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Introduction
The next-generation sequencing technologies, such as RNA and microbiome sequenc-
ing, typically produce count data measuring the abundance of a large set of nucleic acid 
sequences. A central goal of analyzing sequencing count data is to identify the sequences 
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Background: For differential abundance analysis, zero-inflated generalized linear 
models, typically zero-inflated NB models, have been increasingly used to model 
microbiome and other sequencing count data. A common assumption in estimating 
the false discovery rate is that the p values are uniformly distributed under the null 
hypothesis, which demands that the postulated model fit the count data adequately. 
Mis-specification of the distribution of the count data may lead to excess false discov-
eries. Therefore, model checking is critical to control the FDR at a nominal level in dif-
ferential abundance analysis. Increasing studies show that the method of randomized 
quantile residual (RQR) performs well in diagnosing count regression models. However, 
the performance of RQR in diagnosing zero-inflated GLMMs for sequencing count data 
has not been extensively investigated in the literature.

Results: We conduct large-scale simulation studies to investigate the performance 
of the RQRs for zero-inflated GLMMs. The simulation studies show that the type I error 
rates of the GOF tests with RQRs are very close to the nominal level; in addition, the 
scatter-plots and Q–Q plots of RQRs are useful in discerning the good and bad models. 
We also apply the RQRs to diagnose six GLMMs to a real microbiome dataset. The 
results show that the OTU counts at the genus level of this dataset (after a truncation 
treatment) can be modelled well by zero-inflated and zero-modified NB models.

Conclusion: RQR is an excellent tool for diagnosing GLMMs for zero-inflated count 
data, particularly the sequencing count data arising in microbiome studies. In the sup-
plementary materials, we provided two generic R functions, called rqr.glmmtmb 
and rqr.hurdle.glmmtmb, for calculating the RQRs given fitting outputs of the R 
package glmmTMB.
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with differential abundance under different conditions. For example, many human 
microbiome studies aim to identify microbial taxa with differential abundance in healthy 
and diseased patients [1]. In microbiome data, the microbial taxa are represented by 
nucleic acid sequences called operational taxonomic units (OTUs) at different levels in 
an independent taxonomic way [2, 3]. In this paper, we use microbiome sequencing data 
as an example in our discussion for the simplicity of terminologies. However, the appli-
cability of the methods discussed in this paper is not limited to microbiome count data.

Generalized linear models (GLM) are commonly used to model the sequencing 
count data. Negative-binomial (NB) based regression models are used in many widely 
used bioinformatics analysis tools and methods [4–8]. Excessive zeros are commonly 
observed in sequencing count data. For microbiome data, the reason for the excessive 
zeros is either due to the absence of taxa (structural zeros) or the presence of taxa with 
a low frequency, which results in observed counts below detection limits (sampling 
zeros). One way to deal with excessive zeros is to use a zero-inflated model [9], which 
is a mixture of a regular count regression model, such as Poisson or NB model, and 
logistic regression to model the excessive zeros. Another way is to use a zero-modified 
model, also called a hurdle model [10], with one part being a logistic regression model 
to model the zeros and the other part being the truncated count regression model (e.g. 
truncated NB) to model the positive count data. Moreover, subjects in microbiome data 
often have clustering structures, for example, humans from the same family or plants 
from the same plot. To model the association of the abundance of taxa with such envi-
ronmental factors, we often use random effects to account for the clustering structure in 
microbiome study[8, 11]. Increasing evidence [12] shows that the zero-inflated models 
can give better fits (measured by AIC) to sequencing count data than the corresponding 
models without a zero-inflation component. As such, recently zero-inflated generalized 
linear models with or without random effects, typically zero-inflated NB (ZINB) models, 
have been increasingly used to model microbiome and other sequencing count data [1, 
11–22]. In addition to the applications in sequencing count data, zero-inflated general-
ized linear mixed models (GLMM) have also been widely applied to model count data 
arising in a wide variety of fields, such as ecology and epidemiology [23–29]. The afore-
mentioned features, including zero-inflation, over-dispersion, and clustering, are also 
commonly observed in the count data collected from these areas.

A common drawback of using a parametric model such as a ZINB model is that the 
model may fail to provide an adequate fit to a dataset. For example, Hawinkel et al. [30] 
proposed a specific smooth test for checking the GOF of NB models with applications 
to a large set of sequencing count datasets and concluded that NB models do not fit 
well to many of the sequence datasets. The model mis-specification problem has been 
largely neglected in today’s statistical modelling practice, including in bioinformatics. 
However, the conclusions drawn from poorly fit models may be seriously misleading. 
In differential abundance analysis, the p values for all  taxa are typically converted into 
q-values or passed to an FDR controlling procedure [31] for controlling the false discov-
ery rate (FDR) at a nominal level. A common assumption in estimating FDR is that the 
p values are uniformly distributed under the null hypothesis, which holds when the pos-
tulated model fits the data of all taxa adequately. When the model is mis-specified, the 
distribution of the p values under the null hypothesis may be far away from the uniform 
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distribution, often resulting in an underestimate of the true FDR and excess false discov-
eries. The excess false discoveries may then lead to costly but fruitless follow-up studies 
on the falsely identified taxa. This problem has been discussed in detail and demon-
strated with simulation studies by [17, 32, 33]. As such, model checking is critical to con-
trol the FDR at a nominal level in differential abundance analysis.

It is challenging to conduct model checking and diagnostics for generalized linear 
models for count data. Akaike’s information criterion (AIC) is commonly used to com-
pare the goodness-of-fits of competing models. However, AIC cannot check whether 
a postulated model is close enough to the true model (e.g. the adequacy of a model). 
Examining the normality of Pearson’s residuals is a standard tool for diagnosing normal 
regression. Pearson and deviance residuals are often used to diagnose generalized linear 
models. However, both Pearson and deviance residuals are far from normality for count 
regression. In particular, Pearson and deviance residuals cluster on curves due to the dis-
creteness [34, 35]. Due to the lack of normality, it is challenging to conduct model check-
ing and diagnostics with Pearson and deviance residuals for count regression. Recently, 
a few GOF tests based on the cumulative sums of residuals [36, 37] have been developed 
for the zero-inflated models [38]. However, these GOF tests cannot be used to reveal 
the nature of model discrepancy for suggesting certain strategies to improve a poorly 
fit model. The smooth test proposed in [30] is difficult to be extended to more flexible 
models, such as zero-inflated models. In addition, the smooth test is a likelihood ratio 
test (LRT). The validity of the p value of an LRT test itself depends on the correctness of 
the assumed null model.

The method of randomized quantile residual (RQR) was proposed by Dunn and Smyth 
[39] to overcome the challenges of diagnosing count regression. The central idea of the 
RQR is to randomize the predictive p value (i.e. tail probability of CDF for response) 
into a uniform random number. With this randomization, the distribution of RQRs 
is a standard normal under the true model for the dataset. Therefore, we can conduct 
model diagnostics with RQRs for count regression models in the same way for normal 
regression. Recently, Feng et  al. [35] compared the performance of conducting GOFs 
with RQRs in generalized linear models and concluded that the GOF tests with RQRs 
are well-calibrated and have good power. The method of RQR has also been increas-
ingly applied to some zero-inflated regression models without considering random 
effects [40–44]. However, to the best of our knowledge, the method of RQR has not been 
applied to sequencing count data. Furthermore, the performance of RQRs in diagnosing 
zero-inflated GLMMs for sequencing count data has not been extensively investigated in 
the literature.

The primary objective of this article is to demonstrate that the method of RQR performs 
very well for diagnosing zero-inflated GLMMs and is particularly suitable for checking 
whether such models provide adequate fits to sequencing count data. The rest of the article 
is organized as follows. Sections “Generalized linear mixed models for zero-inflated data” 
and “Randomized quantile residuals” describes zero-inflated GLMMs and the method of 
RQRs respectively. In Section “Simulation studies” we report the results of performing 
large-scale simulation studies to investigate the performance of RQRs for zero-inflated 
GLMMs. The simulation studies show that the probabilities of type I errors of the GOF 
tests with RQRs are very close to the nominal level, and the GOF tests have excellent power; 
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in addition, the scatter-plots and Q–Q plots of RQRs are useful in discerning the good and 
bad models. In Section “Application to a real human microbiome dataset” we apply the 
RQR to diagnose six GLMMs to a real microbiome dataset. The results show that the OTU 
counts at the genus level of this dataset (after a truncation treatment) can be modelled well 
by zero-inflated and zero-modified NB models.

Generalized linear mixed models for zero‑inflated data
In this section, we will describe two commonly used models, zero-inflated and zero-mod-
ified, for handling excessive zeros. Zero-modified models refer to hurdle models that are 
often used in the literature.

Zero‑inflated mixed‑effects models

A zero-inflated model is a mixture of two distributions. One part is a binary distribution 
describing yi being zero or not. The second part is a count regression model, such as Pois-
son distribution or NB regression distribution. The zeros that we observe from a dataset 
are then a mixture of zeros from these two distributions, referred to as structural zeros and 
sampling zeros, respectively. The PMF and CDF of a zero-inflated model can be written as 
follows:

where F0(⋅) is the CDF of point mass 0, ie., F0(J ) = 0 if J < 0; = 1 otherwise ; g(⋅) is the 
PMF of a distribution for counts (including 0); G(⋅) is the CDF of g(⋅) ; pi is the mixture 
proportion. In particular, in a ZINB model, the NB distribution is used to model the 
counts with g(⋅) given as follows:

When we use Poisson distribution to describe the counts, the PMF of g is given by

The �i in (3) and (4) is the mean of yi , and 𝜃 > 0 is the inverse dispersion parameter for 
NB. The NB distribution has heavier tails than the Poisson distribution. When � → ∞ , 
the NB distribution converges to Poisson distribution. The �i and pi are often linked to 
fixed and random factors as following:
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where Xi and X̃i are fixed factors for modelling �i and pi respectively, which may or may 
not be identical; � = (�1, �2,… , �p)

T and 𝛽 = (𝛽1, 𝛽2,… , 𝛽p)
T are the corresponding 

p-dimensional vectors of unknown regression coefficients; Zi and Z̃i are the p-dimen-
sional vectors for the random effects of the conditional count and logistic components of 
the model, respectively; u = (u1,u2,… ,uq)

T and ũ = (ũ1, ũ2,… , ũq)
T are the unobserved 

random effects vectors, which are often assumed to be normally distributed u ∼ N (0,Σ) , 
where Σ is a positive definite variance-covariance matrix.

Zero‑modified (hurdle) mixed‑effects models

Zero-modified models are also called hurdle models [10]. Both zero-modified and zero-
inflated models can be used to model excess zeros in the response variable. In contrast to 
zero-inflated models, zero-modified models treat zero-count and non-zero outcomes as 
two completely separate categories, rather than treating the zero-count outcomes as a mix-
ture of structural and sampling zeros. A zero-modified model is composed of two compo-
nents. A component is a probability distribution for describing the probability of observing 
value zero or not. The other component models the positive count data using a truncated 
negative binomial or truncated Poisson, by removing the zero part from the Poisson or NB 
distribution, and the denominator is to re-normalize the probability so that it still sums to 1. 
In particular, the PMF and CDF for yi of a zero-modified model are then written as follows:

where I(⋅) is the indicator function, which is equal to 1 when the condition in bracket is 
true and equal to 0 otherwise.

Similar to zero-inflated models, one can choose different model, g(⋅) , for modelling 
counts. In ZMNB models, g(yi) = f NB (yi;�i, �) ; in ZMP models, g(yi) = f Pois (yi;�i) for 
ZMP model. The �i and �i are similarly linked to covariates using Eq. (5).

Comparison of zero‑inflated and zero‑modified models

When the same g(⋅) is chosen, the conditional distributions for yi given yi > 0 in the 
zero-inflated and zero-modified model are identical—both described with the PMF 
g(yi)∕(1 − g(0)) . The difference of these two models lies in the modelling of P(yi = 0) . In 
zero-modified models, P(yi = 0) = �i is linked to covariates directly. In contrast, in zero-
inflated models, P(yi = 0) = pi + (1 − pi)g(0) is not linked to covariates directly; instead, 
the mixture proportion pi is linked to covariates. However, we see that when g(0) is very 
small, which occurs when �i is large, these two models are very close.

Randomized quantile residuals
Examining the residuals of a regression model is a standard tool for assessing normal 
regression [45]. Pearson residuals is the raw residual divided by the square root of the 
variance, written as ri =

yi−�̂�i
√

�V (yi)

 , where �̂�i is the fitted value and V̂ (yi) is the estimated 
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variance of yi respectively. Deviance residuals are often defined for generalized linear 
models [46]. Deviance residual for yi is defined as the part attributed to yi in the devi-
ance, which is the difference of log-likelihood of the fitted model to that of a saturated 
model. For zero-inflated and zero-modified models, it is challenging to find a reason-
able saturated model. Most importantly, the distributions of Pearson and deviance 
residuals are not normal for count regression [35, 39] under the true model. There-
fore, the graphical examination of Pearson and deviance residuals are often not 
informative for diagnosing count regression models. Quantitative assessment of the 
overall GOF with Pearson and deviance residuals are often based on �2 approxima-
tion for their sampling distributions. The Pearson �2 statistic is written as, 
X2 =

∑n

i=1
r2
i
 , and the deviance (�2 statistic) is written as, D =

∑n

i=1
d2
i
 . The asymptotic 

distribution of D and X2 under the true model is often assumed to be �2
n−p

 , where n is 
the sample size and p is the number of parameters. However, the use of this asymp-
totic distribution for both X2 and D lacks theoretical underpinning.

The method of randomized quantile residual (RQR) [39] was proposed to over-
come the difficulties of using traditional residuals for diagnosing regression models 
for discrete outcomes. The idea of RQR is to transform the tail probability of each 
response value into the equivalent standard normal quantile. Let F (yi;�i,�) denote the 
cumulative distribution function (CDF) for random variable yi , which is parametrized 
by �i (covariate related) and � (covariate unrelated, such as size parameter � of NB 
distribution). If the CDF is continuous, F (yi;�i,�) is uniformly distributed on (0,  1) 
RQRs can then be defined as qi = Φ−1{F (yi;�̂�i, �̂�)}, where Φ−1() is the quantile func-
tion of a standard normal distribution. If the CDF is discrete, randomization is added 
to make it continuous. To be more specific, let p(yi;�i,�) denote the PMF of yi . The 
randomized tail probability can be defined as:

where ui is a uniform random variable on [0, 1] , and F (Yi − ;�i,�) is the lower limit of 
F at  yi . When F is discrete, we let ai = limy→yi−

F (yi;�i,�) and bi = F (yi;�i,�) , then the 
RQR for yi is calculated as

Feng et al. [35] gives a detailed explanation of the RQR and illustrates the RQR using a 
simple GLM model with nonlinear effects.

From the definition (8), the computation of RQRs is straightforward once we can 
compute the CDF of yi . For zero-inflated and zero-modified models, these CDFs are 
given by Eqs. (2) and (7). We generated two R functions, i.e, rqr.glmmtmb and rqr.
hurdle.glmmtmb to calculate RQRs for diagnosing different types of mixed effects 
counts models. The function rqr.glmmtmb is designed for diagnosing Poisson, NB, 
ZIP and ZINB mixed-effects models and the function rqr.hurdle.glmmtmb is 
designed for diagnosing ZMP and ZMNB mixed-effects models. Both functions only 
request input the fitting results from a model fitted in the glmmTMB package [47], and 
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.
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then these two functions output the RQRs for the corresponding model. These func-
tions are provided in the Additional file 1.

Under the true model with the true parameters, the distribution of RQRs is a standard 
normal. Based on this null distribution, we could conduct residual diagnostics for count 
regression models, including zero-inflated GLMMs, in the same way for normal regres-
sion models with Pearson’s residuals, including overall GOF tests and graphical exami-
nations such as residual plots and Q–Q plots. However, the standard normality holds 
only when the true model with the true parameters is used in Eq. (8). The actual perfor-
mance of the RQR in particular models with parameters estimated with finite samples 
still demands empirical investigation. Feng et al. [35] show that the performance of the 
RQR is good for generalized linear models. In this paper, we investigate the performance 
of the RQR in zero-inflated GLMMs with simulated datasets that look like actual micro-
biome count data.

Simulation studies
In this section, we present simulation studies to evaluate the performance of RQRs. We 
simulate data from the ZINB, ZMB, ZIP, and ZMP model, respectively, with varying 
degrees of excess zeros and over-dispersion. For illustrative purposes, we first assess the 
GOFs of the true model in comparison with the misspecified models using RQRs and 
Pearson residuals graphically for a single simulated dataset. Then we simulate 3000 rep-
licate samples to assess the performance of the overall GOF test by testing the normality 
of the RQRs. The histogram of normality test p values and the probability of rejecting the 
wrong model are presented for comparing the performance of RQRs and Pearson resid-
uals. Section “Description of data generating process” describes data generating process. 
Section “Simulation results” presents the results of the simulation studies. Section “Illus-
tration of model diagnostics with RQRs for a single dataset” illustrates the performance 
of RQRs based on a single simulated dataset, and Section “Results of GOF tests based on 
RQRs with multiple simulated datasets ”presents the results for simulated studies based 
on replicated datasets.

Description of data generating process

Data generation

We first simulate dataset from zero-inflated model with the outcome variable Yi , 
i = 1,… , n , generated as follows, 

1. Generate a binary variable Hi indicating whether Yi is a structural zero or not, with 
the probability of p(Hi = 0) = pi , which is linked to the fixed and random factors 
using a logistic link function: 

 where 𝛽Xi
(m) denotes the coefficient associated with the mth fixed factor, m = 1,… , s 

and ũZi
(t) , t = 1,… ,T  , denotes the coefficient for the tth random effect term.

2. If Hi = 0, Yi = 0 ; otherwise, Yi is generated from a NB or Poisson model with mean 
�i , which is linked to the fixed and random effect terms as follows: 

(10)log

(

pi

1 − pi

)
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s
∑
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𝛽X (m)

i

+

t
∑
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 where �Xi
(m) represents the coefficient associated with the mth fixed-effect factor, 

m = 1,… , s , and uZi
(t) denotes the coefficient associated with the tth random factor. 

log (Ti) denotes the offset term to adjust for the varying total sequence reads across 
the samples.

We also generate data from a zero-modified model with a data generation process simi-
lar to one for the zero-inflated model described above. The only difference is that when 
Hi > 0 , Yi is generated from a truncated Poisson or NB model. In the zero-modified 
model, �i represents the mean and �i represents the proportion of zeros.

Parameter settings

We generate datasets with s = 3 fixed factors and t = 2 random factors and different 
sample size n = 50, 100, 200, 400 . Each fixed factor has three levels, and each random 
factor has two levels. The regression coefficients for the fixed-effects covariates �i fol-
low a normal distribution with mean � = 0 , and standard deviation � = 0.1 , and the 
coefficients for the random effects ui follow a normal distribution with mean � = 0 , and 
standard deviation � = 2 . The total read Ti follows a Poisson distribution with a mean 
� = 300,000 . The shape parameter � follows a unif(2, 3) distribution.

To investigate the robustness of the performance of RQRs, we consider four scenar-
ios by varying 𝛽0 and �0 , in Eqs. (10) and (11), which control the zero proportions (ZP) 
and dispersion of count component, respectively. More specifically, in scenarios 1 and 
2, 𝛽0 = 3.5 , which represents the high ZP, while in scenarios 3 and 4, 𝛽0 = −5.5 , which 
represents the low ZP. In scenarios 1 and 3, �0 = −5.5 for NB model and �0 = −5.7 for 
Poisson model, which represents the relatively high count data, while in scenarios 2 and 
4, �0 = −7.8 for NB model and �0 = −8 for Poisson model, representing the relatively low 
count data.

Simulation results

Illustration of model diagnostics with RQRs for a single dataset

In this section, we illustrate RQRs in comparison to Pearson residuals for diagnosing six 
GLMMs for a single dataset generated with ZMNB models with scenario 4 parameter 
settings (low count, low ZP). RQRs are calculated by our created function rqr.glm-
mtmb or rqr.hurdle.glmmtmb. Figure 1 depicts the results simulated from ZMNB 
model when n = 400 . The panels in the first column display the RQRs versus fitted val-
ues, from which we can see that residuals from model ZMNB and ZINB are randomly 
scattered around y = 0 without any discernible pattern. The standardized residuals for 
those two models are within -3 to 3, which indicates the ZINB model has similar fitting 
results as the ZMNB model, and both fit the data well. However, the RQRs for the mod-
els ZMP and ZIP are not evenly distributed around y = 0 , suggesting that ZMP and ZIP 
models do not fit the data well. This indicates that ZMP and ZIP models fail to model 
the over-dispersion adequately. The RQRs from the NB model show a decreased pattern, 
and the RQRs from the Poisson model are clustered at the top and bottom, indicating 
that the Poisson model could not handle over-dispersion and excessive zeros well. The 

(11)log
(

�i

)

= log(Ti) + �0 +

s
∑

m=1

�Xi
(m) +

t
∑

n=1

uZi
(n) ,
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panels in the second column display the scatter plots of Pearson residuals versus fitted 
values, which indicates that the Pearson residuals fail to provide meaningful information 
regarding the GOF of the models, which is not surprising, as Pearson residuals are theo-
retically not normally distributed for count regression.

The normality of the RQRs is examined using Q–Q normality plots, as shown in the 
panels of the third column of Fig. 1. The points in the Q–Q plots for ZMNB and ZINB 
align closely to the straight line with a slope of 1, which indicates these two models fit 
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Fig. 1 Model diagnostics for a single dataset of n = 400 samples simulated from a ZMNB model in scenario 4 
with parameter settings as low zero proportion and low count. The panels in the first column are the scatter 
plots of the RQRs vs. fitted values. The panels in the second column depict the scatter plots of the Pearson 
residuals vs. fitted values. The panels in the third column present the Q–Q plots for RQRs. The panels in the 
fourth column present the Q–Q plots of the Pearson residuals
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the data reasonably well. In contrast, the Q–Q plots for the ZMP, ZIP, and Poisson mod-
els are depicted as two separate lines with a substantial gap, which clearly indicates that 
the distributional assumptions for these models are not consistent with the true data. 
The points of the QQ plot of RQRs for the NB model shown in Fig. 1 follow more closely 
along the straight line than the ZMP, ZIP, and Poisson models, since NB distributions 
have heavy tails at two sides when � is small. However, the misfit of NB models for the 
zero-inflated data can still be clearly identified in the scatter plot of RQRs. This dem-
onstrates the advantage of examining the scatter plots of RQRs against fitted values for 
diagnosing model fit. Q–Q plots for the Pearson residuals are depicted in the panels of 
the fourth column of Fig. 1, all of which are curves, which poses a challenge for visually 
checking the model fit. The performance of RQRs is also examined when data are simu-
lated from ZMP, ZINB and ZIP models, respectively, as shown in Additional file 1: Figs. 
S1, S2 and S3. The results indicate that RQRs are able to diagnose the model fit while 
Pearson residuals provide very limited information for checking the model fit.

Results of GOF tests based on RQRs with multiple simulated datasets

This section presents the results of examining the performance of RQRs for diagnos-
ing the GOF of the regression models based on 3000 replicated datasets from the true 
model. The Shapiro–Wilk (SW) normality test for the residuals is used as the overall 
GOF test. When the model is true, the p values obtained from SW normality test are 
expected to be a uniform distribution. Additional file  1: Fig. S4 shows that when the 
true model is the ZMNB model, the p values obtained from the SW normality test of 
RQRs for ZMNB and ZINB are uniformly distributed in all four scenarios. Similar to 
the results presented in Section “Illustration of model diagnostics with RQRs for a sin-
gle dataset”, both ZMNB and ZINB models perform well when data are simulated from 
ZMNB, while the rest four models fail to adequately capture the over-dispersion or zero-
inflation. Additional file 1: Fig. S5 indicates that the p values of the SW normality test for 
the Pearson residuals are all concentrated around zero; therefore, Pearson residuals fail 
to distinguish the true and wrong models.

We further investigate the type I error rate of the SW normality test (probability of 
rejecting the true model) for RQRs and Pearson residuals at varying sample sizes, 
n = 50, 100, 200 , and 400. Ideally, the type I error of the SW normality test should be 
around 0.05. Table 1 presents the probability of rejecting the model when the 3000 rep-
licated datasets of size n = 100 are simulated from ZMNB, ZINB, ZMP, and ZIP, respec-
tively. In each scenario, we summarize the zero proportion, 5%, 50%, and 95% quantiles 
of non-zero counts over the 3000 replicated datasets. We also summarize the number 
of converged model fittings for the 3000 replicated datasets, shown as N in the last col-
umns of Tables 1 and 2. When the true model is ZMNB or ZINB, the type I error rates 
are close to 0.05, and the probabilities of rejecting the ZMP, ZIP, NB and Poisson mod-
els are all very high, indicating that RQRs are able to identify the misspecified models. 
When the true model is ZMP or ZIP, the type I error rates for ZMNB, ZINB, ZMP, and 
ZIP models are around 0.05 under different scenarios. In each scenario, the probabilities 
of rejecting the NB model are above 0.17, and the probabilities of rejecting the Poisson 
model are 1, suggesting RQRs can detect that NB and Poisson models are not appropri-
ate for modelling zero-inflated data. In particular, the Poisson model is unable to model 
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excess zeros. Moreover, zero proportion and the dispersion of the positive count data 
do not influence the type I error rates for the correctly specified model. Note that the 
convergence rates for all the models are higher when the true model is ZMNB or ZINB, 
as compared to the scenarios when data are generated from ZMP or ZIP model. Such 
difference is attributed to the need to use an extremely large � of NB distribution for 
approximating the Poisson distribution; this often breaks down the model fitting with 
the package glmmTMB. However, this problem may be solved by other GLMM packages.

When the sample size n = 50, 200 and 400 (Additional file 1: Tables S1, S2; Table 2), 
the results are consistent with result when sample size n = 100 . Hence, the type I error 
rate is not affected by the sample size. However, the convergence rate decreases when 
the sample size decreases. Only about 100 model fittings converged when n = 100 com-
pared to about 900 converged replicated datasets when n = 400 in the scenario when 
data are simulated from the ZMP model. The convergence issue is more likely to occur 
when the sample size is too small to estimate the parameters reliably.

In comparison to the RQRs, Pearson residuals cannot differentiate the true and wrong 
models, as displayed in Additional file 1: Tables S3–S6. The SW normality tests based on 
Pearson residuals for all the models have high probabilities of rejecting models regard-
less of the sample sizes, zero proportion, and scale of count data. For example, the prob-
abilities of rejecting the true model ZMNB are all equals to 1 under all scenarios and 
different sample sizes. Therefore, Pearson residuals are useless compared with RQRs for 
testing the overall GOF of the methods.

Table 1 Probability of rejecting the normality of RQRs based on SW normality test when n = 100

*Represents the true data generating model and † represents the models that theoretically contain or are very close to the 
true data generating model. ZP is the average zero percentages. The three columns labelled by Q� show the average of the 
quantiles of non‑zero counts for three � . N is the number of converged model fittings over 3000 replicated datasets

Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB* ZINB† ZMP ZIP NB Poisson N

1 59 320 1075 2711 0.04 0.05 1 1 0.29 1 1604

2 59 32 109 275 0.04 0.03 1 0.99 0.18 1 1312

3 31 302 1078 2800 0.04 0.04 1 1 0.84 1 1720

4 31 29 107 280 0.05 0.05 1 0.99 0.75 1 1552

 Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB* ZMP ZIP NB Poisson N

1 58 317 1079 2727 0.04 0.04 1 1 0.28 1 1580

2 58 31 108 274 0.04 0.04 1 1 0.17 1 1276

3 31 301 1071 2783 0.05 0.04 1 1 0.85 1 1691

4 31 30 107 279 0.04 0.04 1 1 0.73 1 1535

 Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB† ZMP* ZIP† NB Poisson N

1 55 807 1036 1335 0.03 0.04 0.05 0.04 0.42 1 398

2 56 76 103 138 0.04 0.06 0.06 0.04 0.25 1 339

3 28 768 1008 1320 0.04 0.05 0.05 0.05 0.93 1 633

4 30 73 101 138 0.03 0.04 0.06 0.03 0.83 1 405

 Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB† ZMP† ZIP* NB Poisson N

1 55 793 1020 1318 0.03 0.05 0.03 0.05 0.42 1 390

2 54 74 102 138 0.04 0.04 0.06 0.05 0.30 1 338

3 28 781 1020 1341 0.04 0.03 0.04 0.04 0.92 1 617

4 29 72 102 139 0.03 0.04 0.04 0.04 0.84 1 451
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Application to a real human microbiome dataset
In this section, a real human microbiome dataset will be introduced. We apply various 
models discussed previously to this dataset and use RQRs to test the GOF of all models.

Data sources and descriptions

As a response to the epidemic of worldwide obesity, efforts to identify the relationship 
between host and environmental factors and energy balance have increased. Compari-
sons of the distal gut microbiota of genetically obese mice and their lean littermates have 
revealed that obesity is associated with two dominant bacterial divisions, i.e., the Bac-
teroidetes and the Firmicutes [48]. The human distal gut harbours a vast ensemble of 
microbes helping to break down otherwise indigestible material. It is often of interest 
to investigate the relationship between gut microbial ecology and body fat in humans 
[49]. Each distinct microbe species can be assigned to a diverse taxonomic rank based 
on shared characteristics, including species, genus, family, order, class, phylum, king-
dom, and domain. The OTU data used in our application were generated at the genus 
level, which is the commonly used OTU level for microbiome sequencing analysis, and 
there are 14 different genera in total [50]. Each sample consists of 154 individuals, and 
we characterize individuals into 31 monozygotic (MZ) twin pairs, 23 dizygotic (DZ) 
twin pairs and 46 mothers. Twins were between 21 and 32 years old and were of Euro-
pean (EA) or African (AA) ancestry, respectively. Individuals were classified as obese/

Table 2 Probability of rejecting the normality of RQRs based on SW normality test when n = 400

*Represents the true data generating model and † represents the models that theoretically contain or are very close to the 
true data generating model. The three columns labelled by Q� show the average of the quantiles of non‑zero counts for 
three � . ZP is the average zero percentage. N is the number of converged fittings over 3000 replicated datasets

Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB* ZINB† ZMP ZIP NB Poisson N

1 60 285 1068 2808 0.03 0.03 1 1 0.56 1 2475

2 59 28 108 287 0.04 0.04 1 1 0.50 1 2199

3 30 281 1072 2850 0.04 0.05 1 1 0.95 1 2596

4 29 27 107 287 0.04 0.04 1 1 0.90 1 2472

Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB* ZMP ZIP NB Poisson N

1 60 285 1070 2825 0.04 0.04 1 1 0.57 1 2451

2 60 28 108 286 0.03 0.03 1 1 0.49 1 2212

3 30 280 1069 2843 0.04 0.04 1 1 0.95 1 2613

4 29 27 107 287 0.04 0.04 1 1 0.90 1 2485

Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB† ZMP* ZIP† NB Poisson N

1 59 777 1012 1315 0.04 0.04 0.05 0.04 0.64 1 906

2 59 74 102 138 0.04 0.03 0.04 0.04 0.57 1 839

3 29 769 1011 1334 0.05 0.05 0.06 0.06 0.97 1 1065

4 29 73 102 139 0.04 0.05 0.06 0.04 0.94 1 960

Scenario ZP Q
0.05

Q
0.5

Q
0.95

ZMNB† ZINB† ZMP† ZIP* NB Poisson N

1 59 782 1015 1318 0.04 0.04 0.04 0.05 0.63 1 954

2 59 74 103 139 0.04 0.04 0.04 0.05 0.58 1 816

3 29 769 1015 1340 0.04 0.04 0.06 0.05 0.97 1 1015

4 28 73 102 139 0.04 0.04 0.05 0.05 0.95 1 936
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overweight if body mass index (BMI) ≥ 25, or lean if BMI < 25. Fecal samples were fro-
zen immediately after they were produced for extracting the DNAs of the bacteria, then 
the 16S rRNA sequencing method was used to group the bacteria into different OTUs 
with a sequence identity threshold of 97% [11]. Two subjects were dropped from sam-
ples for quality control. Among the rest of the 152 individuals, 34 were measured once, 
and 118 were measured twice (time point 1 and time point 2) for fecal samples. There 
are 281 OTU measures on the genus level in total. For each measurement, OTU count 
at each genus level, as well as the total number of reads per measure, were recorded. 
Figure 2 shows the histograms of the four genera selected from the data for the purpose 
of illustration of the distribution of the OTU measures, which all exhibit right skewness.

Model checking with the RQR method

In this analysis, ancestry and obesity were selected as the host factors while age and 
family as the random factors. Then, ZMNB, ZMP, ZINB, ZIP, NB and Poisson models 
were fitted to each of the 14 genus-level OTUs. First, we fitted Poisson and NB mod-
els to the original dataset. However, the model checking results based on examining 
the normality of their RQRs showed that these models do not fit the original data 
very well (results shown in [51]). The OTU counts at the genus level contain very few 
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Fig. 2 Histograms of the OTU counts of  four selected genera
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actual zeros. Therefore, zero-inflated models cannot fit the original data better. Con-
sidering that small OTU counts at the genus level are likely caused by the mismatch-
ing in sequence alignment of reads, we truncated the OTU counts to be zero when 
their values are less than 10 for most genera except the following four genera. The 
truncation thresholds for Bacteroides, Ruminococcus,Faecalibacterium and Lachno-
spiraceae are set to be 50, 50, 100, and 150, respectively. We will present the model 
diagnostics results for the truncated datasets.

Figure 3 shows the Q–Q plots of the RQRs of six models fitted to Euba OTU counts. 
We see that the Q–Q plots of the RQRs of the ZMNB model and the ZINB model fall 
along a straight line with a slope of 1 and just a few points slightly deviating from the 
diagonal line, which indicates that RQRs are normally distributed. The Q–Q plots for 
the other four models exhibit curvature patterns. Therefore, these Q–Q plots show 
that only ZMNB and ZINB appear to fit the dataset well.

Table 3 shows the p values for the SW normality test of RQRs for all 14 OTUs at the 
genus level. For easy visual inspection of RQRs, we sort the genera by the test p values 
of the ZINB model. The first column lists 14 different genera in the twin study OTU 
data. If the p value for the SW normality test is less than 0.05, the model may not fit the 
data well. RQRs contain randomness. As a result, we calculate the mean of the SW test 
p values based on RQRs by replicating RQRs 100 times. As shown in Table 3, the ZMNB 
and ZINB models provide reasonable fits to this data with all SW p values greater than 
0.05. However, the SW p values for the ZMP, ZIP, NB, Poisson, NB, and Poisson models 
are mostly very small (except the p value of NB for Blau). These small SW test p values 
indicate that these models do not fit the data well. We also use the Akaike information 
criterion (AIC) to compare the six models. Table 4 presents the AIC values of all of the 
six models. The ZMNB and ZINB models also have smaller AIC values compared to 
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Fig. 3 Q–Q plots of RQRs of six models fitted to Euba OTU data from the Twin Study. The names of models 
are as follows: ZMNB (top left), ZINB (top middle), ZMP (top right), ZIP (bottom left), NB (bottom middle), 
Poisson (bottom right)
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other models. The model comparison results based on AIC are consistent with the GOF 
test results based on RQRs.

Discussion and conclusion
Model checking is critical to control the FDR at a nominal level in differential abun-
dance analysis for sequencing count data. In this paper, we conduct large-scale sim-
ulation studies to investigate the performance of the RQRs diagnosing zero-inflated 
GLMMs, which are often applied to model sequencing count data. Our simulation 
studies show that the type I error rates of the GOF tests with RQRs are very close to 
the nominal level. In addition, the scatter plots and Q–Q plots of RQRs are useful 

Table 3 P values for the SW normality test of RQRs for the Twin Study

The rows were sorted according to the p values of ZMNB models in an ascending order

Genus ZMNB ZINB ZMP ZIP NB Poisson

Bact 0.052 0.034 < 10−19 < 10−19 < 10−16 < 10−18

Lach..g 0.072 0.074 < 10−16 < 10−15 < 10−3 < 10−11

Faec 0.083 0.107 < 10−17 < 10−18 < 10−17 < 10−15

Rumi 0.232 0.285 < 10−19 < 10−19 < 10−6 < 10−12

Rumi.1 0.238 0.366 < 10−16 < 10−16 < 10−10 < 10−11

Blau 0.251 0.104 < 10−10 < 10−10 0.087 < 10−12

Erys 0.344 0.258 < 10−16 < 10−17 < 10−4 < 10−7

Alis 0.344 0.352 < 10−16 < 10−16 < 10−9 < 10−7

Euba 0.461 0.539 < 10−15 < 10−15 < 10−10 < 10−6

Lach 0.521 0.358 < 10−9 < 10−10 < 10−10 < 10−5

Oscil 0.535 0.606 < 10−15 < 10−15 < 10−9 < 10−5

Prev 0.605 0.269 < 10−17 < 10−17 < 10−4 < 10−12

Rose 0.627 0.613 < 10−13 < 10−14 < 10−6 < 10−13

Copr 0.752 0.721 < 10−13 < 10−14 < 10−8 < 10−6

Table 4 AIC of the competing models for modeling the OTU data in the Twin Study

Genus ZMNB ZINB ZMP ZIP NB Poisson

Bact 3698.20 3689.41 29,583.11 30,276.44 3954.58 52,572.41

Lach..g 1096.77 1156.08 Inf 5715.61 1317.49 18,248.69

Faec 3328.72 3263.50 13,524.32 14,132.08 3620.03 29,430.38

Rumi 1597.93 1700.08 4495.07 5007.55 1896.48 13,263.94

Rumi.1 2432.82 2501.87 6993.35 7536.15 2703.78 13,199.43

Blau 3425.68 3401.05 18,403.01 18,946.44 3396.90 19,206.77

Erys 1530.03 1642.23 4129.93 4585.44 1782.82 9082.96

Alis 2159.41 2267.34 4768.40 5300.08 2418.27 9055.12

Euba 2108.20 2123.68 3617.31 4034.78 2292.49 6937.54

Lach 2089.01 2069.09 2325.09 2702.97 2262.49 5286.85

Oscil 1941.61 2044.71 3629.43 4104.53 2218.59 7624.30

Prev 1261.25 1364.03 3757.93 4221.34 1472.21 41,117.31

Rose 3234.63 3272.57 18,000.67 18,547.76 3340.65 21,270.47

Copr 2848.91 2829.24 6486.43 6949.32 2914.87 8750.86
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in discerning the true and wrong models. We also apply the RQRs to diagnose six 
GLMMs in a real microbiome data analysis. The results show that the OTU counts 
at the genus level of this dataset after a truncation treatment can be modelled well by 
zero-inflated and zero-modified NB models. In conclusion, RQR is an excellent tool 
for diagnosing GLMMs for zero-inflated count data, such as the sequencing count 
data arising in microbiome studies. In the Additional file 1, two generic R functions, 
called rqr.glmmtmb and rqr.hurdle.glmmtmb, are provided for calculating the 
RQRs given fitting outputs of the R package glmmTMB.

The application of the RQR method in a real microbiome dataset shows that ZINB 
and ZMNB can provide adequate fits to the OTU counts after truncation of small 
values. This conclusion may not be generalized to all microbiome datasets. However, 
it is of interest to conduct the model diagnostics with RQRs to the ZINB and ZMNB 
models fitted to a large number of sequencing count datasets. In addition to the zero-
inflated GLMMs for count data, the RQR method can also be applied to other two-
part models, such as zero-inflated beta or zero-inflated log-normal models [52, 53], 
for which the randomization needs only to be applied to the observed zeros. This is 
an interesting research topic to pursue in the future.
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