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Abstract 

Background:  Protein kinases are among the largest druggable family of signaling pro‑
teins, involved in various human diseases, including cancers and neurodegenerative 
disorders. Despite their clinical relevance, nearly 30% of the 545 human protein kinases 
remain highly understudied. Comparative genomics is a powerful approach for pre‑
dicting and investigating the functions of understudied kinases. However, an incom‑
plete knowledge of kinase orthologs across fully sequenced kinomes severely limits 
the application of comparative genomics approaches for illuminating understudied 
kinases. Here, we introduce KinOrtho, a query- and graph-based orthology inference 
method that combines full-length and domain-based approaches to map one-to-one 
kinase orthologs across 17 thousand species.

Results:  Using multiple metrics, we show that KinOrtho performed better than exist‑
ing methods in identifying kinase orthologs across evolutionarily divergent species 
and eliminated potential false positives by flagging sequences without a proper kinase 
domain for further evaluation. We demonstrate the advantage of using domain-based 
approaches for identifying domain fusion events, highlighting a case between an 
understudied serine/threonine kinase TAOK1 and a metabolic kinase PIK3C2A with 
high co-expression in human cells. We also identify evolutionary fission events involv‑
ing the understudied OBSCN kinase domains, further highlighting the value of domain-
based orthology inference approaches. Using KinOrtho-defined orthologs, Gene 
Ontology annotations, and machine learning, we propose putative biological functions 
of several understudied kinases, including the role of TP53RK in cell cycle checkpoint(s), 
the involvement of TSSK3 and TSSK6 in acrosomal vesicle localization, and potential 
functions for the ULK4 pseudokinase in neuronal development.

Conclusions:  In sum, KinOrtho presents a novel query-based tool to identify one-to-
one orthologous relationships across thousands of proteomes that can be applied to 
any protein family of interest. We exploit KinOrtho here to identify kinase orthologs 
and show that its well-curated kinome ortholog set can serve as a valuable resource 
for illuminating understudied kinases, and the KinOrtho framework can be extended to 
any protein-family of interest.
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Background
Since the completion of the human genome project, thousands of species have been 
fully sequenced [1], providing a broader coverage of species diversity across the tree of 
life. “Moonshot” approaches, such as the Earth BioGenome Project (EBP), aim to cat-
alog, and then characterize, genomes across eukaryotic biodiversity during the next 
decade [2]. The acquisition of genomic (and their associated proteomic) datasets ena-
bles the accurate prediction of protein functions through ever-deeper evolutionary 
analysis of related sequences [3]. Protein kinases transfer the gamma phosphate group 
from ATP to an expanding subset of amino acids in their regulatory targets [4]. They 
can be distinguished from other mechanistically related enzymes, such as metabolic 
and glycan-modifying kinases [5]. Protein kinases represent one of the largest drug-
gable families of signaling proteins abnormally regulated in various human diseases, 
including most human cancers [6–8]. The human genome encodes nearly 550 protein 
kinase-related genes (collectively referred to as the human kinome) that have been 
broadly classified into major groups and families [9, 10]. A majority of the human 
kinome members have been functionally characterized in multiple model organisms; 
however, nearly 30% of human kinases remain understudied, despite multi-organism 
knowledge of their primary sequence [11–13]. These are collectively referred to as 
“dark” kinases based on a subset of metrics such as the number of published papers 
(Jensen PubMed score [14] < 50 and PubTator score [15] < 150) and grant funding (no 
R01). Many of the understudied kinases, such as RIO and NEK families, contain clear 
orthologs in a majority of eukaryotic genomes, suggesting essential (rate-limiting) 
biological functions across life [16–18]. A major focus of the Illuminating the Drugga-
ble Genome (IDG; https://​commo​nfund.​nih.​gov/​idg/​index) consortium is to charac-
terize the functions of these understudied proteins as a conceptual starting point for 
developing new drugs for a wide range of diseases such as cancer, neurodegenerative 
and autoimmune disorders that are associated with abnormal kinome signaling [19].

Comparative genomics is a powerful approach for inferring gene functions and 
is based on the assumption that genes descended from the same ancestor are likely 
to retain commonly shared functions [20, 21]. These gene descendants are called 
orthologs and paralogs, two major types of homologs related to speciation and dupli-
cation events, respectively [22]. Paralogs can be further categorized as in-paralogs 
and out-paralogs: the former arises from duplication after speciation, while the latter 
arises from duplication before speciation [23]. The concept of “one-to-one” ortholo-
gous relationships (one protein in one species versus one protein in the other species) 
has been extended to “one-to-many” or “many-to-many” relationships and are col-
lectively termed orthologous groups [24]. Co-orthologs are defined as a pair of genes 
from the same orthologous group but different species [25]. Given the importance 
of these relationships for functional analysis, several orthology inference methods 
have been developed. We have previously used these approaches to analyze canonical 
protein kinases and pseudokinases, including a broad survey of pseudoenzymes [26], 
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pseudokinases [27], and a variety of understudied kinases whose biological function 
remains unknown, despite conservation in various eukaryotic lineages [28–30].

Current orthology inference methods can be broadly classified into two major catego-
ries: tree-based methods [31–34] and graph-based methods [35–43]. Tree-based meth-
ods, such as EnsemblCompara [31], construct reconciled trees based on gene trees and 
corresponding species trees and then infer the type of evolutionary event (speciation/
duplication) that represents each internal node of the tree. By contrast, graph-based 
methods, such as OrthoMCL [35], avoid building trees and identify hypothetical orthol-
ogous relationships (orthologs/paralogs) typically by two main steps: graph construction 
and clustering. Graph-based methods represent proteins as nodes and the relation-
ships connecting the nodes (sequence similarity, for example) as edges. The nodes in the 
graph are then clustered into orthologous groups by different strategies [44–46]. Tree-
based methods are generally more accurate than graph-based methods, depending on 
the accuracy of species trees [46, 47]. However, tree-based methods are computationally 
expensive, limiting the exploration of thousands of species across the tree of life [47]. In 
contrast, graph-based methods are faster, but the increased speed is generally achieved 
at the cost of reduced sensitivity. When applied to large datasets, the performance of 
graph-based methods is comparable to tree-based methods and, in some cases, even 
better than tree-based methods [48].

Most orthology inference methods rely on time-consuming all-vs-all sequence similar-
ity searches across full-length gene or protein sequences across entire genomes. As such, 
these methods are not designed for focused analysis on individual gene families. Within 
large protein families, such as the protein kinase superfamily, traditional orthology 
inference methods display high false-positive rates since they do not consider the con-
servation of known functional domains. Some existing methods identify sequences as 
putative orthologs that almost certainly lack the classical bilobal kinase domain. In con-
trast, domain-based methods, such as Hierarchical grouping of Orthologous and Paralo-
gous Sequences (HOPS) [49], FlowerPower [50], Domain based Detection of Orthologs 
(DODO) [51], Microbial Genome Database (MBGD) [52], and Domainoid [53], are 
tailored to identify evolutionary relationships based on functionally relevant regions, 
notably domains, of a protein. However, the performances of these methods are reliant 
on the annotation of domains based on prior knowledge, thereby making it challenging 
to identify novel domains and relationships. A good example of this is the discovery of 
atypical kinases with very low sequence identity compared to search sequences, such as 
the atypical SelO kinase [54].

To address the above challenges in orthology prediction, we developed KinOrtho as 
a complementary approach for efficient and accurate identification of human kinase 
orthologs across ~  17,000 species, extending well beyond the 15 model organisms 
defined in the seminal study of Manning and colleagues [9] and a recently updated 
kinase-centric database with kinases from 2000 species [55]. KinOrtho is query-based 
and achieves increased sensitivity by combining similarities in the commonly conserved 
protein kinase domain and flanking regulatory domains. This enables us to develop one-
to-one orthology relationships that provide a finer resolution of orthologs across species 
than previous efforts. We apply KinOrtho towards identifying putative proteins involv-
ing fusion or fission events, or so-called “Rosetta Stone protein” [56]. By integrating 
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evolutionary information with gene expression patterns, we identify a potential func-
tional association between an understudied kinase “Serine/threonine-protein kinase 
TAO1” (TAOK1) and a metabolic kinase “Phosphatidylinositol-4-phosphate 3-kinase” 
(PI3KC2A) in autophagy. Using KinOrtho-defined orthologs, Gene Ontology (GO) 
annotations, and machine learning models, we prioritize understudied kinases for func-
tional studies by developing a Novel Inferred Annotation Score (NIAS). The KinOrtho 
pipeline and ortholog datasets are available at the GitHub repository (https://​github.​
com/​esbgk​annan/​KinOr​tho), and the patterns of conservation in aligned orthologs 
sequences are visualized in both KinView [57] (https://​proki​no.​uga.​edu/​kinvi​ew/) and 
the IDG resource Pharos [58] (https://​pharos.​nih.​gov/).

Results
Overview of KinOrtho algorithm

KinOrtho is a query- and graph-based orthology inference method that combines full-
length and domain-based orthology inference approaches. It consists of two pipelines 
(full-length and domain-based) and six main steps: (i) homology search, (ii) building 
kinome databases, (iii) all-vs-all homology search, (iv) orthology inference, (v) cluster 
analysis, and (vi) combining the results from two pipelines (Fig. 1).

Because KinOrtho is query-based, it omits a large portion of unnecessary sequence 
comparisons unrelated to the query sequence(s). This characteristic makes KinOrtho a 
more efficient tool to identify orthologs of interest across the tree of life. We applied 
KinOrtho to identify the orthologs of 545 human kinases across some 17,000 species 
found in UniProt reference proteomes [59]. Without target genes, traditional orthol-
ogy inference methods start from an all-vs-all homology search, which would require 
orders of magnitude (more than two quadrillion) pairwise sequence comparisons for 
this sample of reference proteomes. Because our query sequences were human kinases, 
only about eight thousand species were found to have human kinase homologs, which 
resulted in a nearly 2000-fold reduction in the number of comparisons to be made 
(Additional file 1: Table S1). This makes KinOrtho one of the most computationally effi-
cient orthology inference methods currently available for the identification of kinases.

Fig. 1  Overview of the KinOrtho algorithm. KinOrtho is an orthology inference method combining 
full-length and domain-based approaches. It consists of six main steps: (i) homology search against reference 
proteomes, (ii) building BLAST databases, (iii) all-vs-all homology search, (iv) orthology inference, (v) cluster 
analysis, and (vi) combining the results of full-length and domain-based approaches

https://github.com/esbgkannan/KinOrtho
https://github.com/esbgkannan/KinOrtho
https://prokino.uga.edu/kinview/
https://pharos.nih.gov/
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When performing orthology inference, we adopted the definition of orthologous 
relationship used by OrthoMCL [35] (see Methods), which resulted in twice as many 
orthologous relationships using similarity in full-length sequences compared to simi-
larities within the kinase domain alone (302 million for full-length vs. 148 million for 
kinase domain; Additional file  1: Table  S1). However, the application of graph-based 
clustering and further refinement of the clusters resulted in a comparable number of 
orthologous relationships in the full-length (97 million) and domain-based (100 million) 
pipelines (referred to as full-length set and domain-based set, respectively). Finally, the 
combination of both pipelines resulted in 75 million overlapping orthologous relation-
ships (termed “overlapping set” from here on), including ∼133,000 relationships between 
human kinases and kinases from other species (Additional file 1: Table S1). Since this is 
the most refined set of relationships obtained from KinOrtho, this overlapping set will 
be referred to as KinOrtho throughout this manuscript. In contrast, the full-length and 
domain-based results will be explicitly stated when mentioned.

Benchmarking and comparison of KinOrtho with other orthology inference methods

To evaluate and compare the performance of KinOrtho with other orthology inference 
methods in identifying kinase orthologs, we applied KinOrtho to the well-curated Quest 
for Orthologs (QfO) reference proteomes 2018 [60]. As shown in Fig.  2a, the overall 
comparison metrics for KinOrtho are better (in terms of the overall precision and recall) 
than existing methods in the benchmarking datasets based on the enzyme classification 
conservation test, agreement with reference gene phylogenies, and species tree discord-
ance benchmarks. The remaining metrics are shown in Additional file  1: Figure S1. It 
is also important to note that the selection of orthologs from KinOrtho’s full-length 
pipeline, domain-based pipeline, and the overlapping results all yielded similar perfor-
mance (compared to other methods), suggesting robustness and agreement across these 
methods.

Next, a direct comparison between the pairs of orthologs identified by KinOrtho was 
performed alongside other methods to gain insights into overlapping predictions. In 
general, 35–60% of the orthologs identified by KinOrtho were also identified by other 
methods (blue bars in Fig. 2b). Besides, KinOrtho (overlapping set) consistently found 
orthologs not identified by other methods (orange bars in Fig.  2b). Several unique 
KinOrtho-defined human kinase orthologs, such as cyclin-dependent protein kinase 
(CDK) orthologs, are described in Supplementary Results and shown in Additional file 1: 
Figure S2–S4. On the other hand, KinOrtho consistently omitted at least 10% of the 
orthologs (average: 23.2%; gray bars in Fig. 2b) identified by other methods. This num-
ber is significantly reduced when considering KinOrtho full-length or domain-based 
sets alone (average: 14.3% and 17.2%, respectively; gray bars in Additional file 1: Figure 
S5), suggesting that KinOrtho eliminates putative ortholog sequences that lack the well-
defined bilobal kinase domain associated with protein kinases. The ability of KinOrtho 
to delineate the orthologs based on the protein kinase domain against the orthologs 
based on other conserved domains is described in Supplementary Results and shown in 
Additional file 1: Figure S6. Additional details about the utility and benchmarking of the 
domain-based approach are discussed below. Finally, we generated a similarity heat map 
to quantify orthology predictions by KinOrtho and other methods (Fig. 2c). Similarities 
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measured by the Jaccard similarity coefficient between two ortholog sets ranged from 
25.3% (Reciprocal Smallest Distance (RSD) [61] vs. Orthologous Matrix (OMA) [39]) 
to 81.5% (SonicParanoid [40] vs. OrthoInspector [41]. The average similarity among all 
methods was 50.4%. Orthology results from Bidirectional Best Hits (BBH) [62] and two 
BBH- and graph-based methods, OrthoInspector and SonicParanoid, were found to 
have the most agreement with KinOrtho results (average similarities: 59.9%, 59.8%, and 
58.7%, respectively).

Fig. 2  Benchmarking and comparison of KinOrtho with other methods. a Evaluations of the kinase orthologs 
identified by KinOrtho (marked in red) and 21 other methods. The title of each plot represents the evaluation 
metric. The dotted line represents the Pareto frontier, which runs over the participants with the best 
efficiency (except KinOrtho). The arrow in the plot shows the optimal corner. Red square: KinOrtho full-length 
set; red diamond: KinOrtho domain-based set; red triangle: KinOrtho overlapping set. b The 100% stacked 
bar chart shows the overlap in kinase orthologs identified by KinOrtho versus other orthology inference 
methods (blue region); a dashed line indicates the average percentage of the overlaps (KinOrtho Full-length 
and KinOrtho Domain-based do not count). The orange region represents the percentage of orthologs only 
identified by KinOrtho; a dotted line indicates the average percentage of the blue and orange regions. The 
gray region shows the percentage of orthologs unique to the compared method. c The heat map represents 
the Jaccard similarity matrix among orthology inference methods. Method indices are shown on the left and 
top of the matrix
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Inferring functional associations using KinOrtho‑based identification of kinase domain 

fusion and fission events

KinOrtho’s ability to find orthologs for individual domains allows identifying domain 
fusion and fission events for kinases with multiple kinase domains. In the human kinome, 
there are 13 kinases with two tandem kinase domains within the same polypeptide, many 
of which are functionally annotated phosphorylation targets of Mitogen Activated Pro-
tein Kinase (MAPK) signaling pathways. Figure 3a illustrates the four scenarios of finding 
domain-based orthologs for these 13 kinases: (1) tandem domains in one kinase match tan-
dem domains in another kinase, (2) tandem domains in one kinase match tandem domains 
in another kinase in reverse order, (3) two domains from two human kinases match tandem 
domains in one kinase from another species, and (4) tandem domains in one human kinase 
match two domains from two kinases in different species. Traditional full-length BBH-
based orthology inference methods do not have the resolution to distinguish between these 

Fig. 3  Scenarios of a single protein with tandem kinase domains and examples of potential gene fusion 
and fission events. a Four scenarios of a single protein with tandem kinase domains and their domain-based 
orthologs. Arrows represent orthologous pairs. The number of cases for each scenario is shown in 
parentheses. b Example of Scenario 3 and phylogenetic tree analysis on the fusion event of TAOK1 orthologs 
and PIK3C2A orthologs. Human TAOK1’s and PIK3C2A’s domain-based orthologs in 245 species were aligned, 
concatenated (represented by a dotted line if these two domains are from different species), and used to 
build a phylogenetic tree. Species names are labeled at the leaves of the circular-mode phylogenetic tree. 
The leaves are colored according to the clade of the species (refer to legend). Black stars mark the species 
with a TAOK1-PIK3C2A fused gene. The time when potential fusion events occurred is indicated by red stars 
on the tree. c Example of Scenario 4 and analysis of the fission event of OBSCN orthologs. The domain-based 
orthologs of human OBSCN’s two kinase domains in 80 species were used to build a phylogenetic tree. Black 
triangles mark the species with fission events. Red triangles indicate the time when potential fission events 
occurred
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scenarios. However, KinOrtho’s domain-based approach allows the definition of orthologs 
from all scenarios, thus identifying fusion and fission events in orthologous sequences.

Scenario 3 in Fig.  3a reflects potential domain fusion events. Although we identified 
113 potential fusion events, we use TAOK1 and PIK3C2A as an example to illustrate how 
integrating evolutionary data with other contextual data (protein-protein interaction, co-
expressions, and co-occurrence) can reveal potential functions for understudied kinases 
(Additional file  2). TAOK1, an understudied kinase, belongs to the STE20 family, while 
PIK3C2A belongs to the PI3K family. We found nine instances of potential domain fusion 
events between these two kinase domains (Fig. 3b). In addition, we identified 236 species 
with both TAOK1 and PIK3C2A domain-based orthologs in different kinases. We concat-
enated the sequences of TAOK1 orthologs and PIK3C2A orthologs for each species and 
then built a phylogenetic tree. We found that eight kinases with TAOK1 and PIK3C2A 
domains reside in the same clade of Nematodes. Based on this, we postulate two potential 
fusion events (indicated by red stars on the phylogenetic tree, Fig. 3b). Proteins involved in 
a fusion event usually belong to the same functional category [63]. As an example, TAOK1, 
an understudied kinase, shows high co-expression with PIK3C2A in 17,382 normal samples 
and 1376 cancer samples in the Genotype-Tissue Expression project [64] (GTEx, version 
8) and the Cancer Dependency Portal [65] (DepMap, 20Q4), respectively. The correlations 
(Pearson correlation coefficient = 0.856 in normal samples and 0.612 in cancer samples) are 
among the top 0.15% of all kinase pairs (Additional file 1: Figure S7). The co-expressed pat-
terns are conserved in A.aegypti, B.taurus, D.melanogaster, and S.mansoni (STRING [66], 
version 11.0), suggesting a possible physical interaction. Moreover, TAOK1 and PIK3C2A 
have been reported to be involved in the autophagy response [67]. Based on these obser-
vations, we predict a functional association between the understudied kinase TAOK1 and 
PIK3C2A in human cellular biology, perhaps involving communication between the mem-
brane, where phospholipids are sensed, and the cytosol, where TAOK1 has known func-
tions in relaying information to MAPK pathways.

We also analyzed cases in Scenario 4 for potential domain fission events. We found ten 
kinases in five species (ferrets, turkeys, Atlantic salmon, rainbow trout, and huchen) match-
ing the tandem kinase domains in human Obscurin (OBSCN) kinase (Fig. 3c). The tandem 
kinase domain arrangement in OBSCN is conserved in 75 species (Scenario 1). In species 
where the tandem domains are encoded in two different proteins, we concatenated the 
domains and performed phylogenetic comparisons with species where the two domains are 
naturally fused. The concatenated sequences of Atlantic salmon, rainbow trout, and huchen 
occur in the same clade. Based on the phylogenetic tree, we estimate three kinase domain 
fission events (marked by red triangles in Fig. 3c). Although the functional significance of 
these fission events is unclear, the established role of OBSCN in eye development [68, 69] 
suggests a role for these events in the evolution of vision in these species [70–73].

Phylogenetic profile analysis reveals the evolutionary depth of human protein kinase 

conservation and enriched molecular functions across species

We next sought to classify human kinases based on conservation depth across species 
by building a phylogenetic profile of KinOrtho-defined orthologs. Figure 4a highlights 
a human kinase phylogenetic profile consisting of 558 human kinase domains and their 
orthologs across 561 clades. As expected, human kinase orthologs are barely present 
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in bacteria, archaea, and viruses, except for the orthologs of eukaryotic-like protein 
kinases. Consistent with previous findings, four eukaryotic-like kinases, Protein adeny-
lyltransferase SelO, mitochondrial (SELENOO; 3936 orthologs), AarF domain-contain-
ing protein kinase 1 (ADCK1; 3258 orthologs), Ketosamine-3-kinase (FN3KRP; 2234 
orthologs), and Serine/threonine-protein kinase RIO1 (RIOK1; 1849 orthologs) have 
the most orthologs. In contrast, Casein kinase II subunit alpha 3 (CSNK2A3), Rhodop-
sin kinase GRK1 (GRK1), Putative serine/threonine-protein kinase PR-KY (PRKY), and 
Probable serine/threonine-protein kinase SIK1B (SIK1B) are “orphan” kinases with no 
orthologs based on KinOrtho’s stringent criteria. The phylogenetic profile also shows 
that the kinases in tyrosine kinase (TK), tyrosine kinase-like (TKL), and receptor gua-
nylate cyclase (RGC) groups are mainly conserved in Metazoa (including mammals, rep-
tiles, birds, fish, and protostomes), which is consistent with the findings of a previous 
study [74].

Many understudied kinases have escaped analysis due to weak conservation in model 
organisms. Based on the distribution of orthologs across different species, we organ-
ized human kinases into 10 clusters (Fig. 4b). The top 5 understudied kinases with the 
most orthologs in each cluster are highlighted in Fig.  4c. Kinases within each cluster 
are closely related (small Euclidean distance) with high co-occurrence with each other. 
Using this clustered phylogenetic profile, we sought to identify potentially conserved 
kinase-regulated biological functions across species. For example, because the kinases in 
Cluster 5 are highly conserved in Metazoa, we can hypothesize a role for these kinases in 

Fig. 4  Cluster analysis of the phylogenetic profile of human kinases. a Phylogenetic profile of human kinases. 
X-axis: 558 human kinase domains, ordered by the kinase group and the number of orthologs identified 
by KinOrtho. Y-axis: 561 clades, ordered by classification. Each dot’s color represents the coverage of the 
human kinase ortholog in each clade. b Phylogenetic clusters of human kinases. The human kinase domains 
in the x-axis are in the order of clusters and the number of orthologs. The boundaries of each cluster and 
classification are highlighted in red. c Top 5 understudied kinases with the most orthologs in each cluster. The 
number of species in each classification is shown in parentheses
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metazoan-specific biological functions. To this end, we performed Gene Ontology (GO) 
enrichment analyses using the GO annotations of all kinases as background. We identi-
fied 802 significantly enriched GO terms (false discovery rate (FDR) < 0.05), and the GO 
term is annotated for at least five human kinases in the cluster. The top three enriched 
GO terms for each cluster are shown in Table 1, and the entire list is shown in Addi-
tional file 3.

The orthologs of human kinases in Cluster 2 are present in most eukaryotic spe-
cies. The most enriched GO term in Cluster 2 is a biological process term “cell cycle 
checkpoint” (GO:0000075), which encompasses a variety of DNA and spindle-assembly 
checkpoints, well-established control mechanisms that control progression through the 
eukaryotic cell cycle [75]. EKC/KEOPS complex subunit TP53RK (TP53RK), an under-
studied kinase with 1367 orthologs, plays a vital role in the cell cycle and G1 checkpoint 
control [76, 77]. However, this GO term is currently absent in both human TP53RK 
annotation and TP53RK ortholog annotation. Kinases in Cluster 9 are mostly present in 
mammals. Consistently, the cellular component term “acrosomal vesicle” (GO:0001669) 
is the most enriched GO term in Cluster 9. Acrosomal vesicles, components in the 
sperm’s head, contain enzymes essential for fertilization [78]. All members of testis-spe-
cific serine/threonine-kinases (TSSK) belong to Cluster 9, and they are all understudied 
kinases: TSSK1B, TSSK2, TSSK3, TSSK4, and TSSK6. Currently, TSSK1B, TSSK2, and 
TSSK4 are annotated with this GO term. Although TSSK3, TSSK6, and their orthologs 
lack this annotation, both TSSK3 and TSSK6 are highly expressed in testis (median 
Transcripts Per Million = 60.86 and 424.6, respectively) [64]. TSSK6 is also reported to 
be involved in the acrosome reaction and egg fertilization [79]. Therefore, based on the 
cluster analysis of the phylogenetic profile, we predict TSSK3 and TSSK6 function in 
acrosomal biology and vesicle localization.

Machine learning model to prioritize understudied kinases using KinOrtho and GO 

annotations

The human kinome contains several understudied kinases of unknown function. We 
next wanted to investigate if KinOrtho-defined orthologs, along with sequence similari-
ties and GO annotations from different species, can be used to infer the functions of 
understudied kinases using “guilt-by-association” [80] and machine learning methods. 
To this end, we trained machine learning classifiers using orthology and functional anno-
tations of well-studied human kinases to predict whether functional annotation could be 
transferred from orthologs in other species to human kinases. In brief, we built train-
ing sets using the manually curated GO annotations of well-studied kinases (Fig. 5). The 
input features of each training instance represent the GO annotation status of human 
kinase orthologs; the output shows whether the human kinase has this GO term annota-
tion or not. Input features were weighted based on the sequence similarities between the 
human kinase and orthologs. The training sets contained 0.3 million instances with 730 
GO terms for 393 well-studied kinases and their orthologs across 176 species. After class 
balancing and 10-fold cross-validation, random forest displayed high prediction accu-
racies among various machine learning methods attempted (90.9%, 92.1%, and 95.5% 
for the training sets of biological process, cellular component, and molecular function, 
respectively; Table 2).
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Table 1  GO term enrichment analysis on the phylogenetic clusters of human kinases

Based on fold enrichment, only the top three enriched GO terms in each cluster are shown. Cluster: the cluster ID shown 
in Fig. 4b; #Kinases: the total number of human kinases and their orthologs in the cluster; K: the total number of kinases 
associated with the GO term; k: the number of kinases associated with the GO term in the cluster; Fold: fold enrichment; 
FDR: false discovery rate

Cluster #Kinases Conserved in Enriched GO term K k Fold FDR

2 27128 Eukaryota GO:0000075 (cell cycle check‑
point)

4765 3619 3.66 < 1.0E−320

GO:0098805 (Whole membrane) 1289 890 3.33 2.3E−306

GO:0046488 (Phosphatidylinosi‑
tol metabolic process)

2634 1772 3.24 < 1.0E−320

3 16899 Vertebrata
Protostomia (partial)
Fungi

GO:0000165 (MAPK cascade) 1943 1025 4.08 < 1.0E−320

GO:0005694 (Chromosome) 284 120 3.27 < 1.0E−320

GO:1902749 (Regulation of cell 
cycle G2/M phase transition)

983 380 2.99 2.2E−10

4 6933 Vertebrata
Protostomia (partial)
Plants

GO:0010468 (Regulation of gene 
expression)

9690 796 1.55 < 1.0E−320

GO:0006807 (Nitrogen com‑
pound metabolic process)

20390 1470 1.36 < 1.0E−320

GO:0044238 (Primary metabolic 
process)

23630 1663 1.33 2.1E−09

5 12496 Metazoa GO:0008047 (Enzyme activator 
activity)

778 341 4.59 1.9E−10

GO:0090287 (Regulation of cel‑
lular response to growth factor 
stimulus)

627 249 4.15 3.7E−11

GO:0016055 (Wnt signaling 
pathway)

415 161 4.06 < 1.0E−320

6 16115 Vertebrata
Protostomia (partial)

GO:0045669 (Positive regulation 
of osteoblast differentiation)

437 243 4.51 1.1E−102

GO:0030500 (Regulation of 
bone mineralization)

508 244 3.90 < 1.0E−320

GO:0034645 (Cellular macromol‑
ecule biosynthetic process)

797 330 3.36 1.0E−10

7 17842 Vertebrata GO:0042629 (Mast cell granule) 54 54 7.33 5.5E−46

GO:0030522 (Intracellular recep‑
tor signaling pathway)

152 146 7.04 8.6E−116

GO:0042102 (Positive regulation 
of T cell proliferation)

211 202 7.01 1.6E−159

8 10994 Mammals
Reptiles/Birds (partial)
Fish

GO:0051965 (Positive regulation 
of synapse assembly)

250 177 8.42 2.2E−128

GO:0005004 (GPI-linked ephrin 
receptor activity)

215 130 7.19 5.4E−81

GO:0005005 (Transmembrane-
ephrin receptor activity)

267 143 6.37 3.9E−79

9 10202 Mammals
Reptiles/Birds (partial)

GO:0001669 (Acrosomal vesicle) 103 75 9.33 3.2E−58

GO:0031253 (Cell projection 
membrane)

283 161 7.29 1.8E−99

GO:0014068 (Positive regulation 
of phosphatidylinositol 3-kinase 
signaling)

413 164 5.09 4.8E−11

10 3043 Mammals (partial) GO:0035173 (Histone kinase 
activity)

665 96 6.20 1.1E−11

GO:0050321 (Tau-protein kinase 
activity)

318 43 5.81 8.7E−12

GO:0051051 (Negative regula‑
tion of transport)

818 98 5.15 < 1.0E−320
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Next, we used the trained models (random forests) to predict the functions of under-
studied kinases. To this end, we constructed test sets in which understudied human 
kinases could be annotated based on the GO terms available for one or more of their 
orthologs. This resulted in 16 thousand instances with 2642 GO terms for 144 under-
studied kinases. Application of the pre-trained random forest models on the test sets 
resulted in 11,573 predictions of kinase-GO term pairs as present (Additional file  1: 
Table S2). Among these predicted annotations, 8933 predictions (77.2%) already existed 
in the UniProt as manually reviewed annotations, while 2640 predictions (22.8%) did 
not have UniProt annotations. Instead of referring to these 2640 predictions as false 

Fig. 5  Calculating the Novel Inferred Annotation Score (NIAS) for understudied kinases using the 
phylogenetic profile, GO annotations, and machine learning methods. The weight matrices represent the 
normalized sequence similarities between the human kinase and orthologs. The training sets and test sets 
show an example of a GO term (GO:0050896, response to stimulus) annotation status across well-studied 
human kinases, understudied human kinases, and orthologs. CV: cross-validation; IAS: Inferred Annotation 
Score; UAS: Unreviewed Annotation Score; NIAS: Novel Inferred Annotation Score

Table 2  Performance of GO annotation prediction in each training set

The best performance in each measurement and each GO domain is highlighted in underlined

GO domain Model Accuracy Precision Recall F-measure AUC​

Biological process Logistic regression 0.896 0.942 0.844 0.891 0.914

SVM 0.896 0.943 0.843 0.890 0.896

Random forest 0.909 0.944 0.869 0.905 0.923

Cellular component Logistic regression 0.908 0.955 0.856 0.903 0.924

SVM 0.908 0.955 0.858 0.903 0.908

Random forest 0.921 0.959 0.880 0.918 0.932

Molecular function Logistic regression 0.940 0.959 0.919 0.939 0.961

SVM 0.942 0.959 0.925 0.941 0.942

Random forest 0.955 0.964 0.945 0.955 0.965
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positives, we considered them as missing annotations. In fact, 1452 of them (55%) were 
found to be unreviewed electronic annotations from Ensembl [81], InterPro [82], the 
UniProt Consortium, or the GO Consortium. The remaining 1188 annotations, includ-
ing 236 lowest-level GO term annotations, were novel inferred annotations (available in 
Additional file 4). By aggregating the prediction score of each novel inferred annotation, 
we calculated a Novel Inferred Annotation Score (NIAS) for each understudied human 
kinase (the last step in Fig. 5).

Our analysis reveals that Serine/threonine-protein kinase ULK4 (ULK4) has the 
highest NIAS among all understudied human kinases. It has 22 novel inferred annota-
tions. Fifteen of them with prediction scores higher than 0.9 are inferred from mouse/
rat Ulk4. Twelve of these inferred annotations with a high score are associated with 
neuronal function and brain development, such as “ventricular system development” 
(GO:0021591), “corpus callosum development” (GO:0022038), “neuronal stem cell divi-
sion” (GO:0036445), and “GABAergic neuron differentiation” (GO:0097154). A role for 
human ULK4 in neuronal function and brain development has been suggested [83–85], 
and it is an unusual pseudokinase that binds to nucleotides in the absence of cations 
[86, 87]. Serine/threonine-protein kinase PAK 5 (PAK5), an understudied kinase with 
the second highest NIAS, has 12 novel inferred annotations. The association between 
PAK5 and “activation of MAPK activity” (GO:0000187), the GO term with the highest 
prediction score for PAK5, is also known from the literature, where these kinases act as 
upstream regulators of MAPK modules [88]. We also identified 80 understudied kinases 
with a NIAS of 0. We can still prioritize these proteins by Inferred Annotation Score 
(IAS, which aggregates all prediction scores regardless of existing unreviewed annota-
tions; see Methods) for further manual curation or experimental validation. For exam-
ple, the NIAS of Eukaryotic elongation factor 2 kinase (EEF2K) is 0. Kinases in this list 
include pseudokinases such as Serine/threonine-protein kinase H2 (PSKH2), which rep-
resent the “darkest” of kinases with little or no information across species and no func-
tional biology currently reported [28].

Discussion
Here we map human kinase orthologs across diverse species by developing a kinase 
orthology inference method called KinOrtho. We demonstrate that KinOrtho performs 
better than existing orthology inference methods based on comparisons across standard 
benchmarking datasets and metrics. KinOrtho utilizes domain-based orthology infer-
ence to eliminate orthologs with no kinase domains, allowing researchers to focus on 
the functional domains of interest. KinOrtho’s query-based characteristic enables users 
to identify orthologs of specific kinases across thousands of species within a reasona-
ble time. In contrast to orthologous groups provided by other methods, this approach 
provides one-to-one ortholog, in-paralog, and co-ortholog relationships, thereby reveal-
ing functional relationships and separating even the most closely related paralogous 
sequences.

While KinOrtho’s performance is better than existing methods based on metrics in 
the benchmarking dataset (Fig. 2a and Additional file 1: Figure S1), overlap in ortholo-
gous relationships defined by various methods in the benchmarking dataset is signifi-
cantly low (only 29.9% similarity; Additional file  1: Figure S8), presumably because of 
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the variability in orthology definition, methods used, or even potential genome assembly 
errors in the UniProt reference database. Thus, the interpretation of ortholog sets should 
be made with some caution. The Alliance of Genome Resources (AGR) has recently 
established orthologous relationships among humans and six model organisms: Cae-
norhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, Rattus nor-
vegicus, and Saccharomyces cerevisiae [89]. The orthologous relationships in AGR are 
based on the consensus of seven orthology inference methods [38, 39, 41, 42, 81, 90, 91] 
and five databases [92–96]. Comparison of KinOrtho-defined human kinase orthologs 
with AGR-defined orthologs reveals nearly 70.5% similarity. The greatest difference in 
kinase orthology sets occurs in the CMGC and CAMK groups, presumably because of 
the deeper conservation of these kinases across taxa (Additional file 1: Figure S2).

In our previous study [97], we developed an annotation score (AS) for prioritizing 
understudied kinases based on existing knowledge stored in curated databases, such as 
mutations, pathways, expressions, and post-translational modifications (updated AS are 
available in Additional file 4). In this study, we propose a complementary NIAS for prior-
itizing understudied kinases based on missing knowledge (mainly their biological func-
tions) inferred by machine learning methods. Because these two scores reflect different 
aspects of kinase annotation status, they should be used in conjunction when prioritiz-
ing understudied kinases. For example, the NIAS score can be informative when prior-
itizing understudied kinases based on information available from other organisms, while 
the AS can be helpful when prioritizing kinases based on curation status. Although we 
attempted to generate an aggregate score (AS’) by introducing NIAS into the original AS 
calculation (Additional file  4), the difference between AS and AS’ was not significant. 
Therefore, we recommend using AS and NIAS independently when prioritizing under-
studied kinases for experimental studies.

For illuminating understudied kinases, ion channels, G-protein-coupled receptors, 
or other protein families, a broader collection of manually curated biological functions 
from various species would be immensely helpful. Although we propose KinOrtho as a 
tool that can be generalized to a broad range of protein families, its query- and domain-
based characteristics may result in lower sensitivity of small protein families with fewer 
orthologs. Moreover, a fair comparison between KinOrtho and other orthology infer-
ence methods cannot be made if the results are evaluated based on a tiny subset of 
benchmarking datasets. Therefore, to identify the orthologs of those protein families 
with few members, users are recommended to use KinOrtho in conjunction with other 
orthology inference methods.

Conclusions
In this study, we have developed an efficient query-based orthology inference method 
that combines full-length and domain-based orthology inference methods to compre-
hensively map human kinase orthologs across the tree of life. KinOrtho performed bet-
ter than existing methods in a benchmarking dataset and identified putative domain 
fusion and fission events. We confirmed kinase-associated molecular functions enriched 
across species using phylogenetic profiles after identifying overlapping orthologous 
relationships from full-length and domain-based pipelines. Finally, we prioritized and 
inferred functions of understudied human kinases using KinOrtho-defined orthology 
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and GO annotations as features in machine learning. Our studies serve as a conceptual 
starting point for investigating understudied human kinase biology by leveraging evolu-
tionary information. This is exemplified, but by no means limited to, pharmacologically 
tractable protein families such as the protein kinases.

Methods
KinOrtho workflow

KinOrtho is a query-based, graph-based, and combinatorial orthology inference 
method. It consists of six main steps (Fig. 1): 

1	 Homology search for the query sequences of interest against reference proteomes
2	 Building Basic Local Alignment Search Tool [98] (BLAST) databases, containing full-

length and domain-based databases
3	 All-vs-all homology search for the rebuilt databases
4	 Orthology inference and determining orthologs, paralogs, and co-orthologs
5	 Cluster analysis and filtering out the orthologous relationships between two proteins 

in different clusters or the clusters without query sequences
6	 Combining the results of full-length and domain-based methods

Query sequences

The query sequences used in this study were based on a broader mapping of human 
kinome composition performed recently [19]. We collected 545 human kinases, con-
taining 483 eukaryotic protein kinases (ePKs), 19 eukaryotic-like protein kinases 
(PKLs), and 43 atypical protein kinases (aPKs). Based on a manually curated eukary-
otic protein kinase sequence profile [27], Pfam [99], and Conserved Domain Database 
[100], we manually annotated and collected 558 kinase domain sequences from the 
545 human kinases. More information about the domain name, domain boundary, 
and kinase group are available in Additional file 5.

Reference proteomes

We applied KinOrtho to the UniProt reference proteomes (release 2019_11), which 
are chosen to broadly represent the taxonomic diversity [59]. It is also the most well-
curated and extensive collection of entire proteomes across the tree of life. The ref-
erence proteomes contain 18,870,318 protein sequences spanning the tree of life 
(Additional file 1: Table S1). To benchmark the performance of KinOrtho, we applied 
KinOrtho to the Quest for Orthologs (QfO) reference proteomes 2018 [60], which 
contains 885,338 protein sequences from 48 eukaryotic species, 82,507 sequences 
from 23 bacterial species, and 17,317 sequences from 7 archaea species (Additional 
file  1: Table  S1). To benchmark KinOrtho based on a domain-based kinase classifi-
cation, we also applied KinOrtho to the model organisms in KinBase [101], which 
includes 15 species and 7597 kinase sequences (Additional file 1: Table S3).
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Homology search and building BLAST databases

Before performing a time-consuming all-vs-all homology search for all reference pro-
teomes, KinOrtho looks for potential homologs of query sequences by screening the 
reference proteomes using NCBI BLAST+ [102] (version 2.7.1) with default settings, 
except for the E-value threshold. Referring to other orthology inference methods, such 
as OrthoMCL-DB [103] and PANTHER [90], KinOrtho uses 10−5 as a default E-value 
threshold for BLAST search. This threshold has been demonstrated to balance between 
false-positive and false-negative rates [104]. An additional experiment showed that 
choosing the default E-value threshold of BLAST+ (101 ) yielded similar sequence com-
parisons with choosing 10−5 in the benchmarking dataset (Additional file 1: Table S4) 
but not significantly increased the performance based on the six benchmarking met-
rics shown in Additional file  1: Figure S9. Then, KinOrtho builds two sets of BLAST 
databases as new reference proteomes (“kinomes” hereafter) based on full-length and 
domain-based query sequences. To build a full-length kinome for each proteome, 
KinOrtho keeps the sequences in the BLAST result, generates a new sequence file, 
and then applies the “makeblastdb” function provided by NCBI BLAST+. To build a 
domain-based kinome for each proteome, KinOrtho generates a new sequence file and 
builds a BLAST database based on the BLAST hit region (between “sstart” and “send”) 
of the sequences in the BLAST result. After building a set of full-length kinomes and a 
set of domain-based kinomes, KinOrtho performs an all-vs-all homology search for each 
set using the E-value threshold (10−5 ) mentioned above.

Orthology inference

The orthologous relationships identified by KinOrtho include orthologs, in-paralogs, 
and co-orthologs. KinOrtho defines a pair of one-to-one orthologs using the Bidirec-
tional Best Hits (BBH) method [62]. A pair of in-paralogs is defined as two protein 
sequences with a higher similarity score (BLAST bit score) in the same species than the 
homologous sequences in other species. A pair of co-orthologs is defined based on the 
following two criteria: (i) ortholog of one sequence is the in-paralog of the other, or (ii) 
in-paralog of each sequence are a pair of orthologs. Using all orthologous relationships 
as edges, KinOrtho builds two graphs by connecting the kinases in the full-length and 
domain-based kinomes, respectively.

Cluster analysis

To identify orthologous groups, KinOrtho performs the Markov Cluster (MCL) Algo-
rithm [44] (version 14.137) for the two graphs. MCL is a fast, unsupervised clustering 
method using a simulation of flow in graphs. It has been utilized in other graph-based 
orthology inference methods [35, 105] and detecting protein families [106]. In the 
orthologous relationship graphs, KinOrtho assigns the negative logarithm of the E-value 
as a weight for each edge. If an E-value is reported 0 by the BLAST program, KinOrtho 
assigns an arbitrary E-value of 10-200. Considering the systematic differences among 
species, such as nucleotide composition bias, KinOrtho normalizes the weights based 
on the method used by OrthoMCL [35]. For the orthologs or co-orthologs between any 
two species, KinOrtho normalizes the weights by dividing them by the average weight of 
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all the orthologs or co-orthologs between the two species. For in-paralogs, the weights 
are divided by the average weight of all in-paralogs in each kinome. When performing 
MCL after setting a normalized weight for each edge, KinOrtho chooses 1.5 as a default 
inflation value to control the cluster tightness. This value is the best inflation value to 
balance the sensitivity and selectivity for functional classification [35]. Each protein is 
assigned to a cluster, after which KinOrtho refines orthologous relationships by filtering 
out the relationships between two proteins in different clusters or the clusters without 
query sequences.

Combining results

In the last step, KinOrtho combines the orthologous relationships from full-length and 
domain-based results. We define an “overlapping orthologous relationship” as a relation-
ship present in both full-length and domain-based results. For example, in Scenario 1 of 
Fig. 3a, if A1B1 (meaning the pair of A’s 1st kinase domain and B’s 1st kinase domain) and 
A2B2 are domain-based orthologs and A–B is a full-length ortholog pair, then both A1B1 
and A2B2 are defined as overlapping orthologous relationships. However, in Scenario 4 
of Fig. 3a, if A1B1 and A2C1 are domain-based orthologs and A-B is a full-length ortholog 
pair, only A1B1 is an overlapping orthologous relationship, but A2C1 is not. Because 
non-overlapping relationships are also informative in domain-based orthology analyses, 
KinOrtho keeps all the results from full-length and domain-based methods.

Comparison of orthology inference methods

There are 21 public orthology inference results available at Ortholog Benchmarking 
Webservice [60] (Additional file 1: Table S5; similarity matrices are shown in Additional 
file 1: Figure S8). These datasets generated by full-length orthology inference methods 
contain the kinase relationships and all other proteins’ relationships in the QfO refer-
ence proteomes 2018. To make the orthologs identified by KinOrtho and those identified 
by the 21 methods comparable, we performed the following preprocessing for the com-
pared datasets. First, because KinOrtho defines orthologs based on the BBH method, 
we only kept one-to-one relationships in the compared datasets. Second, to identify 
the kinase orthologs in the compared datasets, we only kept the relationships with at 
least one protein found in the ortholog relationships identified by KinOrtho (either full-
length or domain-based approach). Finally, to identify human kinase orthologs in the 
compared datasets, we only kept the relationships involving human kinases. The num-
bers of remaining proteins and ortholog relationships are shown in Additional file  1: 
Table S5. We submitted these 21 preprocessed one-to-one kinase ortholog datasets to 
Ortholog Benchmarking Webservice for performance evaluation.

Protein domain annotation

This study employed the annotations in Pfam [99] (version 32.0) as known protein 
domain annotations. There are 305,472 proteins with at least one orthologous relation-
ship identified by KinOrtho from the UniProt reference proteomes. In these proteins, 
197,327 of them have 398,313 domain annotations, and 149,080 have at least one of the 
two major protein kinase domains: “Pkinase” and “Pkinase_Tyr”.



Page 18 of 25Huang et al. BMC Bioinformatics          (2021) 22:446 

Phylogenetic analysis

The phylogenetic tree analyses in this study were utilized to investigate the gene fusion 
and fission events of proteins with tandem kinase domains (Fig. 3). First, we obtained 
the domain-based orthologs of the kinase domains of interest. To identify gene fusion 
events, we used TAOK1 and PIK3C2A as an example. There are 245 species (includ-
ing humans) having both TAOK1 and PIK3C2A orthologs. To identify gene fission 
events, we used OBSCN as an example. There are 80 species with orthologs for each of 
the (tandem) kinase domains in OBSCN. Second, we aligned those two sets of kinase 
domain orthologs separately by Multiple Alignment using Fast Fourier Transform 
[107] (MAFFT, version 7.407). We used options “L-INS-i”, “–localpair”, and “–maxiter-
ate 10000” to generate more accurate alignments. Third, the two kinase domains’ align-
ments were concatenated as a single alignment file: the first kinase domain’s orthologs 
followed by the second kinase domain’s orthologs for each species. Fourth, we used IQ-
TREE [108] with options “-m TEST” (standard model), “-bb 1000” (bootstrap replicates), 
and “-alrt 1000” (approximate likelihood ratio test) to build consensus trees. Finally, phy-
logenetic trees were visualized using Interactive Tree Of Life [109] (iTOL, version 4).

Cluster and enrichment analyses on phylogenetic profile

The phylogenetic profile of human kinases in this study was built upon 558 human kinase 
domains and their orthologs identified by KinOrtho’s both full-length and domain-based 
approaches across the 17,134 species in the UniProt reference proteomes (Fig.  4). We 
manually grouped these species into 561 clades based on the NCBI Taxonomy data-
base [110]. Each clade contains at least five species; each clade in eukaryotes, bacteria, 
archaea, or viruses contains at most 41, 240, 35, or 2287 species, respectively. Then we 
calculated an ortholog coverage for each kinase-clade pair by dividing the number of 
orthologs by the total number of species in each clade. Based on this phylogenetic pro-
file (a kinase-clade matrix), in addition to ordering the human kinase domains by their 
groups defined by KinBase (Fig. 4a), we clustered them using k-means clustering [111] 
(Fig. 4b). We used an R package “factoextra” [112] (version 1.0.7) with options “kmeans” 
(clustering function), “nstart = 50” (initial random centroids), “nboot = 500” (number of 
bootstrap samples), and “gap_stat” (compute gap statistic [113]) to determine the opti-
mal number of clusters. We found that the optimal number of clusters was 10 (Addi-
tional file 1: Figure S10).

We performed Gene Ontology (GO) enrichment analyses using the GO annotations of 
all human kinases and their orthologs in each cluster. We extracted all three GO domains 
(biological process, cellular component, and molecular function) annotations from Uni-
Prot [114] (release 2019_11). We then expanded the lowest-level GO terms to all-levels GO 
terms for every kinase based on the hierarchical controlled vocabulary defined by the GO 
Consortium [115, 116]. Because the GO terms are annotated at the protein level instead of 
the domain level, we removed duplicate annotations if a protein’s tandem kinase domains 
are in the same cluster. When performing enrichment analyses, we chose all kinase 
orthologs’ annotations as background, used Fisher’s exact test, and then controlled the FDR 
by the Benjamini-Hochberg procedure [117]. A significantly enriched GO term is defined 
based on whether the FDR < 0.05, and at least five human kinases in the cluster have an 
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annotation. If multiple GO terms in the same lineage are enriched in a cluster, we only keep 
the lowest-level term.

Novel Inferred Annotation Score

The Novel Inferred Annotation Score (NIAS) proposed in this study is used to estimate the 
number of potential annotations we can infer from orthologous relationships to annotate 
understudied human kinases, which are defined by the NIH Illuminating the Druggable 
Genome program (IDG) [13] (Additional file 5, last updated on June 11, 2019). The scoring 
system was built upon machine learning-based annotation inference models using overlap-
ping orthologous relationships and GO annotations (Fig. 5).

First, to prevent prediction models from being biased by unreviewed data, we only used 
the manually reviewed (non-electronic) annotations of all well-studied kinases and their 
orthologs to build training sets for the three GO domains. The GO terms annotated for less 
than 100 kinases were excluded from the training sets. Each instance of a kinase-GO term 
pair in the training sets showed the values of output and input features based on the GO 
annotation status (1 for present and 0 for absent) of a well-studied human kinase and its 
orthologs, respectively. For example, in Fig. 5, an instance shows that mouse’s and rat’s Egfr 
genes have a GO term “response to stimulus” (GO:0050896) annotation, but human EGFR 
has not. The training sets consisted of 0.3 million instances with 730 GO terms for 393 well-
studied kinases and their orthologs across 176 species. To prioritize the annotations from 
different species, we further introduced a sequence similarity for each ortholog. Sequence 
similarities are defined by the average of the normalized weights generated when we built 
orthologous relationship graphs.

After building the three training sets, we built annotation inference models for each 
training set using logistic regression, support vector machine (SVM), and random forest 
implemented by WEKA [118]. All models were trained with class balancing (using instance 
reweighting) and 10-fold cross-validation to prevent overfitting. The three machine learn-
ing methods’ prediction performances for each training set are shown in Table 2. Because 
random forest showed the best performance among the three training sets, we used the 
annotation inference models built by random forest to predict missing GO annotations for 
understudied human kinases. When building test sets, we used the GO terms annotated 
for at least one understudied kinase ortholog. There were 11,503 instances in the biological 
process test set, 1810 instances in the cellular component test set, and 2507 instances in the 
molecular function test set. After applying the random forest models, the confusion matri-
ces built upon the annotation inference result and existing annotations are shown in Addi-
tional file 1: Table S2. We collected those GO annotations currently absent but predicted 
as present for each understudied kinase and then only kept the lowest-level term in each 
GO term lineage. The summation of each prediction score calculated by random forest is 
defined as an Inferred Annotation Score (IAS):
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where P(kg ) is the prediction score of gth GO term annotation for understudied kinase 
k, g = {1, 2, . . . ,G} , and g ′ represents any descendant of gth GO term. Because the pre-
dicted annotations may include existing unreviewed electronic annotations, we defined 
the NIAS of an understudied kinase by subtracting the unreviewed annotation score 
(UAS) from IAS:
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