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Abstract 

Background:  Accurate prediction of protein tertiary structures is highly desired as 
the knowledge of protein structures provides invaluable insights into protein func-
tions. We have designed two approaches to protein structure prediction, including 
a template-based modeling approach (called ProALIGN) and an ab initio prediction 
approach (called ProFOLD). Briefly speaking, ProALIGN aligns a target protein with 
templates through exploiting the patterns of context-specific alignment motifs and 
then builds the final structure with reference to the homologous templates. In contrast, 
ProFOLD uses an end-to-end neural network to estimate inter-residue distances of 
target proteins and builds structures that satisfy these distance constraints. These two 
approaches emphasize different characteristics of target proteins: ProALIGN exploits 
structure information of homologous templates of target proteins while ProFOLD 
exploits the co-evolutionary information carried by homologous protein sequences. 
Recent progress has shown that the combination of template-based modeling and 
ab initio approaches is promising.

Results:  In the study, we present FALCON2, a web server that integrates ProALIGN 
and ProFOLD to provide high-quality protein structure prediction service. For a target 
protein, FALCON2 executes ProALIGN and ProFOLD simultaneously to predict possible 
structures and selects the most likely one as the final prediction result. We evaluated 
FALCON2 on widely-used benchmarks, including 104 CASP13 (the 13th Critical Assess-
ment of protein Structure Prediction) targets and 91 CASP14 targets. In-depth exami-
nation suggests that when high-quality templates are available, ProALIGN is superior 
to ProFOLD and in other cases, ProFOLD shows better performance. By integrating 
these two approaches with different emphasis, FALCON2 server outperforms the two 
individual approaches and also achieves state-of-the-art performance compared with 
existing approaches.

Conclusions:  By integrating template-based modeling and ab initio approaches, 
FALCON2 provides an easy-to-use and high-quality protein structure prediction service 
for the community and we expect it to enable insights into a deep understanding of 
protein functions.
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Background
Proteins are macromolecules composed of amino acid chains and serve important roles 
in a wide-range of biological processes including catalysis, immunity, and information 
transmission. A protein performs its biological functions by folding into specific ter-
tiary structures; thus, the knowledge of protein structure is crucially helpful for the deep 
understanding of its biological functions [1]. Protein structures can be experimentally 
determined using X-ray crystallography, nuclear magnetic resonance, or cryo-electron 
microscopy. These experimental technologies, however, are usually time-consuming and 
thus cannot catch up with the rapid accumulation of protein sequences. Unlike these 
experimental technologies, the computational prediction of protein structures purely 
from amino acid sequences is efficient, and accurate prediction approaches are highly 
desired.

Protein structure prediction has received extensive studies and a large variety of pre-
diction approaches have already been proposed. These approaches can be divided into 
two categories, namely, template-based modeling (TBM) approaches and ab initio pre-
diction approaches. For a target protein of interest, TBM approaches first identify its 
homologous proteins with known structures (called templates) through constructing 
alignments, and then build tertiary structures with reference to the structure of these 
homologous proteins [2, 3]. Statistical models [4] and combinatorial optimization tech-
niques [5, 6] are widely used to model and calculate the optimal protein alignment. 
When homologous templates of the target protein are available and high-quality target-
template alignments can be constructed, TBM approaches can accurately predict struc-
tures for the target protein.

Unlike the template-based modeling approaches, ab  initio prediction approaches do 
not require the availability of homologous templates for target proteins; instead, these 
approaches predict protein structures in an ab initio fashion, i.e., constructing structures 
with the lowest free energy [7]. For instance, Rosetta uses an energy function describ-
ing Van der Waals force, hydrophobic effects and hydrogen bonds, and uses the Monte 
Carlo strategy to find the structure that minimizes the energy function [7]. I-TASSER 
constructs high-quality structural models through iterative threading assembly refine-
ment [8]. The past decade has witnessed a great breakthrough in ab  initio prediction 
approaches: using the inter-residue distance derived from direct-coupling analysis of 
homologous protein sequences [9, 10], trRosetta [11] and AlphaFold [12] predict struc-
tures of target proteins with significantly improved accuracy. Recently, deep learning has 
been widely applied to improve the estimation of inter-residue distances and construct 
structures that satisfy the distance restrictions [13–15].

Recent advances have shown that the combination of TBM and ab initio approaches is 
promising as these two types of approaches have different emphasis [16, 17]. Generally 
speaking, the TBM approaches exploit structure information of homologous templates 
of target proteins while the recent ab initio approaches usually exploit the co-evolution-
ary information carried by homologous proteins. We have designed two approaches to 
protein structure prediction, including a template-based modeling approach ProALIGN 
[18] and an ab initio prediction approach ProFOLD [19]. Specifically, ProALIGN uses a 
deep neural network to learn the patterns of context-specific alignment motifs. These 
patterns enable ProALIGN to model the dependence among residue pairs and thereafter 
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accurately construct target-template alignments for structure building. Unlike the exist-
ing approaches using handcrafted features such as covariance matrix [14, 17], ProFOLD 
employs an end-to-end framework called CopulaNet to estimate inter-residue distances 
directly from multiple sequence alignment (MSA) of the target protein.

In the study, we present the FALCON2 server that integrates the TBM approach 
ProALIGN and ab  initio approach ProFOLD. For a target protein, we run these two 
approaches to predict tertiary structures simultaneously, then employs a quality assess-
ment tool ProQ3D to estimate structure quality, and finally selects the best candidate 
structures from the prediction results by the two approaches. Using 104 CASP13 tar-
gets and 91 CASP14 targets, we evaluated FALCON2 server and performed a systematic 
analysis and comparison of these two approaches. These experimental results suggest 
that by integrating TBM and ab initio approaches, FALCON2 can predict protein struc-
tures with improved accuracy and efficiency. FALCON2 also has a user-friendly inter-
face and we expect it to enable insights into a deep understanding of protein functions.

Implementation
For a target protein, FALCON2 predicts its structure using a four-step procedure, 
including constructing MSA of the target protein, executing ProALIGN and ProFOLD 
simultaneously to yield candidate structure models, and subsequently selecting the best 
model as the final prediction result. The flowchart of FALCON2 is shown in Fig. 1 and 
more details of these four steps are described as follows.

Constructing MSA of target protein

Construction of high-quality MSA for target protein is the first and fundamental step of 
the entire prediction procedure. The quality of MSA has great effects on protein align-
ment, inter-residue distance estimation, and structure quality assessment [20]. To build 
high-quality MSA, FALCON2 executes HHblits [21] and HMMsearch [22] to search tar-
get protein for its homologous proteins within Uniclust [23] and UniRef [24] sequence 
databases. For virus or bacterial proteins, the MSA thus constructed might have only a 
few homologous proteins. In this case, we further search target protein against metagen-
ome databases including Metaclust database [25], BFD database [26], and MGnify data-
base [27].

Template‑based modeling using ProALIGN

To predict candidate structures for the target protein, we first construct target-template 
alignment by running ProALIGN with the constructed MSA as input, select the most 
likely alignment and template, and then generate candidate structures with reference to 
template structure.

Unlike the existing TBM approaching using a handcrafted scoring function for align-
ments, ProALIGN directly learns and infer protein alignment through exploiting the 
patterns of context-specific alignment motifs. Specifically, ProALIGN represents an 
alignment as a binary matrix in which the symbol ‘1’ denotes an aligned residue pair and 
‘0’ denotes unpaired residues. This representation clearly shapes alignment motifs, e.g., 
aligned helices are shown as diagonal lines while alignment gaps are shown as two diago-
nal lines with a shift between them. These alignment motifs are context-specific, thus 
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enabling us to recognize alignment motifs based on sequence contexts. ProALIGN uses 
a deep convolutional neural network to learn the patterns of alignment motifs.

For each template, ProALIGN applies the neural network to directly infer likelihoods of 
all possible residue pairs with target protein in their entirety, and then constructs the align-
ment with maximum likelihood. ProALIGN ranks all templates using a CMO-style [28] 

Search 
sequence databases

Generate MSA

Build target-template 
alignments by ProALIGN

Rank templates and 
select top alignments

Build top models
by Modeller

Predict inter-residue
distances by ProFOLD 

Build models based 
on distance constraints 

Quality estimation

Final predicted models

ProQ3D

Select the final models

Ab initio 
prediction

MSA 
construction

Model selection

Template-based 
modeling

Target Sequence

Target
S1  
S2  
S3 
S4  

HHblits HMMsearch HHblits HMMsearchHMMsearch

Fig. 1  Workflow of FALCON2 prediction server. The prediction procedure of FALCON2 mainly consists of 
the following four steps: (i) Constructing MSA for target protein: For a target protein input by user, FALCON2 
first searches its homologous proteins within a variety of sequence databases including Uniclust, Uniref, 
Metaclust, BFD and MGnify. The identified homologous proteins are organized as a multiple sequence 
alignment (MSA). (ii) Predicting candidate structures using ProALIGN: For each target protein, FALCON2 
predicts its candidate structures by running ProALIGN and ProFOLD simultaneously. Specifically, ProALIGN 
takes the constructed MSA as input and calculates target-template alignment with all templates in a 
pre-defined library. The library will be regularly updated. ProALIGN selects the most likely target-template 
alignment according to contact information, and subsequently builds candidate structures with reference 
to the selected templates. (iii) Predicting candidate structures using ProFOLD: ProFOLD uses an end-to-end 
framework, called CopulaNet, to estimate inter-residue distances directly from MSA of target protein. 
ProFOLD transforms the estimated inter-residue distances into an energy potential, and applies the 
gradient-descent technique to build candidate structures that minimize this potential function. (iv) Selecting 
the best candidate structure: For all the candidate structures predicted by ProALIGN and ProFOLD, FALCON2 
evaluates their quality through running ProQ3D, a software for structure quality assessment. The candidate 
structure with the highest quality will be reported as the final prediction result by FALCON2
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scoring function and uses the top 5 templates as references to build candidate structures 
using Modeller [29].

Ab initio protein structure prediction using ProFOLD

ProFOLD predicts structures for target proteins in ab initio fashion. ProFOLD uses an end-
to-end framework, called CopulaNet, to estimate inter-residue distances directly from the 
MSA of the target protein. The CopulaNet consists of the following three key elements: (1) 
MSA encoder: according to each homologous protein collected in MSA, ProFOLD uses an 
MSA-encoder to extract context-specific mutation information of the target residues. (2) 
Co-evolution aggregator: ProFOLD applies a co-evolution aggregator to calculate residue 
co-evolution. (3) Inter-residue distances estimator: Subsequently, a distance estimator is 
used to estimate inter-residue distances according to the acquired residue co-evolution.

Finally, ProFOLD transforms the estimated inter-residue distances into an energy poten-
tial, and applies the gradient-descent technique to build structures that minimize this 
potential function [11, 30]. We run ProFOLD to generate 100 decoys and then use the top 5 
decoys with the lowest energy potential as candidate structures for further selection.

Estimating structure quality and selecting the best candidate structure

For the candidate structures predicted by ProALIGN and ProFOLD, FALCON2 estimates 
structure quality by running ProQ3D [31]. Briefly speaking, ProQ3D assesses the quality of 
a structure by considering a variety of features, including residue contacts, residue conser-
vation, and the agreement with the predicted secondary structure and solvent accessibil-
ity area. ProQ3D also takes into consideration the energy terms calculated by Rosetta [7]. 
ProQ3D feeds these features into a deep neural network, thus yielding the predicted struc-
ture quality, including TM-score, GDT_TS, and lDDT. By running ProQ3D on all candi-
date structures, FALCON2 obtains the predicted quality value lDDT and normalizes them 
into Z-score. FALCON2 finally selects the candidate structure with the highest lDDT as the 
final prediction result.

The user interface for FALCON2 server

FALCON2 provides an easy-to-use web service for protein structure prediction. It accepts 
protein sequence in FASTA format as input and returns the predicted structure of the tar-
get protein. FALCON2 also reports additional information for further analysis, including 
the constructed MSA, target-template alignments, predicted residue contacts, inter-residue 
distances, and Ramachandran plots of the predicted structures. FALCON2 provides an 
intuitive way to visualize the predicted 3D structures. Additional file 1: Figures S8-S13 show 
examples of the job submission page, job status page, and result visualization page.

Results and discussions
We evaluated the performance of FALCON2 over CASP13 and CASP14 official-defined 
domain targets, and compared FALCON2 with the best CASP server groups. The pre-
diction results by the CASP13 and CASP14 groups were downloaded from the CASP 
official website.

For each of the predicted structures, we superimposed it onto the corresponding 
native structure, calculated TM-score, and used it to measure the quality of the predicted 
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structure. TM-score ranges from 0 to 1, and a high TM-score implies that the two pro-
tein structures under consideration are similar. It should be noted that the sequence and 
template databases used by FALCON2 are regularly updated; however, to make the eval-
uation and comparison fair, we used only the protein sequences and structures released 
before CASP13 and CASP14 competitions accordingly.

The performance of FALCON2 over CASP13 targets

We first evaluated the performance of FALCON2 over 104 CASP13 official-defined 
domain targets, and compared FALCON2 with the best CASP13 server and human 
groups, including A7D, Zhang, MULTICOM, QUARK, Zhang-Server, and RaptorX-
DeepModeller. For each CASP13 domain target, we constructed MSA through search-
ing it against three sequence databases, including Uniclust30 (as of Oct. 2017), Uniref90 
(as of Mar. 2018), and metagenome database Metaclust (as of Jan. 2018). We used the 
structures recorded in the PDB database (as of Apr. 2018) as templates to build candi-
date structures.

We summarized the prediction performance by FALCON2 and six CASP13 groups 
in Table 1. As shown in this table, over the 104 CASP13 domains, the average TM-score 
of the predicted protein structures by FALCON2 is 0.755, higher than the top human 
groups (A7D: 0.699, Zhang: 0.692, MULTICOM: 0.688) and server groups (QUARK: 
0.672, Zhang-Server: 0.671, RaptorX-DeepModeller: 0.653). Specifically, for the 31 FM 
domains, FALCON2 achieves high prediction quality (average TM-score: 0.665), which 
is better than the state-of-the-art approaches (A7D: 0.580, Zhang: 0.509, MULTICOM: 
0.495).

We further investigated the predicted structures by ProALIGN and ProFOLD indi-
vidually and analyzed the contributions by these two components to FALCON2. Table 1 
suggests that the top 1 predicted structures by ProALIGN and ProFOLD show an aver-
age TM-score of 0.644 and 0.736, respectively. By combining these two approaches, FAL-
CON2 achieves an average TM-score of 0.755, which is higher than the two approaches.

Table 1  TM-score of the predicted structures for CASP13 targets by FALCON2 and top CASP13 
groups

Here, we show model quality (measured using TM-score) of the top 1 and the best of top 5 predicted structures. The best 
performance is marked in bold font

Group All domains 
(104)

TBM-easy 
domains (40)

TBM-hard 
domains (21)

FM/TBM 
domains (13)

FM domains (31)

A7D (Human) 0.699/0.733 0.793/0.818 0.700/0.724 0.691/0.739 0.580/0.626

Zhang (Human) 0.692/0.719 0.841/0.850 0.724/0.750 0.605/0.665 0.509/0.549

MULTICOM 
(Human)

0.688/0.722 0.830/0.849 0.725/0.757 0.645/0.675 0.495/0.551

QUARK 0.672/0.699 0.823/0.840 0.714/0.748 0.589/0.648 0.479/0.503

Zhang-server 0.671/0.699 0.821/0.840 0.721/0.743 0.593/0.627 0.475/0.514

RaptorX-Deep-
Modeller

0.653/0.674 0.820/0.832 0.687/0.697 0.561/0.592 0.451/0.486

ProALIGN-only 0.644/0.659 0.815/0.829 0.701/0.722 0.582/0.598 0.408/0.420

ProFOLD-only 0.736/0.745 0.813/0.816 0.700/0.716 0.727/0.732 0.664/0.677

FALCON2 0.755/0.766 0.828/0.839 0.763/0.776 0.731/0.736 0.665/0.677
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In-depth examination suggests that the combination strategy leads to significant per-
formance improvement, especially for the TBM target proteins. Specifically, for TBM-
hard targets, the top 1 predicted structures by ProALIGN and ProFOLD show an 
average TM-score of 0.701 and 0.700, respectively. In contrast, FALCON2 achieves an 
average TM-score of 0.763.

The performance of FALCON2 over CASP14 targets

We also evaluated the performance of FALCON2 over 91 CASP14 official-defined 
domain targets, and compared FALCON2 with the top CASP14 server groups, includ-
ing Zhang-Server, BAKER-ROSETTASERVER, Yang-Server, tFold, and FEIG-S. For each 
CASP13 domain target, we constructed MSA through searching it against four sequence 
databases, including Uniref30 (as of Feb. 2020), Uniref90 (as of Feb. 2020), BFD (as of 
Mar. 2019), and MGnify90 (as of May. 2019). We used the structures recorded in the 
PDB database (as of Apr. 2020) as templates to build candidate structures.

As shown in Table 2, the average TM-score of the top 1 predicted structures by FAL-
CON2 is 0.712, which is better than all CASP14 server groups (Zhang-Server: 0.706, 
BAKER-ROSETTASERVER: 0.655, Yang-Server: 0.657, tFold: 0.660). The superior-
ity of FALCON2 is much clearer for the FM target proteins. The average TM-score of 
the top 1 predicted structures for FM target by FALCON2 is 0.562, which is better than 
Zhang-Server (0.555), and much better than the other CASP14 server groups (BAKER-
ROSETTASERVER: 0.378, Yang-Server: 0.438, tFold: 0.456).

Overall, these results lead to similar observations that have been obtained on CASP13 
target proteins, i.e., the combination strategy has higher prediction accuracy than the 
individual prediction approach, especially for the TBM target proteins.

Analyzing the contributions by ProFOLD and ProALIGN to FALCON2
In order to figure out the contribution of ProFOLD and ProALIGN to FALCON2, 
we performed the head-to-head comparison of the two approaches on CASP13 and 
CASP14 targets. Figure 2 shows that in general, ProFOLD has better prediction perfor-
mance than ProALIGN and in some cases, the prediction structures by ProALIGN are 
better than ProFOLD.

Table 2  TM-score of the predicted structures for CASP14 targets by FALCON2 and top CASP14 
server groups

Here, we show TM-score of top1/top5 predicted models. The best performance is marked in bold font

All (91) TBM-easy (26) TBM-hard (28) FM/TBM (14) FM (23)

Zhang-server 0.706/0.725 0.855/0.863 0.698/0.717 0.694/0.733 0.555/0.574
BAKER-ROSETTASERVER 0.655/0.665 0.837/0.846 0.705/0.716 0.672/0.680 0.378/0.392

Yang-Server 0.667/0.695 0.842/0.851 0.685/0.707 0.680/0.698 0.438/0.501

tFold 0.660/0.683 0.823/0.834 0.692/0.711 0.626/0.674 0.456/0.485

RaptorX 0.652/0.676 0.859/0.866 0.692/0.731 0.620/0.638 0.388/0.417

FEIG-S 0.626/0.634 0.844/0.848 0.669/0.679 0.634/0.646 0.323/0.330

ProALIGN-only 0.566/0.584 0.805/0.823 0.621/0.635 0.437/0.465 0.307/0.323

ProFOLD-only 0.698/0.704 0.816/0.821 0.693/0.698 0.710/0.717 0.564/0.568

FALCON2 0.712/0.720 0.850/0.862 0.708/0.714 0.713/0.717 0.562/0.568
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To further examine in what cases ProALIGN outperforms ProFOLD, we divided 
the CASP13 and CASP14 target proteins into groups according to the availability of 
high-quality templates. In particular, for each target protein, we calculate the TM-
score between its native structure and the most similar template. Next, we divide 
the target proteins into four groups with calculated TM-score within [0.00, 0.40], 
(0.40, 0.60], (0.60, 0.80], and (0.80, 1.00], respectively. As shown in Table 3, for the 
targets in the [0.00, 0.40], (0.40, 0.60], and (0.60, 0.80] groups, ProFOLD generates 
higher-quality protein structure than ProALGIN. In contrast, for the targets in (0.80, 
1.00] group, ProALIGN outperforms ProFOLD. These results suggest that when 
high-quality templates are available, ProALIGN is superior to ProFOLD and in other 
cases, ProFOLD shows better performance.

Case studies
Using two proteins (T0950 and T0966) as representatives, we demonstrated the 
details of the prediction procedure of FALCON2, including the constructed MSA, 
predicted inter-residue distances, the selected templates, and the constructed struc-
ture models.

Fig. 2  Head-to-head comparison of ProFOLD and ProALIGN on CASP13 and CASP14 targets. Each point 
represents two predicted structures generated by ProFOLD (x-axis) and ProALIGN (y-axis), respectively

Table 3  Quality of the predicted structures by ProALIGN, ProFOLD and FALCON2 on CASP13 and 
CASP14 target proteins

Here, we measure the structure similarity of template and target protein using TM-score and split all the targets into four 
groups: < 0.40 0.40–0.60, 0.60–0.80, and 0.80–1.00. The best performance is marked in bold font

Template quality #Targets ProFOLD ProALIGN FALCON2

[0.00, 0.40 ] 22 0.634 0.252 0.634
(0.40, 0.60 ] 45 0.660 0.433 0.662
(0.60, 0.80 ] 78 0.727 0.651 0.738
(0.80, 1.00 ] 50 0.793 0.854 0.845



Page 9 of 14Kong et al. BMC Bioinformatics          (2021) 22:439 	

Case study 1: CASP13 target T0966

The target protein T0966 has a total of 492 residues, which was classified as TBM-hard 
in the CASP13 competition. The protein is a MARTX toxin effector domain from Vibrio 
vulnificus CMCP [32], and its native structure has already been solved and deposited in 
PDB as 5w6iA.

For T0966, FALCON2 constructed an MSA through searching it against three 
sequence databases, including Uniclust30 (as of Oct. 2017), Uniref90 (as of Mar. 2018), 
and Metaclust (as of Jan. 2018). The constructed MSA contains a total of 126 homol-
ogous proteins, implying that its quality is relatively lower. Next, FALCON2 executed 
ProFOLD to predict inter-residue distances for this target. However, due to the low-
quality MSA, the accuracy of the predicted inter-residue contacts is relatively lower. As 
shown in Table 4, the prediction accuracy of top L long-range residue contacts is only 
0.443. The predicted inter-residue distances also deviate significantly from the native 
one (Fig. 3). Consequently, the predicted structure by ProFOLD achieved a TM-score of 
only 0.310.

For this target, FALCON2 also executed ProALIGN to yield candidate structures. 
Table  5 shows the top 5 templates reported by ProALIGN. In the case of template 
2ebhX, its sequence identity with T0966 is 25.4%, and according to this template, ProA-
LIGN constructed a target-template alignment with a high confidence score (0.699). In 
fact, this template is substantially similar to the native structure (TM-score: 0.820), and 

Table 4  Precision of the contacts predicted by ProFOLD for T0966

Here, we show the precision of the top L/10, L/5, L/2 and L residue contacts, where L represents protein length

Top L Top L/2 Top L/5 Top L/10

Long-range 0.443 0.610 0.806 1.000

Medium-range 0.254 0.472 0.765 0.898

Short-range 0.262 0.471 0.878 0.980

Fig. 3  The native inter-residue distances (left panel) and the predicted inter-residue distances by ProFOLD 
(right panel) for target T0966
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using this template to construct target-template alignment, ProALIGN yielded a high-
quality structure with TM-score 0.833. Finally, according to the predicted lDDT reported 
by ProQ3D (Table 6), FALCON2 selected the structure predicted by ProALIGN as the 
final prediction result (TM-score: 0.833; Fig. 4).

Case study 2: CASP13 target T0950

The target protein T0950 has a total of 353 residues, which was classified as FM in the 
CASP13 competition. T0950 is a membrane protein from Photorhabdus luminescens 
[33], and its native structure has already been solved and deposited in PDB as 6ek4A.

For T0950, FALCON2 constructed an MSA through searching it against three 
sequence databases, including Uniclust30 (as of Oct. 2017), Uniref90 (as of Mar. 2018), 
and Metaclust (as of Jan. 2018). The constructed MSA contains a total of 462 homolo-
gous proteins, implying that its quality is relatively high. Next, FALCON2 executed Pro-
FOLD to predict inter-residue distances for this target. Using the high-quality MSA, 

Table 5  The top 5 templates reported by ProALIGN for target T0966

Here, we use TM-score to measure template quality and predicted structure quality

Template Sequence identity 
(%)

Confidence score Template quality Quality of 
the predicted 
structure

2ebhX 25.4 0.699 0.820 0.833

2ebfX 25.2 0.697 0.817 0.834

2ec5A 25.9 0.691 0.822 0.852

4r04A 11.5 0.362 0.208 0.254

4w8fA 8.60 0.361 0.195 0.213

Table 6  The top 5 predicted structures reported by ProQ3D for target T0966

Here, we use lDDT score and TM-score to measure predicted structure quality

Predicted structure Predicted lDDT 
score

Z-score True lDDT score TM-score of 
the predicted 
structure

T0966-PA-2ebhX 0.559 1.049 0.632 1.05

T0966-PA-2ebfX 0.546 0.833 0.628 0.833

T0966-PA-2ec5A 0.524 0.480 0.626 0.852

T0966-PF-m1 0.516 0.354 0.354 0.254

T0966-PF-m2 0.514 0.315 0.315 0.213

Fig. 4  The native structure (in green) and predicted structure (in red) by FALCON2 for target T0966 (TM-score: 
0.833)
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ProFOLD yielded accurate distance prediction. As shown in Table  7, the prediction 
accuracy of top L long-range residue contacts reaches 0.675. The predicted inter-resi-
due distance matrix is also similar to the native one (Fig. 5). Consequently, the predicted 
structure by ProFOLD achieved a TM-score of 0.730.

For this target, FALCON2 also executed ProALIGN to yield candidate structures. 
Table 8 shows the top 5 templates reported by ProALIGN. As no homologous template 
has been deposited in the template database used in this study, ProALIGN failed to 
find a similar template and thus cannot generate high-quality structure models. Finally, 
according to the predicted lDDT reported by ProQ3D (Table 9), FALCON2 selected a 
structure predicted by ProFOLD as the final prediction result (TM-score: 0.730; Fig. 6).

Conclusion
In this study, we present FALCON2, a web server for high-quality protein structure 
prediction. Using CASP13 and CASP14 target proteins as representatives, we dem-
onstrate that FALCON2 can successfully predict structures for both TBM and FM 
target proteins when high-quality MSA can be obtained. We also observed that TBM 
and ab  initio approaches have different emphasis, and the combination of these two 
types of approaches can lead to improved prediction accuracy. FALCON2 provides 
a user-friendly graphic interface, making it easy to use for the community. We expect 
FALCON2 web service to enable insights into the structure and function of proteins, 
especially the proteins with important roles in health and disease.

Table 7  Precision of the inter-residue contacts predicted by ProFOLD for target T0950

Here, we show the precision of the top L/10, L/5, L/2, and L residue contacts, where L represents protein length

Top L Top L/2 Top L/5 Top L/10

Long-range 0.675 0.610 1.000 1.000

Medium-range 0.090 0.187 0.471 0.794

Short-range 0.060 0.090 0.190 0.294

Fig. 5  The native inter-residue distances (left panel) and the predicted inter-residue distances by ProFOLD 
(right panel) for target T0950
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Availability and requirements

Project name: FALCON2 server
Project home page: http://​prote​in.​ict.​ac.​cn/​FALCO​N2
Operating system(s): Windows, Linux, Mac
Programming language: Python, PHP, C++
License: GPL
Any restrictions to use by non-academics: license needed

Table 8  The top 5 templates reported by ProALIGN for target T0950

Here, we use TM-score to measure template quality and predicted structure quality

Template Sequence identity 
(%)

CMO score Template quality Predicted 
model 
quality

5gheA 11.1 0.500 0.335 0.372

5j66A 11.9 0.500 0.336 0.327

5j65A 12.9 0.498 0.329 0.315

5kucA 12.5 0.474 0.331 0.326

4k1pA 6.80 0.459 0.297 0.305

Table 9  The top 5 predicted structures reported by ProQ3D for target T0950

Here, we use lDDT score and TM-score to measure predicted structure quality

Predicted structure Predicted lDDT 
score

Z-Score True lDDT score TM-score of 
the predicted 
structure

T0950-PF-m1 0.572 1.161 0.620 0.730

T0950-PA-m2 0.560 1.025 0.617 0.751

T0950-PA-m3 0.555 0.967 0.622 0.731

T0950-PF-m4 0.554 0.953 0.608 0.758

T0950-PF-m5 0.545 0.860 0.595 0.783

Fig. 6  The native structure (in green) and predicted structure (in red) by FALCON2 for target T0950 (TM-score: 
0.730)

http://protein.ict.ac.cn/FALCON2
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