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Background
Transcription factors (TFs) hold a central role in the regulation of gene expression. There 
are numerous studies that identify human TFs that potentially regulate the gene expres-
sion of interesting processes, disease related mechanisms, etc. [1]. Important analyses 
of ATAC-Seq data, gene regulatory networks (GRNs), and expression quantitative trait 
locis (eQTLs) all revolve around TFs. Having identified a set of potentially important 
TFs, a logical next step in a bioinformatics analysis pipeline is to connect those TFs to 
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downstream genes and, subsequently, to biological functions. There are several methods 
available to give biological context to sets of genes using underlying functional anno-
tation databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2], 
Reactome [3], and Gene Ontology (GO) [4]. Annotations in such databases are typically 
matched to a set of genes, and the top overlapping annotations help to shed light on 
what functionalities the genes represent [5].

However, an analysis pipeline that goes from TFs to biological functions is facing at 
least two major pitfalls. First, TFs are themselves genes with a specific function—tran-
scriptional regulation. Thus, by using the simple gene set enrichment analysis approach, 
we will usually not discover the functional patterns of downstream genes that these TFs 
regulate. If a set that exclusively contains TFs is used to extract, as an example, enrich-
ments of GO-terms, the predominant associations will by definition be related to gene 
transcription. While this is an accurate annotation, we note that such an analysis gives 
little or no information about what downstream processes the TFs control. The second 
pitfall concerns statistical power. There are roughly 1,600 known human TFs, constitut-
ing only 5–8% of the human genome, which limits statistical power of such compari-
sons. To solve these hurdles, and to simplify annotation enrichment analysis of genes 
downstream of TFs, we present the TF target enricher (TFTenricher), a Python toolbox 
that maps TFs to their target genes, and calculates their overlap with genes sets in some 
of the most widely used annotation sets.

Implementation
The TFTenricher was developed in Python 3, under a GNU General Public License V3, 
and is, together with a user tutorial, available at https://​github.​com/​rasma​774/​Tften​
richer. The TFTenricher is dependent on just four of the most common Python pack-
ages, namely NumPy, Scipy, Pandas, and Matplotlib, which are included in most Python 
installations, allowing for an easy install. The default TFTenricher algorithm works in 
three distinct steps (Fig. 1a). First, it maps a user-defined list of TFs to putative down-
stream genes using lookup-tables of co-expression that comes included with the soft-
ware. To date, the known human gene regulatory network remains incomplete, and the 
TFTenricher can use putative TF-target interactions that are either supplied by the user, 
or alternatively, built in to the TFTenricher. The built-in inference methods are, as of 
now, based on either the TRRUST [6] database, the STRINGdb [7], or a Pearson cor-
relation coefficient matrix based on expression that was extracted from ARCHS4 data-
base [8]. In the case of the TRRUST and STRINGdb, the input TFs are pooled together 
and the top n genes with the strongest associations are extracted. In the correlation-
based target gene extraction, the genes’ absolute values of the correlation coefficients 
are summed, and the top n genes are returned. If the user chooses not to specify the 
input parameter n, a Monte Carlo-based function randomly draws TFs and the top rank-
ing target genes are compared to random chance. Furthermore, the correlation matrix, 
which is the default inference method of TFTenricher, is based on data from > 100  k 
gene expression profiles, which makes it one of the most extensive co-expression analy-
ses currently available.

The second step in the TFTenricher algorithm takes the mapped target genes and 
uses Fisher’s exact test to calculate the enrichments of gene sets annotated in, as per the 
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choice of the user, KEGG, GO, REACTOME, the GWAS catalog, or alternatively, sets 
that are supplied by the user. The default is a GO enrichment of biological process, cel-
lular component, and molecular function based on PANTHER GOslim [4]. Moreover, 
multiple testing correction is available using either a Bonferroni or Benjamini–Hochberg 
correction, or additional correction approaches as provided by the user. As a third and 

Fig. 1  TFTenricher functionality. a Flowchart of the TFTenricher approach. A set of TFs are taken as input, 
which then by default are mapped to target genes using a pre-compiled TF-target coexpression matrix. The 
user can also use custom-built TF-target mapping functions. Next, the target genes are annotated with GO 
(default), KEGG, REACTOME, or diseases using the GWAS catalog. The user can also provide a custom gene set 
for overlap calculations. b A typical output of the TFTenricher in terms of GO enrichments, here when applied 
to multiple sclerosis-associated TFs (as found in Additional file 2)
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final step of the TFTenricher algorithm, the odds ratio and p values of the most enriched 
terms can be plotted (Fig. 1b), or saved to file.

Results
The TFTenricher increases power in TF‑oriented annotation analyses

We analysed performance by randomly drawing transcription factors (TFs) from the 
Human Transcription Factors database [9], which annotates TFs based on a broad selec-
tion of popular databases. Moreover, we drew TFs ten times for each step of 50 in the 
range of 50–450 TFs. We set 450 TFs as an upper limit of this analysis, noting that 450 
TFs exceed a quarter of all human TFs found in the database, and applied TFTenricher 
to the permutations. The TFTenricher completed calculations under 30 s in all permuta-
tions (Additional file 1).

We next analysed the performance of the TFTenricher when applied to differentially 
expressed TFs from a compendium of 21 diseases (Additional file  2). We found the 
TFTenricher to identify a median of 54 terms at a false discovery rate of 0.05, whereas 
applying TFTenricher on TFs only resulted in a median of 12 identified terms per data-
set (Wilcoxon signed-rank test p < 0.006). We thus conclude that the TFTenricher mark-
edly increases the statistical power of analyses of biological function. We also note that 
in our analysis, the top GO-terms of the TFs themselves invariably involved the regula-
tion of transcription by RNA polymerase II, whereas the TFTenricher inferred disperse 
and biologically relevant annotations (Fig. 1b, Additional file 2).

Correlation‑based inference of downstream processes minimises false positive 

identifications

To date, there is no complete interaction map between human TFs and their tar-
get genes, and there are multiple available approaches to infer such interactions [10]. 
Whereas most such approaches infer bindings from specific datasets, we sought to 
include dataset-independent TF-target interaction maps. To this end we incorporated 
the TRRUST [6] and STRINGdb [7] databases and the gene expression correlation 
matrix developed by Lachmann et al. [8]. By applying the TFTenricher to 100 sets of ran-
dom TFs we found the co-expression based TF-target inference method to result in con-
siderably fewer false positive identifications, with on average 2.16 GO terms (Additional 
file 3). Furthermore, the majority of these GO terms were related to transcription, with 
the terms mRNA splicing, via spliceosome, and mRNA processing accounting for 57% of 
all identified terms. We speculate these identifications being due to the TFTenricher, 
by the nature of the correlation-based target gene inference, identifying genes that are 
involved in transcription without being TFs themselves. From these results we chose to 
make the co-expression based method the default setting of TFTenricher. However, we 
note that co-expression as a tool of gene regulatory inference is prone to several pit-
falls [11], and as alternative data, e.g. massive and unbiased ChIP-Seq databases, become 
available, TFTenricher can easily be expanded to also include such data. Arguably all TF-
target inference methods contain various drawbacks and we therefore built the TFTen-
richer to allow for independent TFtarget mappings supplied by the user.
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Conclusions
The bioinformatics community provides excellent tools to associate biological functions 
to sets of genes. However, when those genes are TFs, results will likely fail to detect the 
processes of genes that are regulated by the TFs. We present the TFTenricher, a Python 
tool that enables researchers to analyse biological function of genes that are downstream 
of a set of a priori interesting TFs. The TFTenricher enables users to perform enrich-
ment analyses of gene set associations in several popular databases, all with a minimal 
set of dependencies.
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