
Boolean factor graph model for biological 
systems: the yeast cell‑cycle network
Stephen Kotiang and Ali Eslami* 

Background
In biological networks, the temporal evolution of gene or protein expressions constitutes 
a dynamical system. Modeling the coupled dynamics and characterization of the long-
run behavior of such networks is perhaps the most important task in genomic signal 
processing. In the literature, long-run distribution has been conjectured to correspond 
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to the phenotype of a cell [1]. Consequently, different analytic and computational mod-
els have been proposed to capture the behavior of complex gene regulatory networks, 
including differential equations [2, 3], Bayesian networks [4], and Boolean networks 
(BNs) [5, 6]. Among deterministic dynamical systems, perhaps the BN model has 
received the most significant research effort since it was introduced by Kauffman  [1, 
7]. BNs constitute an important class of models for regulatory networks of gene inter-
actions, in that they are simple and capture some fundamental characteristics of gene 
regulations, and their rule-based structure carries physical and biological meaningful 
phenomena, for instance, stability, hysteresis, cellular state dynamics, and the possession 
of a switch-like behavior [8].

In this paper, our goal is to predict the impact on the long-run behavior and network 
state progression caused by perturbation (also referred to as disturbance) of regulatory 
functions. In addition, we provide an exact analytic characterization of error evolution 
in biological networks, in particular, errors due to state disturbances on nodes. In sys-
tems biology, we can think of errors as a result of noise emanating from either environ-
mental or biological fluctuations that influence a biological process [9, 10]. For example, 
“genetic switches” that control cellular decisions in gene networks can alter the pat-
tern of gene expression under a small change in external stimuli such as mutagens, pH 
changes, heat stress, etc. Also, genetic switches can flip, especially when random fluctua-
tions bring the system close to the threshold for a transition [9]. In addition, fluctuations 
can propagate to a higher level of biological organization and affect biological functions 
such as decision-making, spatiotemporal population dynamics, and even evolutionary 
processes. Here, our study focuses on BNs with perturbation, particularly with a focus 
on gene deletions and random state perturbation. Note that allowing genes to randomly 
flip states is biologically meaningful [9, 11].

In the literature, the dynamical properties of Boolean networks have been studied 
based on two fundamental types of perturbations: state and structural. In state per-
turbation, genes or protein expression states in the network are flipped to modulate 
the dynamics. State perturbation is considered temporary because it resets the initial 
states of the underlying deterministic rule and does not alter the network structure [11]. 
Hence, the network attractors and the basins of attraction remain invariant. However, 
if the BN model has multiple attractors, state perturbations may cause convergence 
to a different attractor than the original one and may lead to a change in the steady-
state distribution of the BN. State perturbations have been studied mostly by analyzing 
the collective behavior of a large number of random BNs [11–13]. On the other hand, 
structural perturbation, also referred to as functional perturbation [14, 15], has a more 
fundamental impact on BNs. The long-run distribution is changed permanently, or the 
progression of states is halted since the underlying rule-based structure is altered. As a 
result, functional perturbation has the potential to reverse or force the gene network to 
transition from undesirable stable states, which is a useful tool in developing gene thera-
pies. Functional perturbations are less studied, and most algorithms proposed are rather 
cumbersome because they require the computation of transition probabilities before and 
after perturbations. Also, most perturbation studies employ Markov chain [16] analysis 
to empirically estimate the steady-state distribution of a network. For the first time, we 
introduce the “density evolution” (DE) analysis [17] to study state perturbations in gene 
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networks, hoping this could potentially be employed in rigorous analysis for functional 
perturbations.

In the literature, several methods have been proposed to qualitatively reproduce some 
known dynamical features of the wild-type biological systems, as well as the conse-
quences of single gene deletions. Based on the differential equation model in [18], the 
authors used numerical integration techniques to model the control of the restriction 
point of the mammalian cell cycle. However, this model appears difficult to extend. Also, 
Fauré et al.  [19] applied a logical modeling technique to delineate the main dynamical 
properties of the mammalian cell cycle network. They assessed the merits and limits of 
synchronous network updating assumptions in BNs against asynchronous assumptions. 
However, in their model, the effect of each regulator depends on the presence of co-reg-
ulators. Similarly, many simulation and analysis software tools for logical models exist, 
including GINsim [20], BoolNet [21], bioLQM [22], and CellNetAnalyzer [23]. However, 
these tools rarely consider error analysis in biological networks.

Other tools of dynamical systems theory like bifurcation analysis [24] and time-scale 
analysis based on the sign of Jacobian eigenvalues [25] provide temporal patterns that 
are often comparable to experimental data, which is a real advantage. Moreover, DNA 
content analysis by flow cytometry [26, 27] has been employed to study the effects of 
single gene deletion and gene over-expression on cell cycle progression. Such models 
contain detailed information about time evolution of the system. However, modeling the 
actual time duration of cellular processes requires knowledge of a large number of bio-
chemical parameters that are difficult to find [28]. In addition, when interest is in the 
prediction of the sequential pattern of states and the long-run distribution of cellular 
processes, the exact time course of the regulatory network dynamics may be neglected. 
A recent report indicates that some gene networks are so robustly designed that timing 
is insignificant [29].

In this work, we propose a computational framework that combines the formulation 
of BNs [1] and factor graphs [30, 31] to investigate the global dynamical property and 
impact of gene knockout in regulatory networks of gene interactions. With the flexibil-
ity and genericity of factor graph formalism [30], we believe that the methods proposed 
here will aid in the analysis of Boolean genetic graphs using a wide range of biologi-
cal rules or processes. We formalize the model as a Boolean factor graph and propose 
a message-passing protocol to evolve network states. The framework and structure of 
our proposed model can allow us to track the progress of network states. Thus, it has 
the potential for supporting network intervention analysis. We employed a synchronous 
updating scheme in our model. The synchronous update approach is chosen for simplic-
ity; however, in reality, molecular processes or events are not coordinated in time. Also, 
in gene knockout analysis, the requirement for the accurate specification of time delays 
or of priorities that are difficult to define or may be context-sensitive obscures the imple-
mentation of an asynchronous update strategy.

Furthermore, the proposed framework allows us to derive an analytic closed-form 
recursive equation that captures the behavior and propagation of errors introduced by 
random state perturbations in gene networks through a density evolution analysis. Here, 
we applied our methodology to study a sample network regulating the cell cycle of the 
budding yeast, referred to as the Li model [32]. In [32], the authors did not systematically 
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analyze the effect of reported gene deletions. Our simulation results on yeast cell-cycle 
gene deletion analyses are supported by experimental data in the literature. In addition, 
our findings show that the Li model is consistent with real gene-expression data. From 
our analyses, we deduced that error characterization is not only important in its own 
right but also forms a basis that allows us to quantify network parameters in design-
ing models for inferring gene regulatory networks from gene-expression profiles. Finally, 
the application of our derived recursive equation elucidates what properties of gene net-
works are directly responsible for their robustness.

Model and methods
This section provides a background on Boolean networks as a model for representing 
gene regulatory networks, and factor graphs, which are required to understand the pro-
posed model and the analysis in this paper. We then introduce and describe a message-
passing protocol employed on the proposed model to evolve network states as messages. 
Finally, we present a brief introduction of a sample biological network used for applica-
tion of our model and methods.

Boolean networks

Formalism of the BN model underscores the fundamental generic principles rather than 
quantitative biochemical details, which establishes a natural framework for capturing 
the dynamics of gene networks and their regulatory mechanisms, yielding insights into 
their overall behavior. For consistency of notation with materials in the literature [5], 
we define a Boolean network G(V,F) by a set of n binary-valued nodes V = {x1, . . . , xn} 
and a list of Boolean functions F = {f1, . . . , fn} . In systems biology, the set of nodes 
V could represent biological entities such as genes, mRNAs, and transcription fac-
tors (TFs). Each node xi ∈ {0, 1} has ki parent nodes (i.e., regulators). Also, we denote 
Pai = {Pai,1,Pai,2, . . . ,Pai,ki } as the set of parents of xi . For clarity, in this work, we 
refer to the biological entities as genes of a network. The state of xi denotes the expres-
sion of the node quantized to only two levels. In this model, xi = 1 means that gene i is 
expressed (active), and xi = 0 means that it is not expressed (inactive). Whenever a gene 
is expressed, it could affect the expression or suppression of other genes. Therefore, the 
value or state of a gene at time t + 1 is given deterministically by its regulators at time t 
through a Boolean function fi ∈ F  as

where {i1, . . . , iki} ⊆ {1, . . . , n} , and ki is the connectivity of node xi . The network func-
tion F represents the rules of regulatory interactions between the genes. Given the net-
work state at time t as x(t) = (x1(t), . . . , xn(t)) , the state transition x(t) → x(t + 1) is 
governed by F as x(t + 1) = F(x(t)) . In addition, if Pai = ∅ (i.e., xi has no parents), then 
xi(t + 1) = xi(t).

The set of all possible states (i.e., state space) of the BN contains 2n network states, so 
that after a finite number of state transitions, the initial sequence becomes transformed 
into a stable sequence of zero-dimensional fixed points known as singleton attractors. 
In certain instances, the initial sequence may eventually transition into a set of cyclical 
attractors. All states that lie on trajectories flowing to an attractor comprise its basin of 

(1)xi(t + 1) = fi
(

xi1(t), xi2(t), . . . , xiki(t)
)

,
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attraction. Of note, the attractors capture the long-run behavior of a dynamical system. 
Also, in biological systems, the key idea is to perceive each stable attractor configuration 
as representing one possible biological phenotype or cell type [1]. An example of a sim-
ple Boolean genetic graph with four genes is shown in Fig. 1a. In this network, a directed 
arrow edge implies an activation interaction link, while a blunt edge denotes an inhibi-
tion influence.

Furthermore, we presume that any node out of the n possible nodes can get perturbed 
independently of other nodes. In the BN setting, network state perturbation is repre-
sented by a random flip of value from 0 to 1, or vice versa. Since the genome is an open 
system with external inputs, it is known that genes may become either inhibited or acti-
vated due to external stimuli. In our model, an error is introduced into the network with 
a positive probability ǫ ≪ 1 when the state of a node changes due to random gene per-
turbations. (See further analysis in the density evolution section).

Boolean factor graph model

In biological systems, for each cell type and for each function performed by a cell, the 
regulatory network has a specific form that determines what biochemical processes will 
be executed and in what order. For instance, in Li’s yeast cell-cycle model, the stationary 
G 1 attractor configuration has 13 state transitions once the cell has committed to divi-
sion (see Table 2 in [32] as well as Additional file 1: Table S1). Therefore, attractors bear 
strong biological implications, and the question of interest is to understand their nature 
and properties, and how they respond to perturbation in the network. In this paper, 
we study and analyze the behavior of gene networks by representing them in terms of 
Boolean factor graphs.

A factor graph, also referred to as a bipartite graph, associates variable nodes (sym-
bolized by circles in Fig. 1b) on one side of the graph and control nodes (symbolized by 
squares in Fig. 1b) on the other side [30]. Factor graphs subsume many graphical mod-
els in probability theory, signal processing, and coding, including Markov random fields 
[33], Bayesian networks [34], and Tanner graphs [17, 35]. It is plausible that many algo-
rithms and mathematical models in these fields are naturally expressed in terms of fac-
tor graphs. One such algorithm is the sum-product algorithm [30], which operates in a 
factor graph by passing “messages” along edges of the graph, following a single, simple 

x1

x2

x3

x4

x1

f1

x2

f2

x3

f3

x4

f4

(a) (b)
Fig. 1  a Simple directed gene graph with n = 4 . b Equivalent undirected factor graph representation of 
(a). The state of gene xi at time t + 1 is governed by Boolean function fi , given a set of interacting genes. 
For instance, x3(t + 1) = f3(x2(t), x3(t), x4(t)) . Red blunt edges indicate inhibition links, whereas black 
arrowheads represent activation interactions
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computational rule, as a decoding algorithm for low-density parity-check codes [17]. 
In a quest to study error correction in biological systems, authors in [36] established a 
direct relationship between BN models of gene regulatory networks and bipartite graphs 
used in decoding algorithms in coding theory [35]. This relationship stems from a key 
experimental observation in that biological networks have sparsely distributed and pos-
sibly long edges [1]. See Additional file 1 on introduction to factor graphs.

In this context, a variable node denotes a gene xi , whereas a control node represents a 
Boolean function, fi . Figure 1b shows the equivalent bipartite form of the Boolean gene 
graph in Fig. 1a. To convert a Boolean network to a bipartite graph, we simply draw an 
edge between a variable node xi and a control node fj , if the scope of fj contains xi . In 
simple terms, a gene connected to a control node fi exerts an influence on the operation 
of gene xi within the assumption of one time unit. For instance, in Fig. 1b, genes x2 and 
x4 exert an influence on gene x3 through the Boolean function f3 following the determin-
istic Eq. (1). The factor graph representation is convenient and has been utilized widely 
in the literature but in a probabilistic setup [30, 37, 38]. In addition to the structure of 
our proposed model, in this section, we describe a simplified Boolean function model 
at the control nodes and formulate a message-passing algorithm as an inference tool to 
evolve network states.

Boolean functions

Boolean functions consist of a set of rules specifying how a given node in a graph 
changes its value over time, as a function of the past or current states of its parent nodes. 
These functions represent the simple dynamics of inhibition and activation between 
interacting nodes. In [6], Martin et  al. used an activation-inhibition Boolean function 
model as an inference algorithm to reverse engineer the regulatory network of gene 
interactions from microarray time series data. As an example, in this work, we model a 
simplified Boolean function that takes into consideration the current state of the regu-
lated node xi . We hope that this model, though simple, may still preserve certain biologi-
cally meaningful patterns of interactions. A similar Boolean model was employed in [19, 
20], where the logical combination of interactions on a regulated node was compared to 
the concentration/activity level of that node to make a decision on the new concentra-
tion level.

By definition, we formulated the Boolean function fi at the control node for a vari-
able xi using activation and inhibition functions depicted by the truth tables shown in 
Table 1.

Our activation-inhibition Boolean functions take into account the present state 
of the child (i.e., regulated) node. In accordance with the logical rule in [32], our 
Boolean functions stipulate that only when a regulator node is active does it con-
tribute information to the child node. For instance, given two interacting nodes 
in a network where x1 activates x2 , the state of node x2 at time t + 1 is defined by 
a Boolean function as x2(t + 1) = x1(t) ∨ x2(t) . Similarly, if x1 inhibits x2 , then 
x2(t + 1) = (x1(t)⊕ x2(t)) ∧ x2(t) . The logical operators {∨,∧,⊕} used bear the usual 
meanings, and all operations are in GF(2).

In this work, we have considered simple deterministic rules for illustration of the pro-
posed model. However, due to the simple nature of factor graphs, many other typical 
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processes of biological systems or complex rules may easily be emulated. Such pro-
cesses may include cooperative effects of active regulators, targeted inhibitions, longer 
activation times for certain nodes, etc. For instance, we can implement logical coopera-
tive effects at a control node following the activation-inhibition function proposed in 
[6] of the form x(t + 1) = (xa1(t) ∨ xa2(t) ∨ · · · ) ∧ ¬ (xr1(t) ∨ xr2(t) ∨ · · · ) , where 
xa1, xa2, . . . are activators, and xr1, xr2, . . . are inhibitors or repressors acting on a node. 
The operator ¬ denotes a logical NOT. We can implement such activation-inhibition 
functions as a single conceptual computational rule.

Message‑passing algorithm for network inference

Having formulated the Boolean functions at the control nodes, here, we develop and 
describe a message-passing algorithm as an inference technique to evolve network states 
as messages on the Boolean factor graph. Message-passing techniques such as junc-
tion tree, sum-product, and belief propagation have been successfully employed in the 
decoding of codes on graphs [17, 30, 34]. Similarly, since gene regulatory networks are 
cyclic in nature, a variant of the message-passing algorithm referred to as loopy belief 
propagation has been employed as an inference tool in biological systems, albeit in a 
probabilistic setting [37, 39].

Here, the evolution of network states begins at the variable nodes of a factor graph. At 
the beginning, we initialize the variable nodes of the factor graph with one of the pos-
sible 2n network states. Each variable node performs no computation, but simply sends 
out its current state as a message to all its neighboring control nodes, including its cor-
responding control node. Formally, we denote a message sent from a variable node, i, to 
a control node, j, as �ij , where {i, j} ⊆ {1, . . . , n} , as shown in Fig. 2a.

Therefore, a control node fi receives a set of ki messages from its neighboring variable 
nodes, in addition to message �ii . Recall that ki is the cardinality of regulators of gene 
xi . For each message �ij received at fi , fi computes a value (0 or 1) of what the next state 
of xi should be, based on �ij and �ii using the Boolean function truth tables in Table 1. 
Then, fi performs majority voting among these ki values to form a belief µi as the next 
state of xi , as shown in Fig. 2b, and sends it to xi . We perform the majority rule to adapt 
our Boolean functions in accordance with logical rules in [32]. In the next iteration or 
time step, xi sends out its acquired new state. For example, consider control node f2 . In 
each iteration, f2 receives messages �12 , �22 , and �32 . Using the activation Boolean func-
tion truth table, f2 computes an output value using �12 and �22 since node x1 activates 

Table 1  Boolean truth tables for both activating and inhibiting gene interactions

Column x1 represents the state of a regulator node, and column x2 denotes the child node state at time t. The output state of 
the child node at time t + 1 is denoted by column x′2 . For activation, x′2 = x1 ∨ x2 , and for inhibition, x′2 = (x1 ⊕ x2) ∧ x2 . 
Only when a parent node is active does it contribute information to the child node

Activation Inhibition

x1 x2 x
′
2 x1 x2 x

′
2

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 1 0 0

1 1 1 1 1 0
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node x2 . Similarly, since node x3 inhibits node x2 , f2 uses the inhibition Boolean function 
truth table to compute an output value based on incident messages �22 and �32 . Then, f2 
performs a majority voting over all output values to form a belief µ2 and sends this value 
to node x2 as its new state.

In our proposed model, we assume that at each iteration, all nodes are synchronously 
updated in accordance with the regulatory rules assigned to them, and this process is 
then repeated. The network is said to have attained a stable sequence if, at time t, the 
value of variable nodes are invariant for all times t ′ ≥ t.

Model network: yeast cell cycle

In this paper, the yeast cell-cycle network model presented by Li et al. [32] is used as an 
illustrative example to demonstrate the application of our proposed model and meth-
odologies in systems biology. This network was constructed using experimentally veri-
fied and known key regulators reported in the literature. Figure 3 shows the connectivity 
among the various nodes with corresponding interaction type.

The logical network consists of 11 nodes participating in the regulatory process that 
controls the cell cycle in budding yeast. This process consists of four phases: G 1 , S, 
G 2 , and M. At the G 1 phase, the cell grows and commits to division under appropriate 
conditions. In the S phase, DNA is synthesized and chromosomes are replicated. G 2 is 
a “gap” between S and M. The final phase, M, corresponds to mitosis, in which chro-
mosomes are separated and the cell divides before returning to the G 1 phase, thereby 
completing one cycle. The M phase encompasses several subphases, namely prophase, 
metaphase, anaphase, and telophase. In the model, nodes are classified into four classes: 
cyclins (G1 cyclins Cln1,2 and Cln3, and the S/M cyclins Clb1,2 and Clb5,6), inhibitors 
of cyclin/Cdk1 complexes (Sic1, Cdh1, Cdc20,14), transcription factors (MBF, SBF, Swi5, 
and Mcm1,SFF), and the checkpoint cell size. Studies on cell cycle rely mainly on cell 
size changes to initiate cell division at a point called “Start” in budding yeast [26, 40]. For 
example, when a yeast cell evaluates its growth in the late G 1 phase and moves to the S 

Fig. 2  Message passing update in a sample Boolean factor graph: a messages sent from variable nodes to 
control nodes denoted by � values, and b messages sent from control nodes to variable nodes given by µ 
values. Solid (dashed) edges denote activation (inhibition) interactions
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phase, it commits itself to a new round of DNA synthesis and mitosis before returning 
to G 1.

Though not depicted in Fig. 3, nodes Cln3, Cln1,2, Swi5, Cdc20,14, and Mcm1,SFF 
have self-degradation. In [32], the authors implemented self-degradation as a time-
delayed interaction at the variable nodes. That is, if the state of a self-degrading node 
at time t is 1 and for the entire delay period td the states of its regulator nodes are 0, 
then at time t + td , the node will be degraded to 0. In our simulations, we set td = 1 . 
According to [32], under a synchronous network-update scheme, the logical net-
work in Fig. 3 has seven singleton attractors or fixed points, with the largest attrac-
tor consisting of 1,764 states ( ≈ 86% of the total state space, i.e., 211 ) as its basin size. 

Cln3

MBF

SBF

Cln1,2

Cdh1

Swi5

Cdc20,14

Clb5,6

Sic1

Clb1,2

Mcm1,SFF

Cell Size

Fig. 3  Simplified yeast cell-cycle network adapted from [32]. Solid green edges denote activation links, 
whereas dashed red edges represent inhibition links. Nodes Cln3, Cln1,2, Swi5, Cdc20,14, and Mcm1,SFF 
have self degradation. Cln3 is a “stater kinase” used to trigger the G 1 - S phase transition when the cell grows 
sufficiently large
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This large fixed point is consistent with the stationary G 1 phase of the cell cycle, in 
which the cyclin/Cdk1 inhibitors Sic1 and Cdh1 are expressed while all other nodes 
are inactive [3]. This is referred to as the G 1 attractor. Of the seven attractors, only 
the G 1 attractor represents an observable biological state, because under normal con-
ditions, the cell will be sitting in this state unless perturbed. Moreover, Li and col-
leagues performed network perturbation by deleting or adding an interaction edge, 
as well as changing the activation and inhibition links. They observed that for most 
perturbations, the relative changes of the basin size of the G1 attractor were small. In 
summary, Li et al. [32] concluded that this yeast cell-cycle logical network is robustly 
designed.

Applications of Boolean factor graph model
In this section, we demonstrate the performance of our proposed model by providing 
three use case examples, namely gene-deletion analysis, network consistency analysis, 
and node connectivity analysis. We deduce biological insights based on the findings.

Gene‑deletion analysis

Gene deletion, also widely known as gene knockout (KO), is a type of perturbation on 
the network structure. This structural perturbation alters the connectivity or Boolean 
functions of the network and, as a result, may lead to changes in the functionality of a 
biological network. When structural changes occur, the network fixed points and basins 
of attraction will be impacted and subsequently its long-run behavior. These changes can 
be permanent unless an intervention is implemented. A salient motivation for studying 
structural perturbation include the following: (1) biological systems are modular, robust, 
and subject to uncertainties; thus, it is desirable to elucidate the effect of a small differ-
ence in network models on their dynamic behavior; (2) gene regulations have intrinsic 
stochasticity, and it is of interest to predict the outcome of any change in regulation; and 
(3) it is important for practical use, such as design and analysis of therapeutic interven-
tion strategies [14]. Also, gene KO analysis could lead to a knowledge of critical nodes in 
a network whose perturbation leads to significant functional changes in the biological 
system in order to reduce the network size by eliminating the redundant components.

In this section, we employ our Boolean factor graph model to verify the impact of 
gene KOs on the yeast cell-cycle progression based on the Li model. We note that in 
biological gene KO experiments, the expression of a target protein or gene molecule 
is stopped by eliminating the protein-coding regions from the genome. Therefore, in 
our case, we modified our factor graph model accordingly by fixing the state of the 
target node to zero and eliminating the corresponding control node. We account for 
the viability of a budding yeast cell cycle if it is able to go through all four phases (G1

/S/G2/M) having 13 state transitions (see Additional file  1: Table  S1). Subsequently, 
to validate our model, we compared our model simulation findings to the published 
experimental observations on gene KO experiments. Our simulations confirm bio-
logical results in budding yeast cell-cycle experiments. We deduce that our model can 
possibly be used in predictive gene KO analysis.
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Deletion of G 1 stabilizers

Deletion of all G 1 stabilizers (Sic1 and Cdh1) results in inviable cells [3]. This lethal-
ity might be caused by deletion of Sic1, which creates some DNA damage checkpoint 
(not modeled here) that would arrest the cells in the telophase, M phase. Further-
more, deletion of either Cdh1 or Sic1 allows the cell to undergo a start. In our model, 
Cdh1 deletion results in a viable cell, which is consistent with the literature [41]. 
However, in Sic1 KO, though the mutant cell is able to replicate its DNA, it gets stuck 
in the telophase, as reported by [3, 42]. Also, the authors in [43] studied the degra-
dation of mitotic cyclins in sic1 deletion yeast strains, reporting that degradation of 
the cyclin subunit requires inhibition of the mitotic kinase-mediated by Sic1. They 
further observed that sic1 deletion mutant strains were inviable. Table 2 presents our 
model simulation results of the evolution of protein states for Sic1 KO, indicating that 
the cell-cycle sequence goes from the excited state and then arrests in the M phase.

According to a study by Hoose et al. [26], any gene deletion that changes the length 
of the G 1 phase relative to other cell-cycle phases will alter the DNA content pro-
file. In yeast, DNA content analyses have been used to measure the effects of cell-
cycle arrest when essential genes are either knocked out [27] or over-expressed [44]. 
In their work, Hoose et  al.  [26] reported that the majority of gene deletions affect-
ing cell progression lead to a lengthened G 1 phase. However, they also observed that 
cells lacking Sic1 (Cdk inhibitor of Clb/Cdk complexes) move more quickly into the S 
phase. That is, the mutant cell goes through a shorter G 1 phase, representing prema-
ture DNA replication and genome instability [42]. Applying our model confirms this, 
as we observed that Sic1 gene deletion results in only one time step of the G 1 phase, 
compared to three time steps in a normal cell (see Table 2 in [32] as well as Additional 
file 1: Table S1). Furthermore, in the literature, it has been reported that Cdc20 tran-
scription is activated in the M phase by a transcription factor complex Mcm1/SFF, 
which is activated in turn by Clb1,2 [3]. Thus, the activation of gene Cdc20 drives the 
cell progression from the M to G 1 phase. According to our model simulation result, 
deletion of Cdc20,14 blocks cells in the M phase (Additional file 1: Table S2), which is 
again consistent with other published reports [3].

Table 2  Temporal evolution of protein states in Sic1 gene deletion

The cell cycle gets stuck in the M phase. The “Start” phase refers to a series of linked events that prepare a cell for budding 
and DNA replication. Completion of the “Start” phase and commitment to a new cycle of cell division precedes the actual 
end of the G 1 phase. Bold states in the sequence rows denote the state of the deleted node. Also, the number of time steps 
in each phase does not reflect its actual duration

Time Genes Phase

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1,SFF

1 1 0 0 0 1 0 0 0 0 0 0 Start

2 0 1 1 0 1 0 0 0 0 0 0 G1

3 0 1 1 1 1 0 0 1 0 0 0 S

4 0 1 1 1 0 0 0 1 0 0 1 G2

5 0 1 1 1 0 1 1 1 0 1 1 G2

6 0 0 0 1 0 1 1 1 0 1 1 M

7 0 0 0 0 0 1 1 0 0 1 1 M
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Deletion of G 1 , S, and M cyclins

Using our model, we first knocked out both Cln3 and Cln1,2, and observed that the cell 
fails to execute “Start” and remain in the stationary G 1 phase, as shown in Table 3.

Accordingly, in the literature, deletion of all three Cln genes arrests cells in the G 1 
phase because the start-signal facilitators are missing, and the cell is not able to bud [3]. 
Clb1,2 is essential for successful mitosis. The lack of Clb1,2 is lethal as the cell arrests in 
the G 2 phase, because other Cdk/cyclin complexes cannot initiate mitosis [41, 42]. This 
lethality underscores the key role of Clb1,2 in regulating cell-cycle events. Table 4 shows 
our model’s temporal evolution of protein states in a Clb1,2 gene-deletion simulation.

Here, too, we see that our Boolean factor graph model is able to confirm the impact of 
single gene knockouts consistent with the literature. Furthermore, from the literature, it 
is known that Clb5,6 is responsible for the initiation of DNA replication in the S phase 
[27, 41]. In our model, the absence of Clb5,6 stops cell progression into the S phase, as 
expected (see Additional file 1: Table S3). As observed, protein evolution arrests on the 
fourth time step of Table  4. The cell cannot initiate DNA synthesis and exhibits a G 1 
arrest phenotype.

Deletion of transcription factors

In the Li model, when the yeast cell size reaches a threshold, Cln3 activates SBF and 
MBF, the transcription factors of Cln1,2 and Clb5,6, respectively. Although the Clb5,6 
level rises, it is inhibited by the G 1 stabilizer, Sic1. However, since Cln1,2 cannot be 
repressed by Sic1, it can phosphorylate Sic1, making it susceptible to degradation. Con-
sequently, Clb5,6 becomes active and phosphorylates the second G 1 stabilizer, Cdh1, 
resulting in complete Cdh1 inactivation.

In applying our model, we first deleted SBF and MBF and observed that the suppres-
sion of both of these transcription factors causes the cell to arrest before the “Start” 
transition, which is consistent with published materials [40]. Table 5 shows our model’s 
temporal evolution in this case.

Conversely, the absence of either SBF or MBF is sufficient for budding yeast cells to 
execute “Start,” as was also observed in our simulation (Additional file 1: Tables S4 and 
S5). However, the cell arrests in the G 1 phase. This observation confirms published 
experiment reports about the two TFs. Of note, SBF is composed of two components, 
Swi4 and Swi6 genes, and inhibited by Whi5, whereas MBF is composed of Swi6 and 
Mbp1 genes [45, 46]. Consequently, Kraikivski et al.  [40] reported that a mutant yeast 
cell with a single-gene deletion of either Swi4 or Mbp1 is viable.

Gene network consistency analysis

Another application of our proposed model is to test the consistency of the existing 
biological networks against real gene-expression data, that is, to quantify how well a 
network is supported by data. As an example, we considered the Li’s model yeast cell-
cycle network. It is our understanding that this kind of consistency analysis on the yeast 
model has not been carried out in the literature. We obtained a dataset of uniformly 
normalized expression profiles from the M 3D database [47]. This compendium data 
provides a bulk download of human-curated, computable experimental metadata and 
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computer-validated data for integrity. Compendium data used on the yeast genome (ver-
sion 3 build 2) contain 904 microarray profiles collected under a wide range of experi-
mental conditions, including wild-type, gene(s) deletion, varying oxygen concentrations, 
fermentation, sporulation, different media, etc. For our analysis, we first discretized the 
gene-expression data.

Discretization of data

In the literature, several methods have been proposed to discretize or cluster gene-
expression data [39, 48]. In general, discretization is carried out if prior biological 
knowledge suggests that the underlying variables are indeed discrete, or for computa-
tional efficiency. Furthermore, since discretized data can be more stable with respect 
to random variations of gene-expression measurements [48], discretization can help 
improve the robustness of data and reduce noise in the continuous variables. Accord-
ing to Gat-Viks et al.  [39], the variable-specific discretization method outperforms the 
global optimized single common discretization scheme. In addition, it is generally more 
accurate and flexible than standard clustering preprocessing methods used in [4] for real 
gene-expression data. However, this flexibility may come at a cost of over-fitting and 
decreased learnability.

In this section, we employed a gene-specific discretization scheme that optimizes the 
Gaussian mixture model likelihood using the iterative expectation-maximization (EM) 
algorithm in the MATLAB environment. In each EM iteration, we infer the posterior 
distributions of component memberships and use these to re-estimate the mixture pro-
portions by computing the Gaussian sufficient statistics (component means, covariance 
matrices, and mixing proportions). The new discretization distributions are used in the 
next iteration, and the algorithm iterates until convergence.

Here, we used fitgmdist function in MATLAB to model the relations between the con-
tinuous observations on a gene and its discrete logical state. fitgmdist implements the 
iterative EM learning algorithm to fit a mixture of Gaussian models to data. By default, 
fitgmdist implements the k −means++ algorithm for initialization to choose k initial 
cluster centers. In this paper, a Gaussian component corresponds to a specific logical 
state of a gene. Here, we used k = 2 . Also, we note that each node’s state may desig-
nate a different range of gene-expression levels defined by the estimated parameters (i.e., 

Table 4  Temporal evolution of protein states in Clb1,2 gene deletion

The cell cycle arrests in the G 2 phase. Bold states in the sequence rows denote the state of the deleted node

Time Genes Phase

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1,SFF

1 1 0 0 0 1 0 0 0 1 0 0 Start

2 0 1 1 0 1 0 0 0 1 0 0 G1

3 0 1 1 1 1 0 0 0 1 0 0 G1

4 0 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S

6 0 1 1 1 0 0 0 1 0 0 1 S

7 0 1 1 1 0 1 1 1 0 0 1 G2
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mixture proportions, mean, and variance statistics) of the Gaussian mixture model on 
each node.

For each discretization of gene data, we repeated the EM algorithm ten times using 
a new set of initial cluster values and a maximum number of 1,000 iterations allowed. 
Then, we computed the Bayes information criterion (BIC) score of our discretization 
model to quantify how good the gene expression fits with the mixture of two Gaussian 
models. A likelihood-based measure of model fit to compare multiple models fit to the 
same data is BIC = 2 ∗ NlogL+ p ∗ log(n) , where NlogL is the negative loglikelihood, n 
is the number of observations, and p is the number of estimated parameters specified 
as a numeric vector of length k . The model with the lowest BIC score is the best fitting 
model. Table 6 shows BIC measures of our gene-specific discretization for k = 1, . . . , 5 . 
Except for Cdh1, Clb5,6, and Clb1,2 gene-expression data that have k = 3 as the best 
model fit, the remainder of the genes have k = 2 as the optimal mixtures of Gaussian 
model distribution. Therefore, we used only k = 2 logical states {0, 1} for all nodes, cor-
responding to the up-regulation (1) and down-regulation (0) of genes, in conformity 
with Boolean models.

Results

First, we verified that our proposed methodology accurately reproduced the attractors 
distribution as reported in [32], with the largest fixed point attracting 86% of the 2048 
initial states. Then, we employed our proposed Boolean factor graph model to study the 
state evolution of the discretized gene-expression data. From the data, we have a total of 
904 initial states. That is, each experimental observation point equals a state sequence in 
the 11-node logical network. Starting from each of the 904 initial states, we find that all 
of these states eventually flow into one of the two fixed points shown in Table 7.

Remarkably, using real biological data, the G 1 attractor is the largest fixed point, 
attracting 822 ( ≈ 90.9% ) of the 904 initial states. Additionally, we implemented a similar 
discretization scheme as above; however, we used random sampling to select k initial 

Table 6  Bayes information criterion (BIC) measure of Gaussian mixture model discretization used to 
fit gene-expression data for different k number of components

The lowest BIC value is the best fitting model, as highlighted in bold

Genes BIC Scores ( 1× 103)

k = 1 k = 2 k = 3 k = 4 k = 5

Cln3 2.6183 2.6020 2.6193 2.6397 2.6600

MBF 2.0492 1.8838 1.8913 1.9039 1.9182

SBF 2.0083 1.9608 1.9640 1.9781 1.9901

Cln1,2 2.6117 2.3853 2.3923 2.4117 2.4318

Cdh1 1.7429 1.4212 1.4066 1.4234 1.4404

Swi5 2.3690 2.1339 2.1354 2.1468 2.1660

Cdc20,14 1.7202 1.6175 1.6211 1.6326 1.6525

Clb5,6 2.0188 1.9799 1.9333 1.9374 1.9499

Sic1 1.4909 1.4785 1.4824 1.5027 1.5232

Clb1,2 2.5741 2.5267 2.5218 2.5330 2.5470

Mcm1,SFF 1.5210 1.4607 1.4757 1.4957 1.5123
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cluster centers. Under this discretization scheme, we observed that the initial states 
eventually flow into the two fixed points shown in Table 7 with the same G 1 attractor, 
attracting 91.92% of states. As we expected, the percentage of states in the G 1 attractor 
using real gene-expression data is comparably and above the 86% wild-type basin size. 
Based on these results, we can deduce that even under diverse experimental conditions, 
the stability of the cell state is guaranteed. Thus, we can consider the basin of attraction 
of the G 1 attractor as the allowable states that the cell can assume under external influ-
ence or stimuli. Once the stimuli are removed, the cell flows back to the stationary state. 
In addition, these findings may imply that the Li model is consistent with the microar-
ray data obtained from various biological experiments. Of note, if there was a dispar-
ity between the data and the network considered, then we expected to see more initial 
states transitioning to other attractors than to the G 1 attractor.

Node connectivity analysis

In this section, we apply our proposed Boolean factor graph model to study the impact 
of node connectivity in biological networks and analytically characterize the dynamics 
of error propagation and recovery in Boolean gene networks. We assume that an initial 
random state perturbation introduces an error in the Boolean network. A state pertur-
bation may result from either environmental or biological fluctuations that affect cellular 
decisions in gene networks. For our analysis, we consider random networks with given 
degree distributions as models of genetic graphs. This enables us to capture biological 
networks with arbitrary degree distributions. Of note, the degree of a node in a factor 
graph is the number of edges incident to it. For an ensemble of random Boolean net-
works, we use polynomials to represent the degree distributions of the networks as

where ρj denotes the fraction of edges incident to a control node with degree j, con-
strained to

To demonstrate how node connectivity would influence the stability of a biological net-
work, we studied an ensemble of random networks with ten nodes. For each experi-
ment, we sampled at least 50 networks with control nodes having irregular degree 
distributions to mimic real biological networks, and we set ⌊j⌋ ∈ {1, 2, . . . , 8} to denote 
the average connectivity of the network. Moreover, each network has random types of 

(2)ρ(x) =
∑

j≥1

ρjx
j ,

(3)
∑

j≥1

ρj = 1.

Table 7  Attractors of cell cycle on real biological data

Each stable point is represented in a row. The genes’ columns show the state of a gene in the respective fixed point

Basin size Genes

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20,14 Clb5,6 Sic1 Clb1,2 Mcm1,SFF

822 0 0 0 0 1 0 0 0 1 0 0

82 0 1 0 0 1 0 0 0 1 0 0
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edge influence (activation and inhibition). Starting from each of the 210 initial states, 
we allowed the states to evolve and then counted the number of resultant fixed points. 
Figure 4 shows boxplots of the resultant number of network attractors with increasing 
average control node degree, ⌊j⌋ . We observed that the number of attractors, as depicted 
by the median of the boxplots, has a power-law distribution. Based on this observation, 
we can gain useful insights into the nature of biological graphs. With increasing aver-
age node degree j, the basin size of the stationary attractor increases. Consequently, the 
homeostatic stability of a cell increases monotonically. Furthermore, for the ten-node 
random networks considered, we observed that as j becomes greater than 6, there are 
instances of both singleton and cycle attractors. This is interesting since in the literature 
it has been reported that large-scale or highly interconnected networks converge into a 
complex attractor where the system irregularly oscillates among a set of states, especially 
when an asynchronous update scheme is employed [49]. We deduce that in biological 
Boolean networks, nodes with a higher degree of connections are likely the key contrib-
utors to the presence of attractor cycles. Similarly, biological networks where ρ(x) = x 
are basically unstable, and any error caused by a random disturbance on a node cannot 
be corrected unless the node is self-regulating. 

Density evolution

To capture the impact of random perturbations in BNs, we borrow the concept of density 
evolution used in the performance analysis of factor graph models [17, 50]. The perfor-
mance of such graphical models depends on the degree distributions of their nodes on the 
graph [51]. In message-passing algorithms employed on factor graphs, DE refers to tracking 
the evolution of the probability density function of error messages between variable nodes 
and control nodes. Here, for the first time, we apply DE analysis to study biological net-
works. We hypothesize that DE can be used to provide an exact analytic characterization of 
the impact on the cell attractors caused by state and/or structural perturbations. The result 
is a closed-form formula referred to as a “DE equation.” In this paper, we derive and employ 
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Fig. 4  Boxplots of the number of attractors of random biological networks with increasing average 
connectivity. Each network has ten nodes with irregular control node degree distribution, and ⌊j⌋ denotes the 
largest integer that is less than or equal to j. The median of the boxplots follows a power-law distribution
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the DE equation to provide numerical and analytical investigation of random state pertur-
bations on the resiliency and robustness of biological networks.

For Boolean networks with perturbation, an error is introduced with a positive proba-
bility ǫ ≪ 1 by which the state of a node is randomly changed. Implicitly, we assume that 
there is an independent identically distributed (i.i.d.) random perturbation over the variable 
nodes in the graph. Based on our proposed Boolean factor graph model, we track the evolu-
tion of this perturbation following the message-passing protocol established in the model 
and methods section, for both activation and inhibition interactions. If this probability 
decreases at the end of each iteration, then the network will attain the G 1 attractor, whereas 
if this probability increases, then spurious attractors will be obtained.

Figure  5 shows the evolution of random errors in a three-gene Boolean factor graph 
model.

For our analysis, we first consider the activation interaction link, whereby gene x1 acti-
vates x2 . Let messages �12 and �22 denote the states of variable nodes x1 and x2 sent to the 
control node f2 in the (l − 1)-th iteration of the message-passing procedure. Also, let β1 and 
β2 be events whereby messages �12 and �22 have occurred in error, respectively, as shown 
in Fig. 5. In addition, β ′ is the event that there is an error in the output message of control 
node f2 to variable node x2 . We further assume that perturbations that introduce errors 
occur with equal probability on any variable node. Therefore, using the Boolean function 
truth tables in Table 1, the probability that there is an error in the l-th iteration of node x2 
can be described in terms of the (l − 1)-th iteration (i.e., ǫl = f (ǫl−1) ) as

Similarly, by considering the inhibition edge in Fig. 5, the error probability in the l-th 
iteration of node x2 can be obtained using the Boolean truth table for inhibition. The 
iterative equation for inhibition would be the same as Eq. (4). Supposing that node f2 is 

(4)

ǫl = p(β ′|β1,β2) · p(β1,β2)+ p(β ′|β1,β2) · p(β1,β2)

+ p(β ′|β1,β2) · p(β1,β2).

=
1

2
ǫl−1(1− ǫl−1)+

1

2
(1− ǫl−1)ǫl−1 +

1

2
ǫ2l−1.

= ǫl−1

(

1−
1

2
ǫl−1

)

.

x1

β1

x2

f2

β2
x3

λ12

λ22

β′

Fig. 5  Message passing in Boolean factor graph with state perturbation probability ǫ . Gene x1 ( x3 ) activates 
(inhibits) gene x2 . β is an event that a gene is perturbed. The dashed edge denotes inhibition interaction. 
Messages � are passed between variable nodes and control nodes
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of degree j, then at the l-th iteration, the total propagated error probability in the mes-
sage sent from f2 to node x2 is given by

where yl−1 = ǫl−1

(

1− 1
2
ǫl−1

)

 . In our proposed model, a variable node sends its current 

state to its connected control nodes in the subsequent iteration. Therefore, given a bio-
logical network with random state perturbations and control node degree distribution 
ρ(x) , the average error probability on any particular gene node can be described by the 
recursive DE equation model as

where dc is the maximum degree of the control nodes.
By having a DE equation at hand, various connectivity analyses can be conducted. A 

simple but interesting one is as follows. Consider the DE equation (6). By expanding the 
right-hand side of the equation, we obtain

For ǫl to be less than ǫl−1 for every l (i.e., vanishing state disturbances), it is necessary 
that ǫl−1 be larger than the first two terms on the right-hand side of Eq. (7). That is

Thus,

The inequalities in Eqs. (8)–(10) provide some interesting intuitions. First, note that ρ1 
is a constant, and as such, errors on degree-one distribution nodes (i.e., genes without 
regulators) do not vanish unless they are self-regulating. Second, the inequalities (9) and 
(10) indicate that in order to achieve a resilient genetic network, a large portion of the 
control nodes should have degree j > 3 . However, while j is in theory unbounded and 
can be equal to n, i.e., number of nodes, we note that gene networks follow a power-
law distribution with an exponent greater than 2 [52]. This restricts the upper bound 
of j. In our model, control nodes with higher degrees provide more information about 
the true state of their corresponding variable nodes from neighboring nodes. Fig-
ure  6 shows an error evolution (initial ǫ0 = 0.25 ) for a set of different control node 
degree distributions in genetic graphs as the number of message-passing iterations 
grows. Moreover, we have included the Li model with a network distribution given by 
ρ(x) = 0.025x + 0.05x2 + 0.3x3 + 0.2x4 + 0.125x5 + 0.3x6 in Fig.  6. As expected, a 

(5)ǫl =

j−1
∑

k=
⌈

j−1

2

⌉

(

j − 1

k

)

ykl−1

(

1− yl−1

)j−1−k
,

(6)ǫl =

dc
�

j=1

ρj









j−1
�

k=
�

j−1

2

�

�

j − 1

k

�

ykl−1

�

1− yl−1

�j−1−k









,

(7)ǫl = ρ1 + (ρ2 + 2ρ3)ǫl−1 + O(ǫ2l−1) .

(8)ρ1 + (ρ2 + 2ρ3)ǫl−1 < ǫl−1 .

(9)ρ2 + 2ρ3 < 1,

(10)ρ3 < 0.5.
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violation of inequalities (9) and (10) is such that ǫl  → 0 . Therefore, we note that in the 
inference of BNs from gene-expression profiles, the DE equation can allow us to deter-
mine the degree distribution restrictions on the nodes for diminishing errors arising 
from random state perturbations. These observations have significant implications on 
models used for inferring biological Boolean graphs from gene-expression data in refer-
ence to network stability. In such models, the authors have often limited the degree of 
connectivity to less than or equal to 3, citing model complexity and poor performance 
metrics [5, 6]. 

Performance analysis
Models comparison

In this section, we provide a qualitative and quantitative comparative analysis of tradi-
tional Boolean approaches used to analyze budding yeast as reported in the literature 
and as given by our model’s simulation output. We compared our model to GINsim [20] 
and BoolNet [21] software tools that are based on logical formalism.

GINsim model

In [53], the authors employed the GINsim model [20] to conduct a comparative study 
of logical models of cell cycle control in eukaryotes. For example, the authors encoded 
and adapted Li’s budding yeast model [32] by transcribing the logical rules into the GIN-
sim model. Although the global topology of the logical network is preserved, the authors 
introduced positive feedback loops on several nodes, namely MBF, SBF, Clb5,6, Clb1,2, 
Cdh1, and Sic1. In contrast, the self-degradation loops seen in Li’s model were elimi-
nated (Figure 1, top left in [53]).

Subsequently, in the analysis of the functionality of regulatory circuits of the resultant 
network model, Fauré et al.  [53] deduced that the positive self-activating loops help in 
the maintenance of alternative, artefactual stable states. Using proper logical rules and 
employing a synchronous update scheme, the authors observed that all trajectories in 
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the state space of the revised network converge towards a single stable state correspond-
ing to the G 1 attractor. Therefore, our model’s finding is consistent with the GINsim 
analysis of the yeast cell cycle model as reported in the literature, in particular regarding 
the dominant stable state of the logical network.

According to our deduction, the GINsim model does not readily allow for the imple-
mentation of a majority voting rule thus obscuring a direct comparison with our pro-
posed model. Besides, our model can provide non-binary logical analysis by defining 
appropriate non-binary logical functions at the control nodes and employing a non-
binary message-passing algorithm.

BoolNet model

Here, we employed the BoolNet model [21] to provide a comparative study of the 
dynamical behavior of Li’s logical network. Using the BoolNet package in the R envi-
ronment, we transposed the logical network as a text file (see the cell_cycle.txt file in 
the dedicated GitHub repository indicated in the “Availability of data” section) contain-
ing temporal elements and encoded it in a symbolic form, i.e., as expression trees [21]. 
We implemented a majority voting rule on the network nodes using the maj() command 
available in the BoolNet package. Also, we employed time delays to transcribe self-deg-
radation loops in the resultant logical network. However, according to our evaluation, 
the BoolNet model does not take into consideration the current state of the regulated 
node in deciding the next state of the node. Incorporating the current state of the regu-
lated node in the BoolNet model creates a self-regulating loop. This hindered the full 
implementation of our model using BoolNet.

Identification of stable states in the resultant logical model resulted in three attrac-
tors consisting of one single attractor and two simple cycle attractors having two net-
work states. The single attractor corresponds to the G 1 attractor and has a basin of 1,472 
states, or approximately 71.88% of initial states. The cycle attractors are composed of the 
following states: (1) {00001101110,  00000000001} and (2) {00000011010,  00000000011}, 
corresponding to a basin size of 370 states and 206 states, respectively. States of genes 
are encoded in the following order: Cln3, MBF, SBF, Cln1,2, Cdh1, Swi5, Cdc20,14, 
Clb5,6, Sic1, Clb1,2, and Mcm1. Except for the observed G 1 attractor, the presence of 
cycle attractors does not match the observations made by Li et al. [32]. We may consider 
the two cycle attractors as spurious limit cycles. In summary, the flexibility of factor 
graph formalism can allow us to implement certain biological processes and decisions 
that would otherwise be neglected by traditional Boolean approaches.

Computation cost

This section shows how we performed simulation analysis using random Boolean net-
works of ten nodes to illustrate the computational cost of our proposed methodology. 
Since the factor graph representation of a network preserves the network complexity 
[30], the main computational cost of running the proposed methodology is the network 
update strategy using the proposed message-passing model.

Figure 7 shows the performance of our proposed methodology in terms of the com-
putational cost in searching the global attractors in a network. The search depicts a lin-
ear time computation with the average connectivity of control nodes or with the total 
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number of edges in the network, as illustrated in Fig. 7a, b, respectively. This observation 
is consistent with findings in the literature regarding the computational complexity of 
message-passing algorithms in factor graphs where the computational cost grows lin-
early with the average degree of nodes times the number of nodes [17].

To describe an empirical estimation of the proposed model’s computational complex-
ity, we assume that the entire network state space has been pre-computed and stored, 
which can be done offline. As such, searching the global attractors incurs O(2n) , where n 
denotes the number of network nodes. According to our message-passing algorithm, the 
computation at the control nodes occur in parallel. Therefore, in each network update or 
iteration, a control node performs ki Boolean computations. Recall that ki corresponds 
to the number of edges between parent-child nodes. Given that each Boolean computa-
tion has a constant complexity of O(1) , the cost of performing ki Boolean computations 
is bounded by O(ki) . Moreover, the cost of computing the majority vote over ki values is 
O(ki) . Thus, the total time complexity of a control node is O(ki).

On the other hand, a variable node in our proposed model simply sends out the value 
of its current state. This incurs a constant time complexity of O(1) . Therefore, the over-
all time complexity of running our proposed model is O(ki) per iteration for each pair 
of variable and control nodes in searching the attractor of an initial state. Moreover, in 
message-passing algorithms, the number of iterations is always limited when the algo-
rithm converges. Hence, for a constant number of iterations, the complexity of our 
model is proportional to the total number of edges in the graph, i.e., of order O(

∑n
i=1 ki) . 

This is a linear time complexity and is consistent with the results in Fig. 7. For large bio-
logical networks, e.g., genome-wide regulatory networks, where the node connectivity is 
sparsely distributed, the complexity is linear in the number of nodes.

Discussion
Identification of all attractors in a biological network is one of the key aspects in 
understanding the nature and dynamics of a biological system. In the literature, 
attractors have been found to fall into three groups, namely singletons, simple or 
limit cycles, and complex attractors [49]. For BNs of moderate size, i.e., networks 
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with less than 20 nodes such as the illustrative Li model used in this work, our pro-
posed model and methods can allow us to identify the attractors from the initial 
network states without the need for using a parallelized algorithm to reduce the 
computation time. However, as the network size increases beyond 20 nodes, the 
number of initial states to test grows exponentially. One can go around this limita-
tion by specifying a subset of nodes in which all combinations are tested as noted in 
[49], or using a heuristic search starting from a number of predefined or randomly 
chosen states [21]. Similarly, other works in the literature also indicate that network 
reduction methods [54–56] can be employed to handle the analysis of large models 
[20].

Here, our proposed model and methods rely on simulations or enumerations of states 
to identify network global attractors. Thus, our model incurs a computational cost of 
evaluating state transitions online compared to some classical Boolean models such as 
GINsim and BoolNet that enumerate all state transition graphs or tables offline before 
identifying the network attractors. We note that the proposed approach may increase 
the computation cost, in particular when an extensive attractor search for a large net-
work model is required. However, message passing can allow us to access and explore 
the dynamics of the interactions in a network after perturbations. Also, it provides a 
step towards understanding the impact of perturbations and how they propagate in the 
network. Furthermore, by employing network tools such as connectivity analysis and 
density evolution, we can gain insights for characterizing the resilience of biological net-
works to perturbations. In future work, we would implement a simulation approach that 
allows the control nodes to learn and compute the output states for a unique set of input 
values, and then use the learned model to perform simulations. This would reduce mul-
tiple computations of similar input values.

Based on the proposed model, we derived a density evolution equation to study 
the dynamics of error propagation in biological networks with random state distur-
bances. For instance, our DE analysis resulted in a necessary condition on the node 
degree distributions for biological systems to heal after an initial state perturbation. 
Our findings further revealed that low average connectivity may preclude the home-
ostatic stability of cellular systems since the number of attractors becomes high. 
Also, we note that our model further supports the conclusions made in [57], that 
simple Boolean function models can provide a means to reproduce and predict some 
biologically relevant dynamic features and network perturbation effects without full 
knowledge of biochemical kinetic parameters. However, these simplified models do 
not in any way render the precise dynamical models useless. Precise dynamical rules 
have a real advantage of modeling biological systems more accurately, albeit at an 
increased computational cost.

Despite their limitations and simple nature, Boolean networks have proven to 
be effective for qualitatively explaining the dynamics of biological systems. For 
instance, BN models have been found useful for the analysis of large-scale dynamic 
systems in which a detailed kinetic characterization is not feasible due to either lim-
ited knowledge or data restrictions. Though not covered here, gene over-expression 
can be implemented using our proposed methodology by fixing the state of a par-
ticular node in a network to a value of one.
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Conclusion
Computational models have been increasingly used to deduce and understand the nature of 
molecular interactions in biological systems and are widely accepted by the scientific com-
munity. Here, we have demonstrated that complex biological systems can be encoded into 
mathematical models. We explored a Boolean factor graph model representation of biologi-
cal networks and applied a message-passing algorithm to study and analyze the behavior of 
genetic graphs as well as to predict the consequences of structural perturbations in biologi-
cal networks. We verified the validity of our proposed model to characterize the dynamics 
of the yeast cell cycle and the consequences of gene deletion. For the simplified Li model 
sample network used, our Boolean factor graph model is able to capture the high-level 
dynamics of protein states, which is consistent with other published reports in the litera-
ture. Our findings imply that even in a larger cell-cycle network with multiple interactions 
and components performing similar functions, we can expect to infer fine details on how 
structural changes in a network affect its long-run dynamics. In addition, we have deduced 
that the yeast cell cycle is not only robust [32] but remains stable under diverse experimen-
tal conditions.

A possible future path would be to focus on deriving optimal interventions in genetic 
graphs based on a recursive equation model for both state and structural perturbations. 
Moreover, to adequately explain and obtain useful results in complex or large biological 
networks, it is imperative to extend our Boolean factor graph model to capture more mean-
ingful biological behaviors such as temporal and modular.
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