithms in AMGT-
TS make a significant difference in the classification of plant varieties and disease detec-
tion. Therefore, different algorithms can be considered for various biological fields.

Conclusion
In conclusion, the BMA and AMGT-TS tools provide an integrated strategy for accu-
rate microsatellite typing for ultradeep coverage and high-throughput analysis of loci 
with SNV compatibility and grouping the typed reads for further in-depth informa-
tion mining. With the broader application of next-generation sequencing techniques 
and the current application of AMGT-TS to divergent sequencing platforms and spe-
cies, we expect that AMGT-TS will have excellent application prospects in genetic 
and population biology research in the future.
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