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Results: In this work, we have reviewed resource allocation-derived principles,
hypotheses and mathematical models to recapitulate important achievements in this
area. In particular, the emergence of resource allocation phenomena is deciphered

by the putative tug of war between the cellular objectives, demands and the sup-

ply capability. Competing hypotheses for explaining the most-studied phenomenon
arising from resource allocation, i.e. the overflow metabolism, have been re-examined
towards uncovering the potential physiological root cause. The possible link between
proteome fractions and the partition of the ribosomal machinery has been analysed
through mathematical derivations. Finally, open questions are highlighted and an out-
look on the practical applications is provided. It is the authors'intention that this review
contributes to a clearer understanding of the role of resource allocation in resolving
bacterial growth strategies, one of the central questions in microbiology.

Conclusions: We have shown the importance of resource allocation in understanding
various aspects of cellular systems. Several important questions such as the physi-
ological root cause of overflow metabolism and the correct interpretation of ‘protein
costs'are shown to remain open. As the understanding of the mechanisms and utility
of resource application in cellular systems further develops, we anticipate that math-
ematical modelling tools incorporating resource allocation will facilitate the circuit-host
design in synthetic biology.
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Background

Following the initial suggestion in 2009 by Molenaar et al. [1] that cellular growth strate-
gies are dependent on not only metabolism but also the synthesis cost of proteins, exten-
sive efforts have been made to investigate the biophysical importance of the allocation
of macromolecular resources in supporting cell growth. Significant progresses were
obtained in the past decade. Quantitative analysis of growth-dependent proteomic data-
sets elucidates that resource allocation plays a central role in dictating metabolism and
gene expression for maximizing the rates of steady-state growth [2—5]. Resource alloca-
tion has also been shown to govern transitional growth kinetics upon the nutrient shift
in a global manner [6].

Several review articles have been produced in the past few years to consolidate the
knowledge base of resource allocation. These include an insightful revisit of the history
of the idea of resource allocation in living organisms and the development of resource
balance analysis (RBA) model [7]. Another work demonstrates the power of multiscale
metabolic models and omics datasets in elucidating resource allocation principles [8].
Complementary to [8] which focuses on fine-grained models that integrate metabolic
networks with gene expression, a separate review of phenomenological, i.e. coarse-
grained resource allocation models presents the value in making quantitative predic-
tions of microbial phenotypes with only a few adjustable parameters [9]. Furthermore,
a recent review summarises the mathematical structures of models that can predict the
overflow metabolism, unifies all models into one standard form and concludes that two
growth-limiting constraints are essential for predicting the gradual switch from a high-
yield to a low-yield pathway [10].

Complementary to the existing reviews, this paper adds to the synthesis of the devel-
opment of this area by (1) offering a generalised conception of cellular resource allo-
cation, (2) presenting the converging understanding of the role of resource application
in achieving cellular objectives, (3) classifying and contrasting proposed root causes of
proteomic resource allocation, (4) identifying the commonalities and contrasts of both
predictive and descriptive mathematical models that incorporate resource allocation,
(5) exploring the implications of resource allocation research for synthetic biology, and
(6) finally highlighting open questions in both understanding and mathematical model-
ling. We posit that resource allocation can help answer central bioengineering questions
such as how microbes determine growth strategies in a changing environment and what
overarching governing principles can guide the design of microbial factories. As such,
an application-oriented outlook is also given. Overall, we hope that this concise review
will add clarities to the understanding of what has been achieved in this area and hence
facilitate its future development.

Types of resources for living microbial cells and the general concept

of resource allocation

External and internal resources

Microorganisms are unicellular organisms that require a range of resources to maintain
their viability and to grow and self-replicate. These resources can be sorted to exter-
nal and internal resources. External resources are environmental provisions that can
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be utilised by the cell, e.g. chemical substrates (organic compounds, carbon dioxide),
nutrients and light. Internal resources comprise those that a cell ‘owns] such as genetic
information, cellular machinery (e.g. ribosomes, RNA polymerases (RNAPs), enzymes
and other RNA- or protein-based molecular catalysis) and spatial resources such as
membranes and intracellular space. Generally, resource allocation may refer to the cell’s
dynamic allocation of any types of internal resources for certain objectives. Possibly
because ~60% of the dry cell weight are proteins [11-13] and ~85% of the extracellular
resources are used for protein productions [14], the allocation of proteomic resources
has become the most acknowledged and best-studied among all the resource types.
While in theory external resources can be infinitely supplied, internal resources gen-
erally have physical limitations. Fundamentally this limitations arise from the fact
that cells are self-replicating systems, at least during steady-state growth, so only cer-
tain combinations of parameter values are permissible [15, 16]. For example, the lim-
ited translational speed (~40 amino acids per second per ribosome [8]) intuitively calls
for an adequate allocation strategy (of finite ribosomal machinery) for fast growth (or
upon nutrient shift) where numerous additional copies of proteins are required. Besides,
there are often close links between internal and external resources. Importing extracel-
lular substrates, e.g. glucose, into the cytoplasm requires various transporters (internal
resources) [17]. Free energy (internal resource) needed to fuel biological processes is
generally extracted from organic compounds or light (external resources) via respiration
(or photosynthesis) and is stored and transferred mostly via ATP molecules. Further-
more, cellular membranes isolate the cell from the outer environment, allowing a rela-
tively stable and mild internal space to house fragile and delicate biological apparatus.
Surface membranes also accommodate a variety of proteins that control the mass and

information transfers between internal and external environments.

A putative decision-making process for resource allocation

We postulate that many of the observed dynamic allocations of cellular (internal)
resources in microorganisms are attributable to the balance between the cellular demand
and the supply capability (Fig. 1). At any point in time, a microbial cell normally pur-
sues an intrinsic objective, e.g. maximisation of growth, due to evolution or culture his-
tory. However, the level at which the cell actually achieves this objective depends on the
extent to which the corresponding demands for materials and energy are met. Within
an engineered organism, additional demands can originate from burdens of synthetic
gene-circuits. For instance, the expression of recombinant genes requires additional
building molecules, energy and expression machinery [18]; sub-lethal antibiotic dosage
provokes the need for more ribosomes to maintain growth [2]. With certain (possibly
changing) external and internal environments, the cell can be viewed as constantly fac-
ing a question as to whether the external and internal resources available to the cell can
fulfil the requirement to achieve its chosen objective at a minimal threshold level. If the
demands of this threshold are sufficiently met by the available resources, the current
objective is pursued. Otherwise, a ‘limited” or ‘stressed’ state will materialise (note that
the term ‘stressed state’ here includes stresses that are driven by the shortage of internal
and/or external resources, which is more general than the environmental stress often
used in biology), which can be detected by the cell and lead to certain responses through
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Fig. 1 lllustration of a putative decision-making process underlying the observed dynamic allocation of
cellular internal resources. The evolution or culture history normally confers the cell an intrinsic objective,
e.g. maximisation of growth, which forms objective-driven demands. For engineered organisms, additional
demands can originate from synthetic burdens. If the demands can be met by available external and internal
resources, the current objective will be achieved. Otherwise, the cell can detect limitations and devise
response strategies, e.g. modulating its internal resources, or under certain circumstances, reconfigure its
objective

multiple regulatory mechanisms [14, 19]. Under certain circumstances, the cell is able
to respond to the stress by manipulating its physiology to bypass the limitation without
interfering its intrinsic objective. However, if the discrepancy between demand and sup-
ply is irreconcilable, the cell may reconfigure its objective, e.g. gradually changing from
growth to survival to compromise. The internal resources will be adjusted accordingly to
fit to the changed objective.

It has previously been noted that growth rate-dependent regulation is not always
dominant [8]. The above putative “active decision-making process” intends to explain
the occurrence of resource allocation under both nutrient-scarce (where growth is often
not the first priority) and nutrient-rich growth conditions (where the cell grows at fast
rates). Reflecting on previous discussions in this broad area (e.g. in [14] and [8]), we
posit that cellular objectives, burdens and limitations (or stresses) are closely entangled
and together contribute to the tug of war between supply and demand; it seems neither
logical nor feasible to discuss one concept independently without considering the oth-
ers. Applying orthogonal perturbations [9] (and adaptive laboratory evolution (ALE) if
stress-driven mutations are of interests [20]) would help capture the transition between
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distinct cellular objectives to uncover the comprehensive decision-making atlas underly-
ing the changing phenotypes across different growth conditions.

Current understanding of resource allocation in microorganisms

Resource allocation decisions facilitate cellular objectives

In the past decade, our knowledge in resource allocation thrives based on the study of
bacteria’s ability to actively modulate their proteome compositions to maximise the
steady-state growth rate [2-5]. A typical example of growth rate-driven reallocation
of proteome is the preference of carbon-spilling fermentation pathway in fast-growing
Escherichia coli. As growth rate increases, E. coli changes its metabolic strategy from
carbon-efficient respiration to proteomic-efficient aerobic fermentation (for energy bio-
genesis) so that more proteomic resources can used for biomass synthesis to support
rapid growth [4]. However, as pointed out in [8], growth rate-dependent regulations are
not always dominant. The proteome of E. coli grown on pyruvate, glycerol and galactose
is not optimized for fastest growth [21]. Besides, a proteomic study of ‘persisters’ (i.e.
bacteria with transient antibiotic tolerance) [22] reveals that resource allocation plays
a key role in coordinating metabolism towards maximizing energy yield, instead of bio-
mass production. The specific proteome adjustment observed in persister cells, which is
comparable with that in starved and stressed cells, was shown to be driven by increased
ppGpp levels (a result of general stress or stringent response) rather than a mere con-
sequence of reduced growth rate [22]. Furthermore, it has proven that strong environ-
mental perturbations can alter the protein composition through directly or indirectly
interfering protein synthesis processes [23].

Since mounting evidence suggests that variations in the proteome composition (a
typical example of resource allocation as stated above) can result from the cell fighting
against vicious threats in addition to coping with rapid growth, it is reasonable to depict
the resource allocation phenomena along with the cellular objective given certain growth
conditions. Growth conditions can change from an optimal state (where the external
nutrients efficiently support maximal growth), through a nutrient-limited state (where
a cell can still grow but at a reduced rate or needs to adjust its physiology, e.g. secretion
of a by-product, to maintain the same growth rate) and finally to a growth-threatening
state (e.g. under osmotic, pH and temperature stresses where the cell could only main-
tain slow growth or even completely stop growing [24]) (Fig. 2). The cellular objective
can correspondingly shift from growth to survival. Accordingly, it can be postulated that
resource allocation emerges to increase cellular fitness to the changing growth environ-
ments. As the growth condition becomes increasingly harsh, resource allocation will
become less coupled with the growth rate and eventually function for ensuring survival.

Pre-allocation and growth optimality

Apart from dynamically facilitating cell growth and survival, resource allocation can
take the form of pre-allocation which reflects its evolutionary importance. For instance,
E. coli is able to pre-allocate its proteome. It has been shown that a considerable amount
of proteins in E. coli is expressed with no immediate benefit given specific growth con-
ditions [25]. Besides, many catabolic genes for substrates that are not presented in the
medium were found to be upregulated with decreasing carbon quality [3, 5]. In addition
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Fig. 2 The relationship between cellular objective and resource allocation with changing growth conditions.
The environmental stress increases as growth conditions vary from optimal (sufficient nutrients to support
the maximal growth) to nutrient-limiting, e.g. in the case of carbon, nitrogen or phosphorus limitation

and finally to growth-threatening (strong perturbations on bacterial homeostasis). During this process,

the growth rate reduces from the maximal value (Zmqax) to almost zero (i.e. the cell stops growing). The

signal molecule ppGpp accumulates as a result of the general stress or stringent response [22]. The cellular
objective shifts from maximizing growth to ensuring bacterial survival. Subsequently, resource allocation
becomes less coupled with the growth rate and eventually functions for ensuring survival

to protein pre-allocation, carbon-limited cells have been shown to have a higher fraction
of inactive ribosomes (i.e. free ribosomes not bond to mRNA) than phosphorus-limited
cells, which allows rapid growth acceleration upon nutrient upshift [26]. Pre-allocation
of ribosomal capacity was also observed in cells undergone famine-to-feast cycles and is
considered beneficial to the overall gain of biomass [27]. Furthermore, a recent model-
ling work quantitatively shows that spare ribosomal capacity prevents metabolic over-
shoots and permits rapid response to nutritional upshifts [28].

While it is generally considered that constitutive pre-allocation of cellular resources
(proteins and/or ribosomes) can provide preparatory advantages to hedge against sud-
den environmental changes [29], such strategic decision also imposes substantial bur-
dens that prevent the cell to grow faster. This may reflect an evolutionary choice of
maintaining higher robustness at the cost of slower growth rates. Despite the sugges-
tion that the inability to grow at the fastest rate could be explained by limited regula-
tory capabilities [9], it is also possible that a seemingly ‘sub-optimal growth strategy
that enables better response upon nutrient shifts is in fact the ‘optimal’ strategy selected
by evolution. From the evolution point of view, it might be inappropriate to evaluate
the optimality of a growth or resource allocation strategy by growth rate only. Instead,
resource allocation may play a central role on multiple fronts including improving cell
growth, ensuring survival and enabling high adaptability and ultimately confer the cell
greater evolutionary advantages to compete against others in fluctuating environments.

RNA and space allocation

The notion of resource allocation introduced above can in principle manifest with
other internal resources, such as RNA and subcellular space in addition to proteins.
We did not find existing evidence for intrinsic RNA allocation independent from
proteome allocation or ribosome allocation (possibly because ~85% of the RNA is



Zeng et al. BMC Bioinformatics (2021) 22:467 Page 7 of 22

ribosomal RNA [30, 31]). Nevertheless, artificial controls of mRNA populations [32]
and the activity of RNAP [33] to direct the cellular resources to synthetic circuits
have been achieved in synthetic biology. On the utilisation of intracellular space, the
experimental observations of maximal cell buoyant density [34] and limited mem-
brane protein density [35] imply that the space allocation can happen either over
the whole cell or within certain subcellular compartments. In light of natural strate-
gies for the spatial organization of metabolism (e.g. organelles in eukaryotic cells or
bacterial microcompartments (BMCs) in prokaryotic cells) [36], there could be more
sophisticated strategies for dynamic spatial organisation yet to be discovered.

Growth rate-driven proteome allocation

Using proteome allocation to explain important biological phenomena

Being the most acknowledged and best-studied type of resource allocation, growth
rate-dependent proteome allocation provides insights for many well-known biologi-
cal phenomena, e.g. the cyclic adenosine monophosphate (cAMP)-dependent car-
bon catabolite repression (CCR) [3], the overflow metabolism in fast-growing E. coli
[4] and the change between diauxie and co-utilization of mixed carbon sources [37].
For CCR, it has been shown that [3] the physiological function of cAMP-mediated
CCR is to ensure proteomic resources are invested as needed for bacterial growth
under diverse nutrient conditions, e.g. more resources are directed to biosynthetic
processes as growth rate increases (Fig. 3a). For overflow metabolism, Basan et al.
[4] proposed and validated that proteome allocation plays a critical role in regulating
the proteomic resources invested between different energy pathways. They quanti-
fied that the protein cost per ATP produced by the fermentation pathway is about
67% of that by respiration, which constitutes the key driver of the activation of the
fermentation pathway at rapid growth (Fig. 3b). More recently, a coarse-grained
model of optimal allocation of protein resources quantitatively explained why and
how the cell chooses between diauxie- and co-utilization of substrates under mixed
carbon sources [37]. Carbon sources were categorized into those introduced at the
upper part of glycolysis (Group A sources) and those entering at other nodes of the
metabolic network (Group B sources). Prioritised carbon utilization occurs among
Group A sources, and usually the one that supports higher growth rate (associated
with higher substrate quality and higher pathway efficiency) is preferred. The pref-
erence of carbon sources is usually regulated by catabolic repression which repres-
sors inhibit the gene expressions for catabolism of unfavourite carbon sources [38].
Sometimes, when Group A and Group B sources are both present in the media,
co-utilisation would arise if it is more economical for some precursor pools to take
a shortcut of drawing carbon flux from Group B sources while for other precur-
sor pools taking up Group A sources is more efficient (Fig. 3c). Furthermore, the
remarkable achievement of using resource reallocation to explain the overflow
metabolism in E. coli sheds light on the mechanisms for other widely recognised
overflow phenomena, e.g. the production of ethanol in Saccharomyces cerevisiae,
i.e. the Crabtree effect [39-41] and the production of lactate in cancer cells, i.e. the
Warburg effect [42—44].
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Fig. 3 Proteome allocation can explain important biological phenomena. a lllustration of the physiological
function of cAMP-dependent carbon catabolite repression (CCR) in allocating proteomic resources to meet
growth demand adapted from ref. [3]. Under carbon limitation, catabolic genes (namely mass fraction of
catabolic proteins ¢¢) are upregulated while anabolic genes (indicated by the mass fraction of anabolic
proteins ¢4) are downregulated with decreased growth rates. b lllustration of the overflow metabolism

in fast-growing E. coli adapted from ref. [4]. The fraction of total proteome allocated to fermentation (¢)
and respiration (¢;) is different between slow growth (low carbon uptake) and fast growth (high carbon
uptake). The key driver of such modulation of proteome resources lies in the much lower protein investment
per ATP flux (yellow arrow) of the fermentation pathway compared with respiration. c lllustration of the
coarse-grained model of diauxie and co-utilization of carbon sources adapted from ref. [37]. For diauxie,
two group A sources (AT and A2) can both supply precursor pools for biomass production but with
different pathway efficiencies (1and &;). The one with higher efficiency is preferred for maximal growth.

If two precursor pools supply the biomass synthesis, each pool derives from an intermediate node M or N.
Either intermediate node can draw flux from either of the two sources A and B. Co-utilization occurs under
conditions where the efficiency for biomass production is highest when directly drawing carbon flux from
source A to precursor Pool 1 and from source B to precursor Pool 2, i.e. the optimal overall efficiency would
be eq1 + a2 + €p1 + €2

Investigating the potential physiological root cause of the overflow metabolism

Although various studies [1, 4, 14, 41, 45-47] have proven that proteome alloca-
tion plays a crucial role in regulating the overflow metabolism in E. coli, they are not
without controversies. In particular, the macromolecular crowding (also known as
‘molecular crowding’) hypothesis [45, 46] and the constrained proteome allocation
hypothesis [4] have been considered hard to reconcile with each other [9]. In this sec-
tion, we discuss different hypotheses for explaining the overflow metabolism towards
deciphering the potential physiological root cause.

Molecular crowding hypothesis is based on the notion that a cell has an upper
limit or optimal macromolecular density [48]. It proposed that the hard bound on
the intracellular macromolecule concentration (or equivalently the finite cell volume
or the solvent capacity constraint) triggers the metabolic shift from full respiration
to the overflow metabolism [45, 46]. This proposition is supported by the observed
change in the cell buoyant density of E. coli MG1655, which gradually increases when
growth rate increases from 0.1 to 0.4 h™! and stays roughly constant at higher growth
rates [34]. Therefore, the physiological root cause of the overflow metabolism in
molecular crowding is hypothesised to be the finite cell buoyant density, which in this

work is further classified as space limitation (Table 1).
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Table 1 Comparison between competing proteome allocation-based hypotheses and models for
explaining the overflow metabolism

Molecular Constrained Membrane RBA and ME
crowding proteome occupancy
allocation
Physiological root Finite cell volume Un-specified Finite membrane Limited translational
cause area efficiency and/or
limited catalytic rate of
enzymes
Global or local Global Global Local Global
regulation
Types of limitation Space limitation Un-specified Space limitation Machinery limitation
References [45, 46] [4] [35,47] [52, 54]

On the other hand, the researchers developing the constrained proteome allocation
hypothesis observed significant changes in the proteome composition, in particular for
energy biogenesis, upon the metabolic shift from normal growth to the overflow metab-
olism in E. coli NCM3722 [4]. As mentioned above they determined that the protein
investment per ATP flux of fermentation is about twice as efficient as that of respiration.
This leads to their critical argument that the overflow metabolism results from the cell’s
preference of more proteomic efficient pathways at rapid growth. However, although the
work showed an extrapolated upper bound (from the proteomic data) of the proteome
fraction available for energy biogenesis, an indication is lacking as to what physiological
constraint leads to this phenomenological limitation (more discussion is provided in the
section below).

Reflecting on the molecular crowding hypothesis, Basan et al. [4] argued that the mac-
romolecular density (or the cell volume) constraint is not a valid constraint [4, 9] as (1)
the cell volume varies widely between growth conditions with similar densities [49] and
(2) they did not observe variations in cell density (within a wide range of growth rates)
in their own measurements [50]. In a subsequent discussion, Vazquez and Oltvai from
the molecular crowding ‘camp’ suggested that the prediction of the overflow metabo-
lism by the constrained proteome allocation model in [4] is achieved through ‘implicit
assumptions that expand beyond the hypothesis of proteome allocation alone’ [48].
More specifically, they showed mathematically that in addition to the differential pro-
teome efficiencies between fermentation and respiration, the prediction of the acetate
production flux also requires (1) “a non-zero density of non-metabolic macromolecules’,
and (2) “an upper bound in the cell macromolecular density” They further stated that
molecular crowding “explains” the latter point and hence “is a key factor in explaining
overflow metabolism”

Part of the above debate is concerned with cell densities at different growth rates. It
should be pointed out that the reported range of growth rates with constant cell density
for E. coli NCM3722 (in the constrained proteome allocation hypothesis) is 0.3-2.0 h™*
(50], and the overflow metabolism of this strain occurs at growth rates above ~0.8 h™*
[4]. On the other hand, the reported growth rate range of E. coli MG1655 (in the molec-
ular crowding hypothesis) is 0.1-0.7 h™! with the acetate overflow occurring at growth
rates above 0.4 h™! [45]. For MG1655, the cell buoyant density increases with the growth
rate within the range of 0.1 to 0.4 h™! and plateaus at growth rates above 0.4 h™! [34].
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One can see several key differences between these two cases in terms of the strain, the
range of growth rate, and the growth rate at the onset of overflow; these differences call
for cautions when comparing alternative propositions.

Other mathematical models incorporating proteome allocation-derived constraints
imply additional root cause of the overflow metabolism. FBAME (membrane economics)
[47] suggests that the simultaneous use of fermentation and respiration at high growth
rates is an outcome of finite cytoplasmic surface area (available for respiratory mem-
brane proteins), which is classified here as (local) space limitation (Table 1). The mem-
brane economics hypothesis is reinforced by a recently proposed membrane real estate
hypothesis [35], with the presentation of experimental evidence of the decrease in sur-
face-to-volume ratio and limitation on membrane-protein packing capacity at increased
growth rates. However, Basan questioned the membrane economics hypothesis in its
inability to explain the overflow metabolism emerging in slow-growing cells expressing
a large amount of useless proteins, where the membrane capacity should be sufficient
[9]. Additionally, Resource Balance Analysis (RBA) [14, 51, 52] and Metabolic and mac-
romolecular expression (ME) [53, 54] models indicate that the change in the macromo-
lecular composition (primarily proteins) and the occurrence of the overflow metabolism
at increased growth rates are derived from limited synthesis capacity of macromolecules
(e.g. limited translational rate) and limited efficiencies of molecular catalysis (e.g. limited
enzymatic catalytic rates), which is classified here as machinery limitation (Table 1).

The proposals described above suggest that the root cause (i.e. fundamental physiolog-
ical limitation) of the overflow metabolism and the accompanied proteome re-allocation
is not a concluded matter. At least two competing explanations, i.e. space limitations
(represented by molecular crowding [45, 46] and membrane occupancy [35, 47] hypoth-
eses) and machinery limitations (represented by RBA [14, 52], ME [53, 54] and possibly
implicitly reflected by constrained proteome allocation hypotheses [4]) have been sup-
ported by experiments and/or mathematical models at least to a certain degree (Table 1).
Besides, it is worth noting that molecular crowding, constrained proteome allocation
hypotheses, RBA and ME correspond to global regulations of the proteome whereas the
membrane occupancy-based hypotheses can only explain local proteome adjustments.

The potential link between the proteome fractions and the partition of ribosomal
machinery

Interested in the possible physiological root cause behind the constrained proteome
allocation hypothesis, we conducted the following derivations to understand how the
proteome composition can be linked to the ribosomal machinery. The time-dependent
change of the concentration of protein i (P;) can be modelled as protein generation (via
ribosome translation) minus dilution and degradation rate.

dP;

E =r; — }upl' — D,’Pl' (1)

r; is the generation rate of protein i, which is proportional to the ribosome abun-
dance (R), i.e. r; o« R [55]. AP; is the protein dilution term with 4 being the specific
growth rate.D; is the degradation rate of protein i [56, 57]. We define the partition
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(allocation) of ribosomal machinery 6; as the production rate of protein i divided by
the overall production rate of proteins.

T

0; = S (2)

At steady-state exponential growth, dP;/dt = 0 and / is constant, Eq. 1 implies
ri = (A+ D))P; (3)
Substituting Eq. 3 into Eq. 2 gives

(4 + Di)P;
b==—""r% (4)
> (A+Di)P;

The average D; for non-ribosomal proteins (NRPs) has been reported to be ~0.1 per
total NRPs per hour [55]. In growing E. coli, about 40% mass of total proteins is stable
while the half-life of most of the remaining proteins is between 15 and 30 h, corre-
sponding to degradation rate of 0.05-0.02 h™! [58]. During steady-state exponential
growth, especially for acetate-producing E. coli where the specific growth rate can
readily reach beyond 0.8 h™! [4], therefore it is reasonable to assume 4 > D;. The pro-
tein degradation term thus can be considered negligible compared with the growth
dilution effect. Equation 4 can be simplified as

AP; P;

B 2. AP B 2P B

0;

o (5)

where ¢; denotes the proteomic fraction of sector i [4]. It is worth noting that Eq. 5
is generally valid for fast-growing cells. Cells under strong burdens or environmental
perturbations may not strive for maximal growth. Equation 5 should not be applied to
these scenarios.

A direct interpretation of Eq. 5 is that the division of ribosomal machinery is
approximately equal to the proteome composition if the cell is growing in the expo-
nential phase (i.e. steady-state rapid growth). More importantly, if the proteome
fractions can be seen as a direct proxy of the partition of ribosomal machinery, the
hard proteomic constraint proposed by Basan et al.[4] can result from translational
limitations, not necessarily belonging to a special case of the molecular crowding
hypothesis. it should be noted that D; has been reported to vary considerably between
different proteins in a cell, e.g. in E. coli [58] and in Lactococcus lactis [59]. At slow
growth where dilution becomes comparable with protein degradation, the discrep-
ancy in D; of individual proteins could become impactful which would in turn affect
the validity of the approximate equivalence between proteome composition and ribo-
some occupancy. Nevertheless, this analysis shows that the proteome composition
and observed proteome allocation constraints [4] may closely link to the allocation
of the ribosome machinery, and this dependency is particularly strong in steady-
state rapid growth. It is worth noting that a formulation similar to Eq. 5 has been
shown in a recent study [60], which proposes that at steady state the relative strength
of resources recruitment of a given protein equals its relative mass in the cell; this
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relevant work also links the maximum growth rate at steady state with the fraction
of ribosomes being used to build new ribosomes relative to the total number of ribo-
somes, which resembles the fraction 6; shown in Eq. 5. On the other hand, the above
mathematical derivation shows the approximate equality between 6; and ¢;, but it
does not provide any evidence for the root source of the ‘limitation” observed over ¢;,
which can potentially derive from either (1) the shortage of ribosomal machinery 6;,
which triggers the cell’s regulation of protein synthesis, or (2) the shortage of space,
which triggers the cell’s regulation of protein synthesis; as part of the response, 6; will
be adjusted, leading to the change in ¢;. Therefore, further elucidation remains neces-

sary to increase our understanding on the potential causal links.

Network-based mathematical models of cell growth and metabolism
incorporating resource allocation

Predictive and descriptive models

We classify network-based metabolic models incorporating resource allocation (RA)
into two major categories, i.e. predictive and descriptive RA models (Fig. 4). Predictive
RA models are primarily Flux Balance Analysis (FBA [61])-based models for recapitu-
lating growth phenotypes, which can be further classified into coarse-grained and fine-
grained RA models, as distinguished in previous reviews [8, 9].

Coarse-grained RA models incorporate resource allocation as phenomenological con-
straints to constrain the solution space of metabolic fluxes. The constraint can be in the
form of imposing an upper bound (A) to the sum of the product of metabolic flux (v;)
and its ‘cost’ (¢;), i.e. Y c;v; < A[41,45-47, 62—-64], where i denotes a flux to be included

l
in the constraint. Alternatively, the constraint can be expressed as the maximum reac-

tion rate (v,,,4x) being a function of the enzyme abundance (E, limited by an upper bound
based on absolute proteomics) and the turnover rate (k.4 queried from BRENDA [65]),
i.e. Vipax = f(E, kear) in GECKO [66]. The simple form of phenomenological RA con-
straints allows coarse-grained RA models easy to construct. In contrast, fine-grained RA
models integrate metabolic models with a macromolecular expression module, where
the transcriptional and translational processes are described in the mechanistically

Resource allocation models

Predictive models Descriptive models
Coarse-grained models Fine-grained models EFMA-based models
Phenomenological Metabolic module Macromolecular module ~ Metabolic Network
constraints: v, n EFMs
c Zicvi <A v, + n_ @, . < Macromolecular
* Vimax = f(Evkcat) - - information
. Un ™

Fig. 4 Network-based metabolic models incorporating resource allocation (RA). RA models were

classified into predictive and descriptive models. Predictive RA models include coarse-grained models that
incorporating phenomenological constraints of macromolecular expressions and fine-grained models that
integrate metabolic models with detailed matrices of macromolecular expression processes. Descriptive
models are EFMA-based RA models that investigate resource allocation phenomena through converting the
metabolic network into EFMs and combining EFMs with macromolecular expression information
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detailed manner. Examples of fine-grained RA models are RBA [14, 51, 52] and ME [53,
54], as well as the more sophisticated whole-cell model of Mycoplasma genitalium [67].
The enhanced mechanistic nature makes fine-grained models useful in fundamental
studies and biological discovery, e.g. identifying the ‘core proteome’ that must be
expressed to sustain cell growth [68] and to compute the metabolic cost of the produc-
tion of virulence factors for plant pathogens [69]. It is worth noting that, although fine-
grained models are more informative, their construction tends to be more demanding
which could limit their applications to complex systems. In contrast, coarse-grained
models offer a compromise between the level of details and the range of applicability.
Therefore, the choice between these two types of models may depend on the application
context. In addition to static coarse-grained and fine-grained RA models, efforts have
been made to fuse enzyme production costs into dynamic frameworks. For example,
deFBA [70] offers a dynamic optimization approach that explicitly includes detailed
description of biomass composition and accounts for related enzyme capacity con-
straints. It was developed to solve dynamic flux optimization problems for metabolic
networks coupled with gene expression. Extended from classical dynamic FBA (dFBA
[71]) and static RA models, the deFBA method can predict the dynamics of both meta-
bolic fluxes and biomass composition during metabolic adaptations.

Distinguished from the above predictive models, resource allocation have been incor-
porated with another stoichiometric modelling approach of metabolic networks (addi-
tional to FBA), i.e. Elementary Flux Mode Analysis (EFMA [72]). EFMA extracts the
most ‘essential’ components of a metabolic network, termed the Elementary Flux Mode
(EFM), which comprises a minimal set of enzymes that could operate a non-decom-
posable set of fluxes at steady state [72]. By overlaying biomass-producing EFMs with
enzyme information, e.g. molecular weight, amino acid sequence, EFMA-based RA
models were able to associate the occurrence of the overflow metabolism with the cell’s
preference of low elemental requirements to construct a functional metabolic pathway
[73] and growth rate-yield trade-offs [74]. Furthermore, by deciphering the observed
optimal metabolic flux distributions into biomass-producing EFMs combined with
resource allocation, it has been mathematically proved that the number of active met-
abolic pathways (i.e. EFMs) is at most equal to the number of biophysical constraints
[75]. For models intended to describe normal and overflow growth states of a cell (corre-
sponding to two active EFMs), at least two biophysical constraints are required. In gen-
eral, EFMA-based RA models [73-75] do not focus on predicting growth phenotypes,
therefore is considered here as descriptive. They are particularly useful for providing a
posteriori explanations of resource allocation associated phenotypic patterns, showing
how (mathematically) the observed phenomena are consistent with the topology of the
metabolic network. Besides, similar to fine-grained models, it could be challenging to
construct EFMA-based models for complex systems.

Key to the predictive power of fine-grained models: adopting variable catalytic rates

In addition to predicting the maximum growth rate and metabolic fluxes as achieved in
coarse-grained RA models, fine-grained RA models like RBA [14, 51] and ME [54, 76] are
able to predict the abundance of metabolic enzymes, ribosomes and other RNA- or pro-

tein-based macromolecules. The improved predictive power is achieved not only through
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the inclusion of macromolecular expression module, but also results from more delicate
treatments of the variable efficiency of molecular machinery.

In RBA, the prediction of cellular configurations in a specific growth condition (e.g. con-
dition X) is achieved by a two-step procedure [52]. The first step is the calibration of the
apparent catalytic rate kg; using flux data (i.e. growth rate, uptake and exertion fluxes) and
proteomic data measured from cells grown in condition X. The second step is the growth
simulation with the goal of growth rate maximization. To run RBA growth simulations, kg;
are set to the calibrated values (obtained in step one) and the extracellular nutrient concen-
trations are set corresponding to condition X. If the large datasets (flux and proteomic data)
required for kg; identification (in step one) of another growth condition of interest, e.g. con-
dition Y, is not available, the RBA growth simulation for condition Y is enabled through
linear regression and projection of kg;. To do this, several rounds of kg; calibration (step one
mentioned above) needed to be run using available fluxes and proteomic datasets obtained
from other growth conditions (with different measured growth rates). The resulting multi-
ple sets of calibrated kg; are then related to the measured growth rates via a linear function,
i.e. kg; = a; + Ab;, where a; and b; are linear coefficients. With this estimated linear cor-
relation, RBA growth simulations for cells grown in condition Y can be performed by (a)
setting kg; to the value predicted by the linear equation (noted that 1 of condition Y should
have been measured) and (b) setting the extracellular nutrient concentrations according to
condition Y.

In ME [54], two different types of growth simulation are considered: strictly nutrient-lim-
ited (SNL) simulation and proteome-limited simulation. In SNL growth simulations, meta-
bolic enzymes are assumed to be operating below their maximal capacity, i.e. kg < keat,
where k4 is the effective catalytic rate (equivalent to the apparent catalytic rate kg; used in
RBA); kcqt is the maximal catalytic rate, which is a genuine constant and is set to be propor-
tional to the enzyme’s solvent accessible surface area (SASA). In SNL growth simulations,
keg is a free variable and is predicted together with the maximum growth rate, metabolic
fluxes and macromolecular abundances. In proteome-limited growth simulations, meta-
bolic enzymes are assumed to be operating at their maximal rate, i.e. keﬁr = k,4¢. For both
SNL and proteome-limited simulations, the growth conditions are set by specifying the
maximum glucose (or another growth-controlling nutrient) uptake rate.

The above description shows that (1) both RBA and ME treat the apparent catalytic rate
of metabolic enzymes (i.e. kg; or k.z) as growth rate- or condition-dependent variable,
although the concrete modelling treatments are different; (2) the variable catalytic rate plays
an important role in predicting the macromolecular states. The validity of this treatment

is supported by the qualitative consistency between the experimental data-derived linear
k,

off
kmt

phosphotransferase system (PTS) activity [54]. Besides, this idea might also be useful in

correlation kg; = a; + /b; [52] and the predicted and measured linear vs./ profiles of
improving the model prediction in coarse-grained RA models like CAFBA [62], where the
enzyme turnover rate (kq,;) was assumed constant.

Other considerations

Cost, benefit and trade-offs

Resource allocation models discussed above generally associate the physiological bur-
den of proteins (often termed as the metabolic cost, protein cost or enzyme cost) with
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the protein synthesis process. However, the study of the lac operon model system [77]
reveals that the activity of lac permease LacY, not the production or misfolding of the
primary protein LacZ, accounts for the major physiological burden (quantified as rela-
tive reduction in growth rate due to operon expression) to the cell. The counter-intuitive
result found in lac operon offers a reminder that future effort on resource allocation, in
particular the modelling of ‘protein costs, needs to take more caution to avoid ambigu-
ous or even misleading interpretation of its biological basis.

In parallel to the cost, the benefit for protein expressions has been defined as increased
growth rate [77], increased ATP production rate per protein [4], increased energy effi-
ciency (growth rate divided by ATP production rate) [55], increased product yield
[64] and increased adaptability to the changing environments [25, 27-29]. Examining
different sets of cost and benefit can lead to the study of different trade-offs, such as
those between pathway protein cost and yield [73, 78], growth rate and yield [74, 79]
and unused enzymatic and ribosomal capacity and additional storage [80]. These trade-
offs may affect growth rates through distinct mechanisms and thus deserve separate
attentions.

Bacterial growth in rich media

Most of the resource allocation studies focus on changes in the phenotypic patterns of
cells grown on minimal media. Recent progress in the batch growth of E. coli in unde-
fined rich medium reveals the critical role of amino acid catabolism in regulating the
central carbon metabolism (e.g. inhibiting glucose uptake and increasing acetate over-
flow) for faster growth [81]. The reported intricate trade-off between decomposing
expensive resources (e.g. methionine) and the potential benefit of gaining various car-
bon and nitrogen sources needed for growth offers insights that support extending the
resource allocation principle (which was originally established for cells grown on mini-

mal media) to systems with complex nutritional environments.

Limitation of protein-cost constraints

Compared with classic metabolic models, the key advance of resource allocation mod-
els is the inclusion of the costs of macromolecular expressions on top of the metabo-
lism. Taking ME as an example, pathways with higher metabolic efficiency (high-yield)
are usually ‘longer’ than less efficient (low-yield) pathways. Therefore, high-yield path-
ways are always coupled with higher protein costs. When the growth rate is maximised,
this feature (i.e. high-yield-high-cost) governs the prediction of the metabolic switch
from high-yield to low-yield pathways at increased growth rates. Although protein-cost
constraints have been shown to efficiently improve the prediction of metabolic fluxes,
this effectiveness can be easily spoiled if two alternative pathways hold similar protein
costs. For example, pyruvate dehydrogenase (Pdh) and pyruvate formate lyase (Pfl) both
convert pyruvate into acetyl-CoA with a cost of one enzyme. ME predicts the use of Pfl
instead of Pdh, whilst the use of the latter was reported by fluxomics [54]. This outlier
can be rectified by adding in regulatory rules, i.e. Pfl is activated only under anoxic con-
ditions [82, 83]. However, the regulatory network is currently not in the scope of ME [84]
and to our knowledge nor has it been systematically modelled in other resource alloca-
tion models. It would be valuable to construct a model that comprises both metabolic,
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expression machinery and regulatory networks, paving the way towards more reliable
predictive modelling. Apart from adding regulations, such flux prediction issues could
be amended by introducing a global view of the system (through e.g. adding appropriate
constraints that describe the dynamics of the entire system) beyond the local behaviour
of individual reactions.

Implications for synthetic biology

Synthetic circuits compete with their host (and other circuits) for cellular resources
required for their respective functions. This resource competition often leads to poor
performance and unexpected behaviour of designed systems [85-87]. However, our
growing understanding of microbial resource allocation can help us engineer systems
with improved performance and predictability.

A first problem is that the introduction of synthetic circuits often results in growth
defects because cellular resources are diverted away from biomass production. In the
short term this can lead to loss of productivity; in the long term it can lead to com-
plete loss of function due to evolution [88]. One approach to resolving this problem is
to design synthetic circuits that use less cellular resources or avoid using the most limit-
ing resources. The simplest way of doing this is by decreasing synthetic protein expres-
sion to relieve pressure on gene expression in general. This can be achieved either by
swapping regulatory components or integrating constructs into the chromosome [89].
Alternatively, protein parts implementing memory or regulatory devices can be replaced
with DNA or RNA parts, reducing load on translation which is usually the most limit-
ing process in prokaryotic gene expression [90]. Many other functions, however, cannot
be implemented without high enzyme concentrations. In such cases it is still possible
to minimise the demand of synthetic circuits by using strong promoters and high copy
number plasmids but with weak ribosome binding sites, again to limit the burden on
translational machinery [91].

On the other hand, microbial hosts can be designed to increase their supply of cel-
lular resources. In particular, it has been suggested that ‘lean-proteome’ strains with
additional proteomic budgets can be generated by removing unnecessary but highly
expressed genes [81]. According to the proteome allocation theory developed by Scott
et al. [2], such strains should be capable of both improved growth and heterologous
protein expression, and indeed significant increases in growth rate and biomass yield
are observed upon deletion of non-essential genes in Bacillus subtilis [92, 93] and E.
coli [94]. In a similar vein, a recent study takes advantage of the transcriptional regula-
tory network of E. coli to reduce unnecessary enzyme expression by deleting upstream
transcriptional factors (rather than deleting the enzymes themselves). With only three
genetic interventions, an optimized strain is generated with a demonstrably higher pro-
teome budget and an increased production from a heterologous metabolic pathway
[95]. One limitation of these approaches is that they only look at freeing up proteomic
resources of completely unutilized genes, whereas significant proteomic resources may
also be wasted on under-utilized genes [25].

A second problem is that resource competition couples the behaviour of circuits and
hosts together in ways that can be difficult to predict. Synthetic circuits depend on host
cellular resources such as ribosomes, amino acids and ATP to operate. The performance
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of synthetic circuits also depends on host physiological states, e.g. growth rate can
affect the dilution of circuit components. However, formal models based on our grow-
ing biological understanding and tailored mathematical and computational methods are
increasingly being used to accurately predict the outcome of circuit-host coupling [96].
For example, WeifSe et al. develop a simple mechanistic model linking the expression of
coarse-grained genes to microbial growth [97]. Their model not only recapitulates well
established growth laws such as the linear relationship between ribosome levels and
growth rate, but is also used to predict the amplitude and frequency of oscillations gen-
erated by a repressilator with varying transcriptional rates. Similarly, Liao et al. develop
a multi-scale model of a fine-grained synthetic circuit operating inside a coarse-grained
cell, and use their model to predict the bulk and single-cell dynamics of a bistable switch
across nutritional and inductional parameters [98].

Alternatively, circuit-host coupling can be minimised by engineering microbial sys-
tems with orthogonal resource pools dedicated to synthetic functions [99]. For example,
orthogonal transcriptional and degradation machinery have been implemented in E. coli
using heterologous RNA polymerase and proteases taken from T7 bacteriophage and
Mesoplasma florum bacterium respectively [100, 101]. However, the same strategy can-
not be applied to make orthogonal translational machinery because the structure and
function of ribosomes are highly conserved across species. Instead, orthogonal ribo-
somes have been implemented using synthetic 16S rRNA with high affinity for a non-
canonical ribosome binding site. Despite the significant progresses in this area, it should
be noted that these strategies achieve partial decoupling at best, as many important
resource types such as amino acids and ATP are still shared with the cellular host and
have no orthogonal counterpart [102].

Conclusions

The study of cell growth and resource allocation contributes to the rising consensus
on the key driver(s) of the phenotypic patterns of microorganisms. Cell growth and
metabolic strategies are no longer considered to be dependent on the metabolic net-
work only, but also subject to the cell’s active allocation of internal resources. Vari-
ous resource allocation-based hypotheses have been developed to explain important
biological phenomena, including (but not limited to) the pre-allocation of proteins
and ribosomes, carbon catabolite repression, diauxie and co-utilisation of mixed car-
bon sources and the overflow metabolism. One important indication from these stud-
ies is that the biological importance of resource allocation can be diverse and may
encompass maximising the growth rate, enabling rapid response to nutritional shifts
and ensuring survival under harsh conditions. This thus supports the argument that
the central role of resource allocation is to improve the overall cell’s fitness to the
ever-changing environmental conditions. Resource allocation can facilitate different
cellular objectives to provide the cell with different competitive advantages: pre-allo-
cation offers the cell high adaptability to sudden nutritional shifts [25-28]; stress-
driven proteome adjustments enable the cell strong vitality (survival capability) under
harsh conditions [22]; and the utilisation of pathways with lower protein cost (e.g. the
overflow metabolism) allows the cell to grow at fast rates [78]. Meanwhile, various
mathematical models have been proposed to validate resource allocation associated
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hypotheses and experimental observations. We classified network-based resource
allocation models into predictive models (including coarse-grained models and fine-
grained models that are both generally FBA-based) and descriptive models that focus
on elucidating the network topology through EFMA. Detailed overviews of each class
of models can be found in [8-10]. Here, we complement previous work by emphasis-
ing the key feature of different resource allocation models and deciphering important
modelling treatments (i.e. variable enzyme catalytic efficiencies in RBA and ME).

Despite these prominent achievements in this area, several important questions
remain open. Firstly, among resource allocation-derived hypotheses for explain-
ing the overflow metabolism, two competing explanations, i.e. the space limitation
and machinery limitation, seem to be independently correct, making the physiologi-
cal root cause of the overflow metabolism remain unclear. Secondly, the study in lac
operon model system [77] raises the concern in the interpretation of the ‘protein cost,
which might not be limited to protein synthesis but also protein activation/function.
Thirdly, previous research in resource allocation (both theoretical and experimen-
tal) mainly focuses on cell growth in minimal medium; the connection between cell
growth and resource allocation in rich media remains an un-reclaimed field.

Finally, we would like to emphasise the importance of understanding resource allo-
cation for synthetic biology, especially as we move towards implementing increasingly
complex synthetic circuits. Widespread adoption of engineered microbes depends on
our ability to design performant and predictable systems, which necessarily entails
accounting for resource allocation. The realisation of this goal will likely involve a
mixture of circuit, host and integrative design.

As the understanding of the mechanisms and utility of resource application in cellu-
lar systems further develops, we anticipate that mathematical modelling tools incor-
porating resource allocation will also further evolve to improve their mechanistic
soundness. Together, these will facilitate the widening of the application of resource
application mechanisms and principles in synthetic biology.
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