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Background
Mycobacterium tuberculosis, like many other bacteria, can survive adverse environmen-
tal conditions thanks to its ability to sense environmental changes and start appropriate 
responses in genes expression and proteins activity. These responses allow a fraction of 
a clonal (i.e., genetically identical) bacterial population to survive exposure to stress and 
to persist for much longer periods of time with respect to the remaining (non-persistent) 
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subpopulation. Expression of the persistent phenotype, a phenomenon known as “bacte-
rial persistence” [1, 2], is the primary challenge in the fight against Mycobacterium tuber-
culosis as persistent cells escape elimination by the immune system [3] and can remain 
dormant for years before starting replication [4].

Generally speaking, bacteria achieve adaptation to stress conditions of diverse nature 
(e.g., antibiotics, surface or oxidative stress, heat shock) by activating specific groups 
of genes controlled by a variety of sigma factors whose number is associated with the 
environmental variability experienced by the bacterial species. Availability of sigma fac-
tors results from their competition for core RNA polymerase [5] and from modulation 
of their transcription, translation, proteolysis and sequestering by anti-sigma factors 
[6]. Sigma factors regulatory networks involve multiple elements (kinases, sigma and 
anti-sigma factors) which interact through intertwined positive and negative feedback 
loops. Disentangling the intricate set of interactions and unraveling the role played by 
each component (e.g., specific feedback loop or pathway) is of paramount importance 
to identify key elements, develop drugs and design interventions able to compromise 
network’s functioning, [7].

Among obligate pathogens, M. tuberculosis exhibits the highest ratio between number 
of sigma factors and genome size [8], thus indicating that mechanisms regulating sigma 
factors availability in M. tuberculosis are extremely complex. Among mycobacterial 
sigma factors, SigE is the only one belonging to the extracytoplasmic function subfam-
ily (i.e., the subfamily of sigma factors that mediate responses when the cell membrane/
periplasm, rather than the cytoplasm, is subjected to stress) which is conserved across 
the Mycobacterium genus. Increases in SigE expression level are associated with expo-
sure to heat shock, Sodium Dodecyl Sulfate (SDS, a detergent used to mimic surface 
stress) and antibiotics (such as isoniazid and vancomycin), [8]. In addition, SigE has been 
shown to have a major role in determining the amount of bacterial cells surviving pro-
longed drug treatment [9] and has been proposed as a switch for dormancy [10].

The primal role of SigE in persistence development is hence an established fact; nev-
ertheless, molecular mechanisms and interactions responsible for mycobacterial persis-
tence are only partially understood [10]. In particular, in spite of the intense research 
efforts coming from both experimental and  theoretical/computational fields, it is still 
unclear which are the positive feedback loops, present within SigE regulatory network, 
that are essential for persistence. When addressing the problem from a theoretical/
computational perspective, persistence is associated with bistability of the mathemati-
cal model describing the stress response network. Indeed, coexistence, in a genetically 
identical population, of two phenotypes, a stress sensitive phenotype with inactive (i.e., 
poorly expressed) SigE and a persistent phenotype with active (i.e., highly expressed) 
SigE, corresponds, in mathematical terms, to coexistence of two stable steady states, 
one with low SigE expression level and the other with high SigE level. In [11], stability 
analysis of a mathematical model of SigE regulatory network suggested the anti-sigma 
factor RseA as an important element in emergence of bistability in mycobacterial stress 
response. The experimental work [12] also hypothesized that regulation of SigE through 
the sequestering effects of RseA may facilitate persistence. Inspired by the results of [11] 
and [12], we further investigate the role of the anti-sigma factor RseA by developing a 
mathematical model of SigE regulatory network which includes three positive feedback 
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loops and explicitly accounts for RseA degradation. Our analysis confirms the impor-
tance of RseA for the emergence of bistability and, additionally, elucidates the critical 
role played by RseA degradation pathway. Interestingly, our findings are in agreement 
with recent results [13] showing that stress-dependent degradation of RseA can induce 
modest activation of SigE response network.

SigE regulatory network

The regulatory network governing SigE availability is schematically reported in Fig.  1. 
The network is triggered by autophosphorylation of MprB in the presence of polyphos-
phate (polyP), a linear polymer of orthophosphate whose levels increase following 
surface and oxidative stress [14], and which serves as a phosphate donor in the MprB 
autophosphorylation reaction [11]. MprB is a bifunctional enzyme: it can transfer the 
phosphate to MprA, thereby activating it; but is also capable of dephosphorylating phos-
phorilated MprA (i.e., MprB acts as a phosphatase in the MprA dephosphorilation reac-
tion) [11]. Both mprA and mprB genes are cotranscribed from one operon, mprAB [11]. 
Phosphorilated MprA upregulates transcription of the mprAB operon. This positive 
autoregulation of mprAB operon due to transcriptional upregulation by phosphorilated 
MprA gives rise to the first positive feedback loop [11, 15].

The second positive feedback loop arises from transcriptional activation of sigE by 
phosphorylated MprA and subsequent upregulation of mprAB transcription from an 
SigE-dependent promoter [11, 15].

The third positive loop results from the sequence of interactions described in the fol-
lowing. SigE activity is regulated at the post-translational level by the anti-sigma factor 
RseA which binds to SigE in reducing environments [11, 14]. Thus, RseA reduces SigE 
availability as transcription factor in the cell since only free SigE upregulates transcrip-
tion of the mprAB operon [11]. RseA, in turn, undergoes phosphorylation-dependant 
proteolytic degradation in cells subjected to surface stress, but not oxidative stress or 
heat shock [14]. In particular, RseA degradation pathway is described as follows: in 
response to surface stress, the serine/threonine protein kinase PknB phosphorylates 
RseA, which is then targeted by ClpC1P2 for proteolitic degradation, causing the release 
of the active form of SigE. The increased amount of free SigE results in the induction 
of the regulon encoding ClgR. Indeed, the expression of ClpC1P2 structural genes is 
positively controlled by ClgR, whose expression is controlled by SigE [14]. Hence, RseA 
degradation pathway represents a positive feedback loop: increased amount of free 
SigE leads to increased amount of ClgR, which positively controls the concentration 
of ClpC1P2; increased amount of ClpC1P2 in turns results in increased RseA degrada-
tion, and hence increased amount of free SigE. In other words, increased amounts of 
ClpC1P2 leads to more efficient RseA degradation and, consequently, to a higher con-
centration of free SigE [14].

High polyphosphate intracellular levels are ensured by PPK1, a kinase responsible 
for polyP biosynthesis and whose transcription is positively regulated by SigE. Hence, 
increased PPK1 levels raise polyP concentration in the cell, and this in turn stimulates 
MprA phosphorylation by MprB [6].
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Models of SigE availability in the literature

SigE regulatory network has been the object of experimental and theoretical studies aim-
ing at identification of mechanisms that enable a subset of the bacterial population to 
persist under stress, see e.g. [9, 12, 16–20]. Sureka and colleagues developed [21] a math-
ematical model of the stress signalling pathway driven by mprAB operon and involving 
SigE sigma factor, which in turn activates the stringent response regulator Rel. Theoreti-
cal analysis predicted bistability in both Rel and SigE expression levels, hinting at pheno-
typic heterogeneity in a genetically identical cell population. By combining theoretical 
analysis and single cell analysis by flow cytometry in a M. smegmatis population, Sureka 
and collaborators further showed that a positive feedback loop involving mprAB operon 
along with stochasticity in gene expression are responsible for bimodal distribution of 
Rel expression levels, and hence for the emergence of bistability.

In a later study [22] by the same research team, unphosphorilated (rather than phos-
phorylated) MprB is assumed to act as a phosphatase and an additional mechanism 
leading to bistability is explored. Differently from the model proposed in [21], the 
revised mathematical model incorporates the effect of growth retardation due to protein 
synthesis, a mechanism which actually generates a positive feedback. Indeed, a positive 
feedback loop comes from stress-induced proteins MprA and MprB slowing down cell 
growth, which results in reduced dilution rate and hence decreased protein decay rate. 
This reproduces experimental observation that synthesis of stress response protein is 
accompanied by slower growth rate as compared to non-stress situations. Interestingly, 
the revised mathematical model exhibits bistability over a larger region of the parameter 
space with respect to the original model.

Tiwari and colleagues in their work [11] proposed a mathematical model of SigE 
regulatory network and investigated the mechanisms responsible for the emergence of 
bistability. In Tiwari’s model the network’s stress response is triggered by autophospho-
rylation of MprB and subsequent activation of the MprA/MprB two-component system 
(implementing the first positive feedback loop in SigE regulatory network). MprA/MprB 
two-component system is a stimulus-response coupling mechanism which controls the 
ratio between phosphorylated and unphosphorylated portions of MprA and MprB. By 
analysing the logarithmic gains of the circuit1, the Authors showed that the two-com-
ponent system is not bistable in a biochemically relevant parameter range. Additional 
regulations are hence included in the model, specifically: transciptional regulation of 
sigE gene by phosphorylated MprA and transciptional regulation of mprAB operon by 
SigE. Again, by analysing the logarithmic gains of the circuit, the Authors were able to 
show that this extended version of the model exhibits a unique equilibrium point, and 
hence the second positive feedback loop is insufficient to induce bistability. As a further 
step, post-translational regulation of SigE by RseA is included in the model. Introduc-
tion of this regulation in the network’s model finally leads the system to bistability, which 
is robust to parameter variation. The Authors hence identified RseA as the key element 
controlling the ultrasensitive stress response, and predicted that overexpression or dele-
tion of RseA can destroy bistability.

1  As explained in [11], logarithmic gains are the effective kinetic orders (i.e., the exponents) of the power-law system 
representation proposed by Savageau in [23].
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Paper objective

In this work, we extend Tiwari’s mathematical model and reveal, through theoretical 
and computational analysis, new insights into bistability of the stress-response network 
driven by mprAB operon and brought about by SigE sigma factor. Our aim is hence two-
fold: first, to develop a mathematical model of SigE stress response network in M. tuber-
culosis which includes regulations not taken into account by state of the art models (i.e., 
activation by PknB, regulations mediated by ClpC1P2, and RseA degradation pathway); 
secondly, to investigate the mechanisms leading to bistability through nullclines analysis 
and sensitivity analysis.

Results
Figure  2 illustrates in a simplified and schematic way how the regulatory network of 
Fig. 1 has been described by Tiwari and colleagues (left) and in the present work (right). 
The mathematical model proposed by Tiwari and collaborators provides a dynamic 
description of the subnetwork within the orange rectangle and describes the remain-
ing part of the network (blue rectangle) through the action of a fixed, constant amount 
of RseA. The mathematical model we are proposing makes a considerable step further 
by providing a dynamic description also of the subnetwork within the blue rectangle. In 
particular, our model: (i) describes stress response initiation by both MprB and PknB; 
(ii) considers regulation in free SigE concentration by ClpC1P2; (iii) accounts for RseA 
degradation.

The main findings of our work are, firstly, the development of a new model of SigE 
regulatory network (more accurate with respect to state of the art models) and, secondly, 
elucidation of the critical role played by RseA degradation pathway for the emergence 
of bistability and coexistence of two stable equilibria. To disentangle the multiple feed-
back loops involved within the network, we cast the whole network of Fig. 1 into a block 
structure with feedback interconnection and adopt an approach based on nullclines 
analysis to determine, in a reliable though computationally efficient way, the number of 
equilibrium points of the system.

Mathematical model

Ordinary differential equations describing the behaviour of MprA/MprB two-component 
system are borrowed from [11] and reported here for convenience. We adopt capital let-
ters A and B for state variables representing the concentration level of proteins MprA 
and MprB, respectively, and we use the subscript P to denote the corresponding phos-
phorylated forms. As in [11], dynamic equations take into account exogenous phospho-
rylation (dephosphorylation) of MprA (phosphorylated MprA), auto-phosphorylation 
(auto-dephosphorylation) of MprB (phosphorylated MprB), phosphotransfer from phos-
phorylated MprB to MprA, phosphatase activity of MprB, up-regulation of MprA and 
MprB synthesis by phosphorylated MprA and SigE (denoted with the capital letter E), and 
proteins degradation. The resulting differential equations are given by (see  Additional file 1 
- Supplementary Material for further details):

(1)
dAP

dt
=

kt

KT
ABP −

kp

KP
APB+ kexpA− kexdAP − kpdegAP
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The amount of free SigE (denoted by E) is described by differential equation (5), which 
takes into account: positive regulation on the synthesis of SigE by phosphorylated MprA, 
binding by RseA to form the complex denoted by [ER] and dissociation of the [ER] com-
plex (here, RT denotes the total amount of RseA), ClpC1P2-mediated dissociation of the 
complex [ERPC] formed by SigE and phosphorylated RseA ( RP ), protein’s degradation:

(2)
dBP

dt
= kapB− kadBP −

kt

KT
ABP − kpdegBP

(3)

dA

dt
= β1

(

1+ f1
A2
P

K1

)

(

1+
A2
P

K1

) + β2

(

1+ f2
E
K2

)

(

1+ E
K2

) +
kp

KP
APB+

−
kt

KT
ABP + kexdAP − kexpA− kpdegA

(4)
dB

dt
= �β1

(

1+ f1
A2
P

K1

)

(

1+
A2
P

K1

) + �β2

(

1+ f2
E
K2

)

(

1+ E
K2

) +
kt

KT
ABP

+ kadBP − kapB− kpdegB

(a) (b)
Fig. 2  SigE regulatory network. (a) The model proposed by Tiwari and collaborators provides a dynamic 
description of the subnetwork highlighted in orange, and considers a constant amount of RseA to 
capture the effects of the anti-sigma factor. (b) Our model extends the model of Tiwari by adding dynamic 
description of the subnetwork highlighted in blue
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The concentrations of phosphorylated PknB and its unphosphorylated form (denoted by 
PP and P, respectively) are described by the following differential equations:

The above equations, directly derived from chemical reactions, assume constant PknB 
synthesis (at rate νP ) and account for auto-phosphorylation (auto-dephosphorylation) 
of PknB (phosphorylated PknB), formation and dissociation of the proteins complex 
degrading RseA (see Additional file 1 - Supplementary Material for further details).

Dynamics of the complex formed by SigE and RseA (denoted by [ER]), and of the other 
complexes involved in RseA degradation pathway (specifically, [ERPP] , [ERP] , [ERPC] ) are 
described by the following differential equations (obtained from the corresponding chemi-
cal reactions, see Additional file 1 - SupplementaryMaterial for further details):

Finally, dynamic description of proteins ClpC1, ClpP2 and of the complex ClpC1P2 
(denoted by C1 , P2 and C, respectively) is obtained by taking into account positive regu-
lation on the synthesis of ClpC1 and ClpP2 by SigE, formation and dissociation of the 
ClpC1P2 complex and of the other complexes (i.e., [ERP] and [ERPC] ) involved in RseA 
proteolitic degradation. The resulting differential equations are given by:

(5)
dE

dt
= β3

(

1+ f3
A2
P

K1

)

(

1+
A2
P

K1

) − k3ERT + k4[ER] + k8[ER
PC] − kpdegE

(6)dPP

dt
= kPkap P − kPkad P

P + k2[ERP
P] − k1[ER]P

P − kpdegP
P

(7)
dP

dt
= −kPkap P + kPkad P

P + k5[ERP
P] + νP − kpdegP

(8)d[ERPP]

dt
= k1[ER]P

P − k2[ERP
P] − k5[ERP

P] − kpdeg [ERP
P]

(9)
d[ER]

dt
= k2[ERP

P] − k1[ER]P
P + k3ERT − k4[ER] − kpdeg [ER]

(10)d[ERP]

dt
= k5[ERP

P] − k6[ER
P]C + k7[ER

PC] − kpdeg [ER
P]

(11)d[ERPC]

dt
= k6[ER

P]C − k7[ER
PC] − k8[ER

PC] − kpdeg [ER
PC]

(12)
dC

dt
= −k6[ER

P]C + k7[ER
PC] + k8[ER

PC] + k9C1P2 − k10C − kpdegC

(13)
dC1

dt
= fC1

(E)− k9C1P2 + k10C − kpdegC1
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where fC1
(E) and fP2(E) denote Hill equations, namely

Differential equations  (1)–(14) describe the functioning of the whole SigE regula-
tory network under the simplifying assumption, borrowed from Tiwari’s model [11], 
that RseA concentration is constant. RseA is indeed a fixed parameter of the network, 
denoted by RT and appearing in differential equations (5) and (9).

In contrast with the assumption of constant RseA concentration, experimental data show 
that, in response to surface stress, rseA mRNA levels remain stable while RseA concentra-
tion decreases [14, 18]. To take into account experimental evidence of non-constant RseA 
concentration, we further develop an alternative model of SigE regulatory network by con-
sidering RseA as a state variable endowed with a proper dynamics. Specifically, we describe 
RseA concentration by the following differential equation:

The above equation accounts for RseA production and degradation (at constant rates 
νR and δR , respectively), formation and dissociation of the complex formed by SigE and 
RseA. Most importantly, since RseA is proteoliticallty degraded by ClpC1P2, RseA is 
not retrieved after dissociation of the complex [ERPC] (differently from what happens 
to SigE and ClpC1P2, see the terms +k8[ER

PC] appearing in Eqs.  (5) and  (12)). The 
alternative mathematical model of SigE regulatory network, which takes into account 
RseA dynamics, is hence composed of differential equation (15) together with differen-
tial equations  (1)–(14), upon substitution of parameter RT with the state variable R in 
Eqs. (5) and (9).

Parameters setting

Parameters that define regulatory interactions included in the mathematical model by 
Tiwari and collaborators have been set in accordance with [11]. Numerical values of 
these parameters is taken from Table S3 in [11] with two exceptions. First, in our model, 
to ensure perfect balance between exogenous phosphorylation and dephosphoryla-
tion fluxes, the exogenous dephopshorylation rate constant of phosphorylated MprA 
(i.e., parameter kexd ) equals the exogenous phopshorylation rate constant of MprA (i.e., 
parameter kexp ). This choice is consistent with the analysis carried out in Section 2.5 of 
[11] and demonstrating bistability of mycobacterial stress-response network (bifurcation 
diagrams of Figure 5 in [11] have indeed been obtained for kexd = kexp ). Secondly, for 
the model with constant RseA concentration, parameter RT is slightly increased with 

(14)
dP2

dt
= fP2(E)− k9C1P2 + k10C − kpdegP2

fC1
(E) := βC1

(

1+ fC1
E

KC1

)

(

1+ E
KC1

)

fP2(E) := βP2

(

1+ fP2
E
KP2

)

(

1+ E
KP2

)

(15)
dR

dt
= νR − k3ER+ k4[ER] − δRR
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respect to the value reported in Table S3 of [11] (however, it still belongs to the bistabil-
ity region reported in Figure S2 of [11]). This modification is justified by the fact that, 
with respect to the model in [11], we are considering additional proteins complexes in 
which RseA is present.

Unfortunately, for parameters defining the regulatory interactions mediated by PknB, 
ClpC1 and ClpP2 (not included in [11]), estimates based on experimental data are not 
available in the literature. When similar interactions (namely, similar chemical reac-
tions) are described in [11], then corresponding parameters take similar values, see, e.g., 
the basal transcription rate and the amplification gain of proteins ClpC1, ClpP2. When 
this reasoning is not applicable, namely, when a parameter playing a similar role in the 
model by Tiwari cannot be found, then the order of magnitude is set either to 10−3 (like 
parameter kpKP

 in [11]) or to 10−2 (like parameter ktKT
 in [11]).

Numerical values of all model parameters, either borrowed from [11] or set accord-
ing to the previous reasoning, can be found in the Additional file 2 - Table I. In addition, 
to mitigate the effects due to uncertainties on model parameters for which experimen-
tal data are not available, numerical experiments have been performed (see “Parameters 
perturbation experiments” section) in which parameters whose value is not borrowed 
from [11] are randomly perturbed, either one at a time or multiple parameters at the 
same time.

Bistability investigation through nullclines analysis

The whole SigE regulatory network can be seen as the feedback interconnection of 
two modules controlling the overall SigE concentration and the amount of total SigE 
that is free and hence functionally active. This interpretation is graphically illustrated 
in the block diagram of Fig. 3. In Module 1 SigE regulation takes place via the two-
component system MprA/MprB: free sigma factor SigE (the input to Module 1) reg-
ulates transcription of the mprAB operon, and hence the total amount of proteins 
MprA and MprB. The two-component system then controls the ratio between phos-
phorylated and unphosphorylated portions of MprA and MprB. Only phosphoryl-
ated MprA upregulates transcription of sigE gene, and thus controls the total amount 
of SigE protein, which represents the output of Module 1. In Module 2 the amount 
of free SigE is controlled by the anti-sigma factor RseA and by proteins ClpC1 and 
ClpP2. SigE, playing the role of input to Module 2, is partly bound by RseA and 
degraded by the protein complex ClpC1P2. The remaining free, and hence function-
ally active, amount of SigE represents the output of Module 2. Clearly, the feedback 
interconnection is such that the output of Module 1 is the input of Module 2 and, 
viceversa, the output of Module 2 is the input to Module 1.

In order to underpin the mechanisms leading to coexistence of two stable equi-
librium states, we artificially break down the feedback interconnection and derive 
input–output relationships of each module separately. Via nullclines computation 
and involved manipulations of their nonlinear algebraic expressions, we provide 
(i) for Module 1, exact implicit expression of total SigE concentration as a function 
of free SigE, and (ii) for Module 2, approximated implicit expressions of total SigE 
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concentration as a function of free SigE. We remark that the obtained input–output 
relationship for Module 2 is not the exact input–output relationship but an approxi-
mation of the exact relationship. Indeed, the high non-linearity of the differential 
equations makes exact computation of the input–output relationship impracticable. 
However, an accurate approximation of the true input–output relationship can be 
derived by exploiting time scale separation between proteins degradation and pro-
tein complexes formation and dissociation. Then, the number of intersection points 
between the input–output relationship from Module 1 and the approximated input–
output relationship from Module 2 is precisely the number of equilibrium points of 
the system. Notice that an advantage of our approach based on nullclines analysis is 
the fact that it allows, for a given  set of parameters, to immediately check whether 
the system admits a unique equilibrium or multiple equilibrium points, without the 
need to run hundreds of simulations starting from initial conditions that explore, 
with sufficiently dense sampling, the state space.

Clearly, the feedback architecture of Fig. 3 is maintained independently of the regu-
lations included within Module 2. In Tiwari’s model [11] a fixed, constant amount of 
RseA controls the level of free SigE and represents the unique regulatory mechanism 
accounted for by Module 2. On the contrary, in our model PknB and ClpC1P2 medi-
ate additional regulations on SigE, and the anti-sigma factor RseA is endowed with 
a proper dynamics. The choice of relaxing the assumption of constant RseA is justi-
fied by the data showing that in response to surface stress, while rseA mRNA levels 
remain stable [24], RseA is proteolitically degraded by ClpC1P2 after its phosphoryla-
tion by PknB clearly indicating that in these conditions RseA concentration decreases 
[14, 18]. On the other hand, from a mathematical point of view, disregarding RseA 
dynamics and considering it as a fixed parameter means that the positive feedback 
loop implemented by ClpC1P2 degrading phosphorylated RseA has no actual effect 
on RseA. For these reasons, we decided to remove the assumption of constant RseA 
and instead to consider it as a state variable endowed with a proper dynamics. The 
ordinary differential equation describing RseA concentration accounts for its basal 
production and degradation (at constant rates), and additional proteolitic degrada-
tion by ClpC1P2. Nullclines reported in Fig. 4 clearly show that, under the assump-
tion of dynamic RseA, the closed-loop system exhibits three distinct equilibria, two of 

Module 1

Module 2

Efree ETot

Efree ETot

Fig. 3  Feedback interconnection of SigE regulatory network. (E stands for SigE)
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which are asymptotically stable (while the third one is necessarily unstable). Remark-
ably, when the level of RseA is kept constant and the same values (borrowed, when 
applicable, from [11]) for the remaining model parameters are assumed, the system 
exhibits a unique equilibrium point2, as reported in Fig. 5.

It is worth mentioning that high non-linearity of the mathematical model makes 
exact analytical derivation of the system’s nullclines impracticable. As a consequence, 
the curves of Figs. 4 and 5 have been obtained under biologically reasonable approxi-
mations (see “Methods” section and Additional file 1 - Supplentary Material for further 
details on the derivations). Validity and accuracy of the approximated nullclines is how-
ever testified by the exact equilibrium points reported with black circles in the figures 
and obtained by numerical simulations of the model with random initial conditions 
(indicated with black crosses in the figures). In fact, the equilibrium point obtained via 
numerical simulation lay at the intersection of the two approximated nullclines.

Figures 4 and 5 together point out the importance of taking into account RseA dynam-
ics and, in particular, its degradation pathway implementing a positive feedback loop 
on SigE regulation. Looking at the curves3 we realize that, in order for the equilibrium 
point corresponding to higher SigE levels to appear, the blue nullcline needs to undergo 
a slowdown so as to form, in logarithmic scale, a sort of “plateau”. This is exactly the 
role of RseA degradation pathway. On the other hand, in order for the equilibrium point 
corresponding to lower SigE levels to appear, the total amount of SigE (on the vertical 
axis) needs to be highly sensitive to small variations in free SigE concentrations (on the 

Fig. 4  Nullclines plot under the assumption of non-constant RseA concentration. When RseA 
concentration is subject to proteolitic degradation by ClpC1P2, the number of intersection points between 
the input–output relationships from Module 1 and from Module 2 shows that the closed-loop system is 
bistable. For the ease of readability, the logarithmic scale has been adopted for x- and y-axis. E stands for SigE

3  Note that the plots of Figs. 4 and 5 do not report temporal dynamics but static relationships between total amount of 
SigE and amount of free SigE.

2  Both this last simplified model and the model in [11] share the assumption of constant RseA, but SigE–RseA interac-
tion is described in a very different way. Therefore it is not surprising that the first predicts bistability while the latter 
predicts a unique equilibrium point.
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horizontal axis), so as for the blue nullcline to exhibit a high slope (in logarithmic scale) 
in its initial segment, i.e., for small amount of free SigE. Our results suggest that a fine 
regulation of RseA concentration levels is critical for the coexistence of two stable equi-
librium points.

Parameters’ perturbation experiments

Nullclines analysis and model simulations show the need to include RseA degrada-
tion pathway into SigE regulatory network’s model in order to capture coexistence of 
two steady states as experimentally observed. To further investigate the role played by 
interactions newly introduced into our mathematical model, we perform some numeri-
cal experiments in which we perturb model’s parameters and quantitatively evaluate 
robustness of bistability. When intersection points among nullclines are spaced and 
clearly distinct, it is reasonable to expect that bistability will be retained in spite of per-
turbations on the parameters. We hence quantify robustness of bistability by computing 
the projection on the Efree-axes of the distance between intersection points correspond-
ing to stable equilibria. Referring to the nullclines plot in Fig. 4 and denoting by E1 and 
E2 the abscissa of the stable equilibrium points, we introduce the scalar distance func-
tion D(p) := E2 − E1 , where p is the vector of parameters. Clearly, when monostability 
arises, such a distance vanishes, i.e., D(p) = 0 , since the two stable equilibria coincide 
and E1 = E2 . We denote by D̄ the distance computed with nominal values for the sys-
tem’s parameters. For an ε-percentage variation on parameters selected through the vec-
tor v whose entries are either −1 , 0, or 1, we define the following measure of bistability 
robustness:

(16)Rε(v) :=
D(p+ εv)− D̄

D̄
∗
100

ε

10 -3 10 -2 10 -1 10 0 10 1
10 -2

10 -1

10 0

10 1

10 2

Fig. 5  Nullclines plot under the assumption of constant RseA concentration. Under the assumption 
of constant RseA concentration, the number of intersection points between the input–output relationships 
from Module 1 and from Module 2 implies that the closed-loop system exhibits a unique equilibrium point. 
For the ease of readability, the logarithmic scale has been adopted for x- and y-axis. E stands for SigE
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Note that efficient computation of the above metric is made possible by the derivation of 
the (implicit or explicit) solutions to the system’s nullclines.

Since our focus is on the regulations mediated by PknB, ClpC1P2 and RseA degrada-
tion pathway, in the following only parameters defining these interactions are perturbed, 
while model parameters that correspond to analogous parameters in Tiwari’s model [11] 
and whose value has been borrowed from, are kept constant.

Robustness experiment 1

In the first robustness experiment we aim to investigate the effects of local, i.e., with ε 
small ( ε = 2.5% ) perturbations on the system’s parameters. To this aim, we vary model 
parameters one at a time, namely we set v = ei where ei is the canonical vector with the 
i-th entry equal to 1 and all other entries equal to 0, and we compute the robustness 
measure R2.5(ei) . Numerical results obtained by performing such an experiment on the 
mathematical model with dynamic (i.e., non-constant) RseA concentration are reported 
in Fig. 6. It results that robustness of bistability is most sensitive to parameters control-
ling basal and enhanced production of protein ClpC1 (i.e., parameters βC1 and fC1 ) and 
to RseA degradation rate (i.e., parameter δR ). Indeed, a slight increase in ClpC1 produc-
tion (either basal or enhanced by SigE) substantially increases the robustness metric 
R2.5 . Conversely, an increase in RseA degradation rate causes a decrease in the distance 
metric D.

Robustness experiment 2

The second robustness experiment is designed to test the effects of random perturba-
tions that (i) have large absolute value (so as to explore regions of the parameter space 
farther from approximately linear effects explored in Robustness experiment 1), and (ii) 
involve more that one parameter at a time. For fixed large value of the perturbation ε the 
procedure outlined in Algorithm 1 is carried out for the mathematical model including 
RseA degradation pathway.

+2.5% var

R dynamic 

Fig. 6  Robustness experiment 1. Robustness metric computed after perturbing, one at a time, each 
parameter by +2.5%
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Algorithm 1

0.	 Fix the number N of perturbations tests and set i = 1.
1.	 Generate a random vector v whose entries are integers drawn from the discrete uni-

form distribution on the set {−1, 0, 1}.
2.	 Compute the distance metric D(p+ εv).
3.	 If i < N  , repeat from step 1.
4.	 Plot a histogram of the normalized distance between stable equilibria4, i.e., 

D(p+ εv)/D̄.

The resulting histograms provide an estimate of the relative probability of the distance 
D(p+ εv) . Figure  7 illustrates results for N = 104 and percentage variations ε = 10% 
(Fig. 7a), ε = 15% (Fig. 7b) and ε = 25% (Fig. 7c). It is worth highlighting that bistability 
is always retained with random perturbations of ±10% with respect to nominal values; 
when very large perturbations are considered ( ±25% ), bistability is lost on 22.54% of iter-
ations. These results indicate that our mathematical model is quite robust to parameter 
variations.

To identify parameters more closely connected to enhanced bistability, we retrieved 
from perturbation experiments with ε = 10% and ε = 15% all perturbation vectors v 
corresponding to normalized distance metric larger than 1.1. Bar plots summarizing 
their sign patterns are reported in Figs.  8 and  9. Interestingly, observations resulting 
from perturbation experiment 1 are confirmed: increased bistability is associated with 
increased ClpC1 production (either basal or enhanced by SigE) as well as with decreased 
RseA degradation rate.

To unravel parameters whose variation leads to a loss of bistability, we retrieved from 
perturbation experiment with ε = 25% all perturbation vectors v corresponding to 
monostability, whose sign patterns are reported in Fig.  10. Consistently with previous 
observations, decreases in parameters βC1 and fC1 (which regulate ClpC1 production) 
and increases in parameter δR are frequently reported when bistability is lost. However, 
RseA binding rate to SigE (i.e., parameter k3 ) appears to predominantly control the loss 
of bistability, its decrease being associated with monostability.

Discussion
In this work a new mathematical model of SigE regulatory network in M. tuberculosis 
has been proposed and fruitfully exploited to investigate the mechanisms responsible for 
bistability. Our model considerably extends the model proposed by Tiwari and collabo-
rators in [11] in the sense that, starting from the same mathematical description of the 
chemical reactions (i.e., the same set of ODEs), additional transcriptional ad post-trans-
lational regulations have been included. These regulations implement an extra positive 
feedback loop, and hence play a potential crucial role in controlling network’s response 
to stress. In particular, differently from what done in [11], we consider two distinct 
mechanisms triggering the network’s response to stress: exogenous phosphorylation of 

4  For the ease of interpretation, histogram plots are also normalized to the total number of iterations, namely we plot 
ci/N , where ci is the number of elements in the ith bin.
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Fig. 7  Robustness experiment 2: normalized distance. Histogram approximating the relative probability 
of the normalized distance between equilibria after randomly perturbing parameters as in Algorithm 1 with 
N = 10

4 and ε = 10% (a), ε = 15% (b), ε = 25% (c). The height of each bar is ci/N , where ci is the number of 
elements in the ith bin
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MprB and PknB-dependant phosphorylation of RseA. This latter event is responsible for 
the release of free SigE resulting from RseA proteolitic degradation by ClpC1P2, whose 
expression is, in turn, (indirectly) positivelely controlled by free SigE. In addition, since, 
as shown in [11], RseA is a key element in controlling the stress response, we further 
investigate its role by removing the simplifying assumption (introduced in [11]) of con-
stant concentration and by taking into account proteolitic degradation by ClpC1P2.

To efficiently investigate under what conditions two stable equilibria coexist, we 
make use of model’s nullclines whose expressions have been derived, through involved 

-10%
Unvaried
+10%

Bistability

(a)

-10%
Unvaried
+10%

Bistability

(b)
Fig. 8  Robustness experiment 2: parameters variations leading to increased bistability. For 
perturbation experiment 2 with ε = 10% , perturbation vectors corresponding to normalised distance greater 
than 1.1 have been retrieved and their sign patterns collectively reported with bars plot: green bars denote 
−10% variation, black bars denote no variation, yellow bars denote +10% variation
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computations on the ODEs, either explicitly or, when this was not possible, implicitly. 
The proposed approach boasts two advantageous features over the solution via numeri-
cal integration of the differential equations: first, given a set of parameters, a single run 
of the script program (rather than thousands of simulations) allows to assess whether 
the system is bistable or monostable; secondly, sampling of initial conditions over the 
state space is averted, thus bypassing the risk of missing an equilibrium point due to 
incomplete sampling of the parameter space.

-15%
Unvaried
+15%

Bistability

(a)

-15%
Unvaried
+15%

Bistability

(b)
Fig. 9  Robustness experiment 2: parameters variations leading to increased bistability. For 
perturbation experiment 2 with ε = 15% , perturbation vectors corresponding to normalised distance greater 
than 1.1 have been retrieved and their sign patterns collectively reported with bars plot: green bars denote 
−15% variation, black bars denote no variation, yellow bars denote +15% variation
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Plotting the nullclines for both the mathematical model with constant RseA con-
centration and the model incorporating RseA degradation pathway, some interesting 
remarks can be made. First of all, the two models with common parameters assuming 
identical values exhibit qualitatively different behaviours. Indeed, taking into account 
RseA dynamic evolution leads the system to switch from monostability to bistability. 
Interestingly, our findings are in agreement with recent results [13] reporting that (mod-
est) activation of MprA-SigE network is achieved through stress-dependent degrada-
tion of RseA. Specifically, Rao and collaborators construct a M. tuberculosis strain with 

-25%
Unvaried
+25%

Monostability

(a)

-25%
Unvaried
+25%

Monostability

(b)
Fig. 10  Robustness experiment 2: parameters variations leading to monostability. For perturbation 
experiment 2 with ε = 25% , perturbation vectors corresponding to a loss of bistability have been retrieved 
and their sign patterns collectively reported with bars plot: green bars denote −25% variation, black bars 
denote no variation, yellow bars denote +25% variation
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suppressed MprB autokinase activity (through overexpression of the chaperone protein 
Dnak), and show that, following exposure to SDS, mprA gene is modestly upregulated 
while sigE mRNA is not significantly increased. Rao and colleagues hence hypothesize 
that degradation of RseA may be responsible, through release of SigE, for the modest 
activation of the MprA-SigE network. Modeling results [13] support this hypothesis and 
additionally show that induction of mprA is lost when stress-dependent degradation 
of RseA is not present in the model. The results of our analysis go in the same direc-
tion by showing that RseA degradation pathway is crucial for the activation of the stress 
response and hence for the emergence of bistability.

Robustness of the bistability property is investigated by introducing random perturba-
tions on the parameters. Specifically, a perturbation experiment is performed in which 
parameters defining regulations mediated by PknB, ClpC1P2 and RseA degradation are 
slightly varied (i.e., by 2.5% of the nominal value) one at a time. In addition, to further 
explore bistability robustness, we consider random perturbations larger in absolute 
value ( ±10% , ±15% and ±25% of the nominal value) and affecting multiple parameters 
simultaneously. It results that bistability property is retained in spite of random pertur-
bations up to ±10% of the nominal values. This means that bistability is a robust feature 
of our model. On the other hand, it is easy to imagine how bistability can be beneficial 
for a bacterial population as it allows some cells to enter a persistence state more easily 
or quickly than others. In other words, a fraction of cells can face exposure to stress by 
expressing the SigE regulon at maximum levels, while the remaining fraction can express 
SigE at a reduced level. This heterogeneity allows cells to specialize in advance if circum-
stances should mutate again: the cells of the second group might have lower chances to 
survive if the level of stress is very high, but those that survive might be able to quickly 
resume growth after cessation of stress; conversely, cells of the first group are likely to 
survive high levels of stress, but might require more time to recover. Each of these two 
populations is thus specialized to increase the efficiency according to changing environ-
mental conditions.

Perturbation experiments also allow to identify parameters (and hence, from the 
chemical reactions they represent, the molecular interactions) that crucially control 
the emergence of bistability. The production of protein ClpC1 seems to predomi-
nantly influence the distance between the two stable equilibria: increasing ClpC1 pro-
duction, either basal ( βC1 ) or enhanced by SigE ( fC1 ), results in increased bistability. 
Not surprisingly, RseA degradation rate ( δR ) remarkably affects bistability: a slight 
increase in RseA degradation rate (i.e., by 2.5% ) leads to decreased distance between 
stable equilibria, and large increases (i.e., by 25% ) are frequently reported when bista-
bility is lost. Recalling that the system exhibits a unique equilibrium point when RseA 
concentration is kept constant, namely when RseA degradation rate is arbitrarily 
small, the fact that increased RseA degradation is associated to reduced bistability 
points to a fine control of RseA expression levels. To further explore this aspect we 
singularly perturbed RseA degradation rate (letting all other parameters assume their 
nominal value) and we computed the distance between stable equilibria. The obtained 
curve reported in Fig. 11 shows that both extremal conditions result in monostabil-
ity, while only intermediate values of RseA degradation rate lead to bistaility. The 
proposed analysis suggests that precise regulation of RseA concentration could be a 
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hallmark of a bistable SigE regulatory network and a determinant factor for the M. 
tuberculosis to adapt to stress situations.

It is worth mentioning that the mathematical model we have developed, whilst rep-
resenting a considerable extension of the model proposed in [11], still relies on some 
simplifying assumptions that limit its applicability. First, for the sake of nullclines’ 
analytical tractability, we made the implicit assumption that free SigE directly upreg-
ulates transcription of proteins ClpC1 and ClpP2. Actually, this regulation is medi-
ated by ClgR, an intermediate step that necessarily introduces a temporal delay on 
ClpC1 and ClpP2 production as well as on ClpC1P2 complex formation. Since time 
delays are, generally speaking, associated with bistability, we expect the qualitative 
behaviour of the model to remain unchanged and our considerations to hold true in 
spite of the simplifying assumption on ClpC1P2 regulation. Secondly, our model does 
not include positive regulation mediated by ClgR on PPK1, which is responsible for 
polyphosphate biosynthesis. This simplification is justified by the realistic assump-
tion that polyphosphate are most abundant, and hence always available for proteins 
phosphorylation.

Conclusions
State of the art models [11] focus on stress response initiation by MprB and on SigE 
regulation by MprA/MprB two-component system (transcription level) and by RseA 
(post-translation level). Other mechanisms exist that trigger stress response and control 
the amount of free SigE, and these interactions may be important for the emergence of 
bistability. Differently from state of the art models, the model we are proposing takes 
into account additional interactions, it is hence more realistic from a biological point 
of view and able to provide a more accurate description of the network. In particu-
lar, key features of our mathematical model are: (i) description of stress response ini-
tiation by both MprB and PknB; (ii) regulation in free SigE concentration by ClpC1P2 

Fig. 11  Bistability dependence on RseA degradation rate. Distance between stable equilibria computed 
after varying RseA degradation rate only
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(implementing a positive feedback loop); (iii) account for RseA degradation. These char-
acteristics allow us to investigate at a deeper level the mechanisms responsible for the 
emergence of bistability. In particular, we have shown that taking into account RseA deg-
radation pathway is crucial in order for the model to exhibit two distinct stable equilib-
ria. Perturbation experiments on the model’s parameters pointed out the predominant 
role played by production of protein ClpC1 both at basal rate and at enhanced (by SigE) 
rate. In addition, our results collectively prove that in order for the network to exhibit 
bistability, RseA concentration needs to be finely controlled.

Methods
We first extend Tiwari’s model of SigE stress response network by including PknB- and 
ClpC1P2-mediated regulations and by removing the assumption of constant RseA 
concentration. Secondly, we investigate the mechanisms leading to bistability through 
nullclines analysis and manipulations, and we perform perturbation experiments in 
order to identify parameters that crucially control the emergence of bistable behaviours.

Ordinary Differential Equations (ODEs) describing the network’s dynamics have been 
obtained starting from chemical reactions and under the assumption of quasi-steady 
state approximation for mRNA dynamics. This assumption is justified by the fact that 
mRNA dynamics is faster than proteins’ dynamics (see Additional file 1  - Supplemen-
tary Material  for further details). The developed state-space model is then regarded as 
the composition of two modules in feedback interconnection with total SigE concentra-
tion and amount of free SigE playing the role of input and output. Via nullclines compu-
tation and involved manipulations of their nonlinear algebraic expressions, we artificially 
break down the feedback interconnection and derive input–output relationships of the 
two modules separately. The analysis is carried out first under the assumption of con-
stant RseA concentration and then in the more realistic setting in which RseA is subject 
to ClpC1P2-mediated degradation.

Nullclines analysis

In order to determine the number of equilibrium points of the ODE system (1)–(14), we 
propose an approach based on nullclines analysis. Nullclines are, indeed, an effective tool 
to assess the number of equilibria of a system: the number of equilibrium points is precisely 
given by the number of points where all of the nullclines intersect. A clear advantage of this 
technique is that it does not require running multiple simulations with initial conditions 
sampled over the state space of the system. Nullclines analysis is hence less computationally 
demanding and, what is more, not affected by sampling of the initial conditions over the 
state-space. On the contrary, when investigating system’s stability through model simula-
tions, two distinct equilibria might exist but sufficiently dense sampling over the right area 
of the state space is required in order for the equilibrium points to be detected.

Unfortunately, when dealing with nonlinear systems of high (or relatively high) dimen-
sion, as the model  (1)–(14), determining the number of solutions of the algebraic equa-
tions system is not obvious at all. To address the problem we recast the whole SigE network 
model (1)–(14) into the feedback architecture of Fig. 3, artificially break down the intercon-
nection between Module 1 and Module 2, and derive input–output relationships of the two 
open-loop systems separately. Specifically, for each module, we first compute nullclines and 
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manipulate them so as to obtain a suitable system of algebraic equations. Secondly, consid-
ering free SigE (i.e., state variable E of the mathematical model) as the independent variable, 
we rewrite the algebraic system in such a way that every nullcline is (directly or indirectly) 
a function, either exact or approximated, of E. This allows to compute (i) for Module 1, the 
total amount of SigE as an exact, implicit function of free SigE; and (ii) for Module 2, the 
total amount of SigE as an approximated function of free SigE. For Module 2, the analysis is 
carried out first under the assumption of constant RseA concentration (parameter RT ) and 
then in the more realistic setting in which RseA is endowed with a proper dynamics (state 
variable R).

Due to space limitations and in order to keep the analysis more easily understandable, 
we report here only the final (implicit or explicit) solution of the system’s nullclines. All 
detailed computations and manipulations leading to the their derivations, together with the 
approximations introduced for Module 2, can be found in Additional file 1 - Supplementary 
Material.

Module 1: nullclines solution in terms of E

The amount of free SigE represents the input to Module 1, which controls the total SigE 
concentration (representing the output of Module 1) through MprA/MprB two-component 
system. The static input–output relationship for Module 1 is:

where H3(φ
−1(E)) = H3(AP) is the Hill function describing positive regulation by phos-

phorylated MprA on mprAB operon, i.e.,

and AP = φ−1(E) is the inverse of the function

Unfortunately, it is not possible to derive en explicit, closed form expression of the func-
tion φ−1(E) , and hence only an implicit expression can be provided for the static input–
output relationship of Module 1. Since the ordinary differential equations describing 
the functioning of Module 1 are borrowed from [11], the curve we obtainded, plotted 
in Fig. 12, is consistent with the blue curve named “autoregulation module” reported in 
Figure 4 of [11].

Module 2: nullclines solution in terms of E under the assumption of constant RT
Module 2 captures regulations on SigE, whose total concentration represents the 
module’s input, that control the amount of free, and hence functionally active, SigE. 
Since multiple proteins and complexes are involved in these regulations, the analysis 
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of Module 2 is considerably more involved than that of Module 1, and it only allows 
for the derivation of approximated explicit expression of total SigE concentration as a 
function of free SigE. Specifically, approximated nullclines expressions are obtained by 
exploiting the fact that protein degradation rate (parameter kpdeg ) is significantly smaller 
than kinetic parameters regulating protein complexes formation and dissociation (e.g., 
parameters k4 and k10 ). Note that also Tiwari and collaborators [11], when deriving the 
ordinary differential equation system, exploited time scale separation between slow pro-
tein degradation and fast post-translational interactions (see [11], Section 1.2 of the Sup-
plementary Material).

Module 1
Efree ETot

(a)

(b)
Fig. 12  Input–output relationship for Module 1. (a) Block diagram. (b) Nullcline associated to the 
subsystem composed of ODEs (1)–(4) together with the ODE obtained by summing up Eqs. (5) and (8)–(11). 
On the x- and y-axis are reported the amount of free SigE and the total concentration of SigE, respectively. 
The shading removes a region without biological meaning, where free SigE would be larger that total SigE .
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Without going deeply into details (which can be found in Additional file 1 - Supple-
mentary Material), we report here the final equations expressing, for each complex 
including SigE, the steady-state concentration as a function of E.

The complex obtained from RseA binding to SigE reaches the steady-state value:

where B(E) and C(E) are functions of E given respectively by

By exploiting equation (17), the steady-state concentration of the complex formed when 
phosphorylated PknB binds to [ER] can be expressed as:

where PT is the total amount of PknB, PT = PP + P + [ERPP].
Expression (18) allows to compute the nullcline associated with the protein complex 

ClpC1P2:

where the function h(E) is given by

The steady-state value of the complex formed from SigE and phosphorylated RseA is 
given by

The nullcline associated to the complex formed when ClpC1P2 binds to [ERP] is given by

Finally, since the total amount of SigE is given by 
ET := E + [ER] + [ERP] + [ERPC] + [ERPP] , by putting together Eqs.  (17)–(20), the 
input–output relationship for Module 2 can be obtained. In Fig. 13 all components con-
tributing to the total amount of SigE, i.e., E, [ER], [ERP] , [ERPC] , [ERPP] , are plotted as 
functions of E, together with the input–output relationship for Module 2.
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By putting together the input–output relationship from Module 1 (reported in 
Fig. 12) and that from Module 2 (reported in Fig. 13), it can be concluded that, under 
the assumption of constant RseA concentration, the closed-loop system exhibits a 
unique equilibrium point, as previously shown in Fig. 5.

Module 2: nullclines solution in terms of E when R is a dynamic variable

Upon defining Rmax =
νR
δR

 , the following explicit solution for [ER] nullcline can be 
obtained:

where we have set αn := k1k
Pk
ap PT , αd := k1

(

k5 + kPkap

)

 , βd :=

(

kPkap + kPkad

)

(k2 + k5) , 

A := 1
Rmax

k4
k3
αd , and the functions B(E) and C(E) are given respectively by

(21)[ER] =
−B(E)+

√

B2(E)− 4 · A · C(E)

2 · A
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Module 2
Efree ETot

Fig. 13  Input–output relationship for Module 2. (a) Block diagram. (b) Nullclines associated to the 
subsystem composed of ODEs (5)–(14). The blue thick line represents the amount of total SigE as a function 
of free SigE (reported on the x-axis). Total SigE concentration has been computed as the summation of free 
SigE (dashed red line) and complexes in which SigE is bounded by RseA and/or ClpC1P2 (various colours and 
traits). Inset: magnification of the area within the gray rectangle



Page 27 of 29Zorzan et al. BMC Bioinformatics          (2021) 22:558 	

The above formulation highlights the role played by Rmax and δR : when Rmax = RT and 
δR → +∞ , the above quadratic equation in [ER] reduces to the analogous quadratic 
equation (17) obtained under the assumption of constant RseA concentration ( R ≡ RT ). 
On the contrary, when Rmax < RT and δR < +∞ , both the constant coefficient A and the 
function B(E) are larger than the corresponding terms previously derived.

Nullclines associated with complexes [ERP] , [ERPC] and [ERPP] can then be com-
puted from Eqs. (19)–(20) by keeping in mind the new expression for [ER] provided 
in Eq. (21).

Nullclines associated with complexes contributing to the overall amount of SigE are 
reported in Fig. 14, together with the resulting input–output relationship for Module 2.
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Fig. 14  Input–output relationship for Module 2 under the assumption of non-constant RseA 
concentration. (a) Block diagram. (b) Nullclines of the subsystem obtained from differential Eq. (15) together 
with ODEs (5)–(14) upon substitution of RT  with R. The blue thick line represents the amount of total SigE as a 
function of free SigE (reported on the x-axis). Total SigE concentration has been computed as the summation 
of free SigE (dashed red line) and complexes in which SigE is bounded by RseA and/or ClpC1P2 (various 
colours and traits). Inset: magnification of the area within the gray rectangle
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Putting together the input–output relationships from Module 1 (reported in Fig. 12) 
and the input–output relationship from Module 2 (reported in Fig. 14), it can be con-
cluded (see Fig. 4) that, under the more realistic working conditions of dynamic RseA 
concentration, the closed-loop system exhibits two clearly distinct equilibrium points.
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