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Abstract 

Background:  Identifying interaction effects between genes is one of the main tasks of 
genome-wide association studies aiming to shed light on the biological mechanisms 
underlying complex diseases. Multifactor dimensionality reduction (MDR) is a popular 
approach for detecting gene–gene interactions that has been extended in various 
forms to handle binary and continuous phenotypes. However, only few multivariate 
MDR methods are available for multiple related phenotypes. Current approaches use 
Hotelling’s T2 statistic to evaluate interaction models, but it is well known that Hotel‑
ling’s T2 statistic is highly sensitive to heavily skewed distributions and outliers.

Results:  We propose a robust approach based on nonparametric statistics such as 
spatial signs and ranks. The new multivariate rank-based MDR (MR-MDR) is mainly 
suitable for analyzing multiple continuous phenotypes and is less sensitive to skewed 
distributions and outliers. MR-MDR utilizes fuzzy k-means clustering and classifies 
multi-locus genotypes into two groups. Then, MR-MDR calculates a spatial rank-sum 
statistic as an evaluation measure and selects the best interaction model with the larg‑
est statistic. Our novel idea lies in adopting nonparametric statistics as an evaluation 
measure for robust inference. We adopt tenfold cross-validation to avoid overfitting. 
Intensive simulation studies were conducted to compare the performance of MR-MDR 
with current methods. Application of MR-MDR to a real dataset from a Korean genome-
wide association study demonstrated that it successfully identified genetic interactions 
associated with four phenotypes related to kidney function. The R code for conducting 
MR-MDR is available at https://​github.​com/​statp​ark/​MR-​MDR.

Conclusions:  Intensive simulation studies comparing MR-MDR with several current 
methods showed that the performance of MR-MDR was outstanding for skewed distri‑
butions. Additionally, for symmetric distributions, MR-MDR showed comparable power. 
Therefore, we conclude that MR-MDR is a useful multivariate non-parametric approach 
that can be used regardless of the phenotype distribution, the correlations between 
phenotypes, and sample size.

Keywords:  Fuzzy clustering, Gene–gene interaction, Multifactor dimensionality 
reduction, Spatial rank statistic
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Background
Many attempts have been made to identify susceptible genes that influence the risk of 
complex diseases such as autism, hypertension, and diabetes [1–3]. Analyzing a single 
locus is not enough to understand the pathophysiology of complex diseases and results 
in the so-called missing heritability problem. To overcome this problem, several studies 
have sought to identify gene–gene interactions (GGIs) or gene-environmental interac-
tions [4–6].

As a non-parametric model-free approach, multifactor dimensionality reduction 
(MDR) has been widely applied for detecting GGIs [5]. For binary phenotypes, such as 
those analyzed in case–control studies, MDR divides high-dimensional genotype com-
binations into a one-dimensional variable with two groups (high-risk and low-risk), 
according to whether the ratio of cases to controls exceeds a threshold. Then it finds 
the interaction model that best predicts the disease status. Balanced accuracy can be 
used for an evaluation measure [7]. To prevent overfitting, k-fold cross-validation (CV) 
can be applied. Cross-validation consistency (CVC), or the number of times each sin-
gle-nucleotide polymorphism (SNP) combination is chosen as best, is obtained during 
the k-fold CV process. The SNP combination with the highest CVC is defined as the 
final best interaction model [8]. MDR has several advantages: i) the dimensions of the 
data are effectively reduced, ii) no specific genetic model is assumed, and iii) high-order 
interactions can be identified, even if there are no significant main effects [9, 10].

Since its introduction, many studies have been conducted to broaden the scope of 
application of MDR. According to Gola et al. [4], about 800 MDR-related studies were 
found as of February 2014 when searching PubMed and Google Scholar. For discrete 
traits, log-linear models MDR and robust MDR have been proposed to handle data 
with empty or sparse cells [11, 12]. Odds ratio MDR was proposed, replacing the naïve 
classifier with the odds ratio [9] and optimal MDR replaced the fixed threshold with a 
data-driven threshold using an ordered combinatorial partitioning algorithm [13]. As 
a method of dealing with continuous traits, generalized MDR (GMDR) was proposed. 
GMDR can handle both dichotomous and continuous phenotypes and can adjust for 
covariates [14]. Quantitative MDR (QMDR) for continuous traits uses the sample mean 
of each genotype combination as a classifier, reducing the computing time with compa-
rable performance [15]. Recently, cluster-based MDR (CL-MDR) has been proposed as 
a method that is less sensitive to outliers and distributional assumptions [16]. For sur-
vival time with censored data, Surv-MDR was proposed, which uses the log-rank test 
statistic to classify the cells of a multifactor combination [17]. Cox-MDR and accelerated 
failure time MDR are extended versions of GMDR for the survival phenotype based on 
Cox regression and the accelerated failure time model, respectively [18, 19]. Recently, 
Kaplan–Meier MDR was also developed, which uses the median Kaplan–Meier survival 
time as a classifier [20].

As described above, many studies have been conducted to identify genetic interac-
tions associated with single phenotype, but only a few studies have been done on meth-
odologies to treat multiple phenotypes. For complex diseases, several correlated traits 
are often measured together. For example, weight, the waist-hip ratio, and the body 
mass index (BMI) can be jointly measured as obesity-related traits. The power to detect 
associations between genes and these traits is expected to increase if the multivariate 
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approach is adopted [21]. Therefore, more research on multivariate methods detect-
ing GGIs is needed. Recently, multivariate generalized MDR (GEE-GMDR) extended 
GMDR to the multivariate case by constructing generalized estimation equation mod-
els [22]. GEE-GMDR provides stable results, but it does not always show higher power 
than GMDR [23]. Multivariate QMDR (multi-QMDR) extended QMDR using princi-
pal component analysis scores and Hotelling’s T2 statistic as a classifier and an evalua-
tion measure instead [23]. Multi-QMDR gives a high CVC and stable results, but it is 
prone to outliers or influencing points. More recently, multivariate cluster-based MDR 
(multi-CMDR) has been proposed [24]. Multi-CMDR applies fuzzy k-means clustering 
to discriminate between high- and low-risk groups and uses Hotelling’s T2 statistic for 
evaluation. Multi-CMDR is less sensitive to outliers and non-symmetric distributions.

While MDR is a nonparametric approach, all these methods use parametric test statis-
tics as evaluation measures based on a multivariate normal distribution or exponential 
family distribution. Instead of using parametric approach, this study considers non-para-
metric evaluation measures for testing the equality of two multivariate populations. Var-
ious methods based on multivariate ranks or distances between the pairs of individual 
observations have been studied [25]. Note that signs and ranks in a univariate case are 
based on the ordering of the data. Unfortunately, however, there is no natural ordering 
of the data for a multivariate case. To extend the concept of rank to a multivariate case, 
several principles have been considered. First, the methods using interdirection were 
introduced [26, 27]. Interdirection is a measure based on the angular distance between 
two observation vectors relative to the rest of the data [28]. Second, the tests based on 
data depth were proposed [29–31]. A data depth measures how deep a multivariate sam-
ple lies in the data cloud [32]. Any function which provides a reasonable central-outward 
ordering of points in multidimensional space can be considered as a depth function [33]. 
Third, multivariate extensions using spatial signs and ranks were also studied [34, 35]. 
Affine invariant methods based on spatial sign and rank vectors for various multivariate 
problems were proposed [34]. More recently, for high-dimensional data, a nonparamet-
ric multivariate test using spatial signs [36] and a spatial ranks test for two samples were 
proposed [37]. Among various approaches and measures, we chose the spatial rank-sum 
statistic as the non-parametric evaluation measure in this study, because it is one of the 
most widely statistics and implemented with R program.

We propose a new non-parametric multivariate approach for identifying genetic 
interactions. We call the proposed method multivariate rank-based MDR (MR-MDR). 
During classification process, MR-MDR utilizes the fuzzy k-means clustering analysis 
with a noise cluster as in multi-CMDR. For the evaluation process, MR-MDR calculates 
the spatial rank-sum statistic as an evaluation measure and selects the best interaction 
model with the largest statistic. The tenfold CV method is adopted and the final best 
interaction model is determined by maximum CV consistency.

This manuscript is organized as follows. We first start with an introduction of the spatial 
rank statistic. The algorithm of the proposed MR-MDR method is then described in detail. 
We then present the results of intensive simulation studies to investigate the performance of 
the proposed method. Our method is compared with multi-QMDR and multi-CMDR. We 
applied the proposed MR-MDR method to data on four multivariate phenotypes related 
to kidney function obtained from the Korean Genome and Epidemiology Study (KoGES): 
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blood urea nitrogen (BUN), serum creatinine, urinary albumin, and urinary red blood cell 
(RBC) levels. MR-MDR successfully identified genetic interactions associated with these 
four phenotypes.

Methods
Nonparametric multivariate rank test

We first introduce the multivariate non-parametric test used for evaluation. To detect a 
two-sample location shift in univariate analysis, the two-sample t-test is popularly used 
when the response variable is normally distributed. The Mann–Whitney test based on the 
rank sum is well known as a nonparametric counterpart of the two-sample univariate t-test. 
Various robust univariate non-parametric tests have been developed for the two-sample 
location problem [38].

For multivariate analysis, a classical approach such as Hotelling’s T2 is a popular paramet-
ric approach. T2 has optimal power under the assumption of a multivariate normal distri-
bution. However, it performs poorly in the case of heavy-tailed distributions and is highly 
sensitive to outliers [39]. As an alternative, we consider a nonparametric approach based on 
spatial signs and ranks. We start with the definition of spatial sign and spatial rank.

Let Y = (y1, ..., yn)
′ be an n × p data matrix with n observations and p variables. The spa-

tial sign function and spatial rank function are defined as follows [28].

where avej means the average taken over all observations for j = 1,…n, ||y|| is the Euclid-
ean distance of y from 0, and y and yj are p-variate vectors [28]. The observed spatial 
signs si and observed centered spatial ranks ri are defined as

and

respectively for i, j = 1, …, n. Here, sij = S(yi − yj) , ave{ri} = 0.
To make an affine-invariant test statistic, we can apply the spatial sign function to the 

transformed data points. The test statistic T (y1, ..., yn) is said to be affine-invariant if 
T (y1, ..., yn) = T (Dy1, ...,Dyn) for every p × p nonsingular matrix D and for every p-variate 
dataset y1, ..., yn [34]. Affine-invariant spatial signs and ranks are obtained by transforming 
yi to Ayyi,

S(y) =

{

||y||−1y, y �= 0
0, y = 0

,

R(y) = avej{S(y − yj)} =
1

n

n
∑

j=1

{S(y − yj)}

si = S(yi),

ri = avej{sij} =
1

n

n
∑

j=1

{S(yi − yj)},

s∗i = S(Ayyi),

r∗i = avej{s
∗
ij} =

1

n

n
∑

j=1

{S(Ay(yi − yj)}
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where Ay is Tyler’s transformation, which makes the spatial sign covariance matrix pro-
portional to the identity matrix, that is, ave{r∗′i r

∗
i } = [c2y/p]Ip , where c2y = ave{||r∗i ||

2} . 
Ay can be obtained during the iterative process and chosen so that trace(A′

yAy) = p [34, 
40, 41]. The ranks r∗i  lie in the unit p-sphere. The direction of r∗i  roughly points outward 
from the center of the data cloud and its length tells how far away this point is from the 
center of the data cloud [42].

Next, for the two-samples location problem, let Y1 = (y1, ..., yn1)
′ and 

Y2 = (yn1+1, ..., yn1+n2)
′ be two independent samples with p variables that have the 

cumulative distribution functions F(x − µ) and F(x − µ−�) , respectively. To test 
the null hypothesis of no differences in location, H0:Δ:0, the multivariate version of 
Mann–Whitney test statistic U2 can be used. For the combined sample Y = [Y1:Y2], 
the affine-transformed spatial signs of the transformed differences s∗ij = S(Ay(yi − yj)) 
and spatial ranks r∗i = avej{S

∗
ij} are obtained. The multivariate Mann–Whitney test 

statistic U2 is given by

where r∗i  is the sample-wise mean vector of the spatial ranks r∗i  and c2y = ave{||r∗i ||
2} [34]. 

The p-value is obtained by Eη(I(U2
γ ≥ U2)) , where Eη(·) represents expectation value 

where η = (η1, ..., ηN ) is uniformly distributed over N! permutations of (1, . . . ,N ) and 
U2
γ  is the value of the test statistic of a permuted sample. As the dimension p increases 

and the distribution becomes heavier-tailed, the performance of U2 improves relative to 
Hotelling’s T2 statistic [34].

We investigated the effect of Tyler’s transformation on yi through an empirical 
study using a toy example. Two multivariate distributions of the response variables 
were considered: a bivariate normal distribution and a bivariate gamma distribution. 
The correlations between two response variables were set to 0.4 and 0.8. The original 
data were transformed to spatial signs, and then spatial centered ranks were obtained 
by averaging the spatial signs of differences. Figure 1 shows the spatial signs and ranks 
with and without Tyler’s transformation. Spatial signs are represented as directions 
from the origin with unit length, and thus all the spatial signs lie on a circle of radius 
1. The spatial signs with Tyler’s transformation tend to be more evenly arranged 
around the circumference than the spatial signs without Tyler’s transformation. The 
spatial ranks tend to spread evenly, as if they are uniformly distributed within a circle, 
for the Tyler’s transformation case. Note that the spatial ranks before and after Tyler’s 
transformation appear different when the correlation is high (r = 0.8); however, the 
change due to the transformation is negligible if the correlation is moderate (r = 0.4).

MR‑MDR procedure

There are many variations of MDR methods for finding GGIs. However, most MDR 
approaches have two core procedures: how to classify the cells into two groups and 
how to evaluate the interaction models. The proposed MR-MDR adopts fuzzy cluster-
ing technique in the classification process as in multi-CMDR [24]. For the evaluation 

U2 =
p

c2y

2
∑

i=1

ni||r
∗
i ||

2
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process, MR-MDR uses a multivariate spatial rank test statistic. Figure  2 shows the 
flow of the MR-MDR procedure. The detailed algorithm of MR-MDR is as follows.

Step 0. Data

•	 Suppose there are n* samples, with p SNP data-points and q continuous pheno-
types.

Fig. 1  Examples of spatial signs and ranks for two bivariate distributions
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•	 Standardize all the phenotypes to have a mean of zero and a unit vari-
ance. Let Yi = (yi1, yi2, . . . , yiq)

T be the standardized phenotype vector and 
Xi = (xi1, xi2, . . . , xip)

T be the genotype vector for the ith subject, respectively.

Step 1. Global process: clustering

•	 Perform fuzzy k-means clustering with k = 2 using phenotype information. We add 
a noise cluster such that noisy data points may be assigned to the noise class [43]. 
Remove all the samples in the noise cluster. The remaining samples have member-
ship degrees for each of the two clusters. Denote these two clusters as C1 and C2.

•	 Define the global ratio θ as

where n is the number of remaining samples after deleting noise samples and Dik is 
the membership degree of the ith subject in cluster Ck, (k = 1, 2) [24].

•	 For cross-validation (CV), split the samples randomly into 10 subgroups of equal 
size. Let nine sets of samples be the training dataset and the remaining dataset be the 
test dataset used for evaluating the model.

Step 2. Local process: classification

•	 To find mth-order GGIs, select a set of m SNPs from a pool of SNPs.
•	 Calculate the local ratio θj for the jth genotype combination in the training set,

θ =

n
∑

i=1

Di1

/

n
∑

i=1

Di2,

θj =

nj
∑

i=1

Dij1

/ nj
∑

i=1

Dij2,
(

j = 1, . . . , 3m
)

,

Fig. 2  Overview of the MR-MDR algorithm for tenfold cross-validation and second-order interactions
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where Dijk is the membership degree of the ith subject with the jth genotype combi-
nation in cluster Ck.

•	 Label each genotype combination either “H” if θj ≥ θ, or “L” if θj < θ.

Step 3. Local process: evaluation

•	 Obtain spatial ranks of Yi for the combined samples from two clusters for i = 1, 2, …, 
n.

where S(·)is a sign function and Ay is Tyler’s transformation.
•	 Calculate the multivariate Mann–Whitney test statistic:

where p is the number of variables, nk is the number of samples in cluster Ck, Rk is 
the mean vectors of the spatial ranks for cluster Ck, and c2y = ave{||Rk ||

2}.
•	 Obtain U2 for every m SNP combination. Choose the SNP combination with the 

largest U2 statistic as the best mth-order interaction model in the training data.

Step 4. Selection process: best interaction model

•	 Repeat step 2 and 3 for each fold and count the number of specific SNP combina-
tions chosen for the best model. We call this cross-validation consistency (CVC).

•	 Select the model with the largest CVC as best final interaction model.
•	 Derive the final rank sum statistic for the best model by averaging all statistics for the 

test data.
•	 Calculate the empirical p-value by a permutation test.

Results
Simulation analysis

To compare the performance of the proposed MR-MDR with other existing methods, 
we conducted simulations for various situations. We considered 20 SNPs, including two-
way disease-causal SNPs. For each of the combinations of seven different heritability val-
ues (0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4) and two minor allele frequency (MAF) values (0.2, 
0.4), five different interaction models (M1-M5) were considered. Typically, penetrance 
rate is defined as the proportion of individuals with a given genotype who exhibit the 
phenotype associated with that genotype. However, it is not appropriate for continuous 
phenotypes and there is no clear definition of continuous phenotype. For QMDR, the 
penetrance for continuous phenotypes was defined as a function of mean [15]. Simi-
larly, we set the penetrance rate as a function of mean of the response variable in each 

r∗i = avej{S(Ay(yi − yj)}

=
1

n

n
∑

j=1

Ay(yi − yj)
√

(Ay(yi − yj))2

U2 =
p

c2y

2
∑

k=1

nk ||Rk ||
2
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genotype. Thus, a total of 70 epistatic models with various penetrance functions were 
generated, as done by Velez et al. [7]. All the models had little marginal effect. For the 
phenotype distribution, we considered a bivariate normal distribution and a bivariate 
gamma distribution. The correlations of the bivariate phenotypes also varied (0, 0.25, 
0.5). Sample sizes of 100, 200, and 400 were considered. Finally, a total of 1000 replicated 
data sets were generated for 1260 (= 70 × 2 × 3 × 3) combinations.

We used both a Tyler’s-transformed version (MR-MDR_transformed) and an untrans-
formed version (MRMDR_ untransformed). For the purpose of comparison, multi-
CMDR and multi-QMDR methods were also used. All three summary statistics of the 
multi-QMDR—the first principal component (FPC), weighted sum of principal com-
ponents (WPC), and weighted squared sum of principal components (WSPC)—were 
included. To compare the data with the univariate approach, QMDR was also performed 
for each phenotype separately. Ten-fold CV was considered. A summary of the simula-
tion scheme is shown in Table 1.

Since the epistatic models given by Velez et al. [7] were devised only for the discrete 
phenotype, we modified them to handle continuous phenotypes. Let SNP1 and SNP2 be 
the two true causal SNPs, Y = (Y1,Y2)

T the continuous bivariate phenotypes, and fij the 
penetrance function for the ith genotype of SNP1 and jth genotype of SNP2 in [7]. For the 
bivariate normal distribution, Y = (Y1,Y2)

T was generated by

where µij =

(

fij
fij

)

 and � =

(

1 ρ

ρ 1

)

 . We used the mvrnorm() function of the MASS 

package in R. Three different values of ρ (0, 0.025, and 0.5) were considered, as men-
tioned above.

For the skewed asymmetrically distributed phenotypes, we used the copula-based 
multivariate gamma model [44]. A copula-based bivariate gamma distribution is given 
by

Y|(SNP1 = i, SNP2 = j) ∼ MN (µij ,�),

Table 1  Summary of the simulation scheme

FPC first principal component, WPC use weighted Summation of principal component, WSPC use weighted Squared 
Summation of principal component

Factor Level Value Ref

Genotype Number of SNPs 20 SNP1, …, SNP20

Number of causal SNPs 2 SNP1, SNP2

Minor allele frequency 2 0.2, 0.4

Heritability 7 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4

Interaction model 5 M1, M2, M3, M4, M5 [7]

Phenotype Number of phenotypes 2 Y1, Y2

Distributions 2 bivariate normal, bivariate gamma [24, 44]

Correlation 3 0, 0.25, 0.5

Sample Sample size 3 100, 200, 400

Analysis Methods MR-MDR (transformed, untransformed) [24]

8 multi-CMDR [23, 24]

multi-QMDR (FPC, WPC, WSPC) [15]

QMDR (Y1, Y2)
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where c(u,�) = |�|
1
2 exp

[

− ũ′(�−1−I)ũ
2

]

, ũ = (�−1(u1), �
−1(u2))

′ , and uk = Fk(yk) 

for k = 1, 2. Here fk and Fk are the marginal probability density function and cumula-
tive distribution function of the kth phenotype, respectively, and Φ−1 is the inverse of 
the cumulative distribution of the standard normal distribution function. In this sim-
ulation, we set

for k = 1, 2. We used the mvdc(), rMvdc(), normalCopula() functions in the copula pack-
age in R.

The power was estimated by the hit ratio, which is the proportion of times that 
each method correctly chose the causal SNP pairs ( SNP1 and SNP2 ) as the best model 
among all possible two-way interaction models out of each set of 1000 datasets. Fig-
ure  3 shows the hit ratios of the eight different methods for the bivariate normal 
distribution. The power of the multi-QMDR using FPC (multi-QMDR_FPC) was 
slightly higher than that of the proposed MR-MDR when there was no correlation 
between phenotypes. However, the difference between multi-QMDR_FPC and MR-
MDR decreased as the correlation became stronger. The performances of the trans-
formed one (MR-MDR_transformed) and untransformed (MR-MDR_untransformed) 
one were almost the same. Multi-QMDR with WSPC (multi-QMDR_WSPC) showed 
lower power even than the QMDR method.

Figure 4 shows the hit ratios for a bivariate gamma distribution. The proposed MR-
MDR outperformed the other methods for all ranges of heritability. There was little 
difference between the performance of the two versions of MR-MDR, and the differ-
ences between them were less than 0.01 in all situations. The power of multi-CMDR 
was the next highest. It should be noted that multi-CMDR uses the fuzzy clustering 
approach to split data as in MR-MDR. The gap between MR-MDR and other methods 
became larger as the sample size decreased or the correlation became stronger. Multi-
QMDR-FPC and multi-QMDR using the WPC (multi-QMDR-WPC) showed lower 
power than MR-MDR and multi-CMDR, but higher power than QMDR. The perfor-
mance of multi-QMDR-WSPC was still poor, although the difference was less than in 
bivariate normal distribution.

Through these simulation studies, we demonstrated that the proposed MR-MDR 
outperformed the other existing methods for all ranges of heritability when the 
phenotypes were asymmetrically distributed. However, when the phenotypes are 
symmetrically distributed, as in a normal distribution, all methods yielded similar 
performance.

Three additional simulations were conducted to find out the further properties of 
the proposed method. The robustness of fuzzy k-means clustering, the effect of noise 
cluster size, and the effect of outliers were investigated. First, to explore the robust-
ness of the fuzzy k-means clustering in MR-MDR algorithm, we performed a compar-
ison study to investigate the effect of log-transformation on phenotypes which were 

f (y1, y2) = c(u,�)

2
∏

k=1

fk(yk),

yk |(SNP1 = i, SNP2 = j) ∼ Gamma(2fij , 0.5)



Page 11 of 21Park et al. BMC Bioinformatics          (2021) 22:480 	

generated from the bivariate gamma distribution. The power of MR-MDR after log 
transformation was obtained for each seven heritabilities. We set the correlation coef-
ficient between two phenotypes 0.25 and the sample size 200. The average power of 
MR-MDR for five interaction model (M1-M5) for 1000 random samples are given in 
Table 2. The power slightly reduced after log-transformation. Therefore, we can con-
clude that the fuzzy k-means clustering is robust to the skewed distribution and does 
not require any further transformation of original data.

Secondly, we investigate the efficiency according to the size of noise cluster since the 
large size of the noise cluster can be a source of loss of efficiency. The size of noise clus-
ter depends on the noise distance δ, which needs to be chosen in advance. If δ is too 
large, outliers are not removed and are classified as a real cluster. On the other hand, if δ 
is too small, many observations can be misplaced into the noise cluster. Still, the estima-
tion of the optimal value of δ is an open-problem [45]. In our approach, we used an itera-
tive procedure to determine the value of δ optimally, which is the default of FKM.noise 
procedure in R.

To check the efficiency, we compared the performance with various values of δ. The 
results are shown in Table 3. For both bivariate normal and bivariate gamma distribu-
tion, the average power of MR-MDR for five interaction models (M1-M5) are given in 

Fig. 3  Hit ratios for a bivariate normal distribution
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Table 3. This new simulation result shows that the power using the iterative δ yielded 
the highest hit ratios for all heritabilities. Note that in this setting outliers were not 
generated. When there were outliers, a smaller noise cluster would have been created.

Fig. 4  Hit ratios for a bivariate gamma distribution

Table 2  Hit ratios of MR-MDR according to log transformation for a bivariate gamma distribution 
(r = 0.25, n = 200)

Heritability Hit ratio

Without log transformation With log 
transformation

0.01 0.350 0.325

0.025 0.733 0.685

0.05 0.776 0.693

0.1 0.982 0.942

0.2 0.999 0.989

0.3 1 0.999

0.4 1 1
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Thirdly, we have conducted an additional simulation to investigate the effects 
of outliers. The power of MR-MDR for the datasets with or without outliers was 
obtained for each seven heritabilities. We set the correlation coefficient between two 
phenotypes 0.25 and the sample size 200 as in Table 3. The power for five interaction 
models (M1-M5) for 1000 random samples were obtained. For the datasets with out-
liers, about 5% of the data were replaced by outliers. For both phenotypes, outliers 
were generated by adding three times of IQR for the randomly chosen 5% samples. 
The results are summarized in Table 4. In the presence of outliers, the power tends to 
decrease for all methods. The differences were the smallest in MR-MDR, indicating 

Table 3  Hit ratios of MR-MDR according to the noise distance δ (r = 0.25, n = 200)

Distribution Heritability δ = 1.5 δ = 2 δ = 2.5 Iterative δ (default)

Hit ratio Noise (%) Hit ratio Noise (%) Hit ratio Noise (%) Hit ratio Noise 
(%)

Bivariate 0.01 0.004 14.78 0.007 5.10 0.005 1.27 0.009 12.02

Normal 0.025 0.003 14.78 0.008 4.96 0.007 1.16 0.006 11.90

0.05 0.024 14.79 0.026 5.04 0.038 1.19 0.041 11.92

0.1 0.073 14.54 0.1 4.86 0.131 1.12 0.131 11.59

0.2 0.255 14.27 0.372 4.69 0.423 1.10 0.452 11.21

0.3 0.430 14.28 0.609 4.70 0.669 1.08 0.693 11.14

0.4 0.593 13.944 0.793 4.54 0.846 1.03 0.865 10.736

Bivariate 0.01 0.302 11.89 0.335 7.47 0.352 4.88 0.35 8.25

Gamma 0.025 0.666 11.734 0.709 7.42 0.718 4.84 0.733 7.98

0.05 0.714 12.67 0.738 7.50 0.758 4.62 0.776 8.93

0.1 0.955 13.09 0.972 7.36 0.978 4.25 0.982 9.25

0.2 0.995 13.00 0.996 6.86 0.998 3.68 0.999 9.17

0.3 0.998 12.47 1 6.67 1 3.59 1 8.65

0.4 1 12.18 1 6.30 1 3.37 1 8.27

Table 4  Hit ratios of MR-MDR according to the presence or absence of outliers (r = 0.25, n = 200)

W/O hit ratio for the data without outlier, W/ hit ratio for the data with outlier, Diff W/O – W, Multi-QMDR_FPC multi-QMDR 
using first principal component

Heritability MR-MDR Multi-CMDR Multi-QMDR_FPC

WO W Diff WO W Diff WO W Diff

Bivariate 0.01 0.009 0.006 0.003 0.006 0.006 0 0.009 0.007 0.002

Normal 0.025 0.006 0.006 0 0.007 0.006 0.001 0.014 0.013 0.001

0.05 0.041 0.033 0.008 0.039 0.034 0.005 0.036 0.018 0.018

0.1 0.131 0.09 0.041 0.142 0.092 0.05 0.143 0.038 0.105

0.2 0.452 0.364 0.088 0.465 0.375 0.09 0.489 0.121 0.368

0.3 0.693 0.604 0.089 0.711 0.593 0.118 0.727 0.251 0.476

0.4 0.865 0.781 0.084 0.873 0.79 0.083 0.883 0.353 0.53

Bivariate 0.01 0.35 0.26 0.09 0.135 0.096 0.039 0.094 0.072 0.022

Gamma 0.025 0.733 0.609 0.124 0.468 0.355 0.113 0.347 0.276 0.071

0.05 0.776 0.707 0.069 0.661 0.494 0.167 0.606 0.446 0.16

0.1 0.982 0.947 0.035 0.945 0.748 0.197 0.917 0.692 0.225

0.2 0.999 0.992 0.007 0.994 0.934 0.06 0.993 0.82 0.173

0.3 1 1 0 1 0.989 0.011 0.999 0.929 0.07

0.4 1 1 0 1 0.999 0.001 0.999 0.974 0.025
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the minimum power loss of MR-MDR. As a result, MR-MDR showed much higher 
power than other methods in the presence of outlying observations.

Real data analysis

We illustrate the proposed MR-MDR method by analyzing data from the KoGES [46]. 
The data were collected from two recruitment areas. Each region is a cohort represent-
ing city (Ansan) and rural areas (Anseong). After standard quality control procedures for 
the subjects and SNPs, a total of 8842 participants and 327,872 SNPs were used for this 
analysis.

We considered four phenotypes related to kidney function: BUN, serum creatinine, 
urinary albumin levels, and urinary RBC levels. Traditionally, BUN and serum creati-
nine levels have been used as surrogate markers of kidney function deterioration [47]. 
The amounts of albumin and RBC in urine also could be good indicators of kidney dis-
ease. Although there have been some studies on associations between genes and kidney-
related phenotypes, few studies have performed GGI analyses for these phenotypes [48, 
49]. In the case of albumin, the urine test is known to be more accurate than in the case 
of blood test, so the urine test result is used here. However, urine tests are conducted 
only on a relatively small number of subjects, which resulted in missing observations in 
phenotypes. For this high rate of missing data, imputation for phenotypes is not appro-
priate. We removed observations with at least one missing phenotype value, and 3267 
samples remained.

A linear model was separately fit to each phenotype with covariate adjustments for 
sex, age and recruitment area. Finally, 205 SNPs were selected that had significant mar-
ginal effects (p < 1 × 10−7). Residuals were used for the analysis to control for covariate 
effects. The largest correlation coefficient was 0.32, which was the correlation between 
BUN and creatinine. The distributions of the phenotypes were heavily skewed. Figure 5 
shows scatter plots and box plots of the phenotypes.

We applied the proposed MR-MDR method to identify the best first- and second-
order interaction models. Table 5 shows the center of the global clusters from fuzzy 
k-means clustering during step 1. Cluster centers were determined by the means 
of each phenotype across samples belonging to the cluster. The clusters differed 

Fig. 5  Scatterplot and boxplot of four phenotypes after adjustment by sex, age and recruitment area. The 
numbers in the scatter plot are correlation coefficients
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greatly for BUN and serum creatinine. There seemed to be no difference in RBC lev-
els between the two clusters. Since the higher values of BUN and creatinine indicate 
abnormal kidney function, we can interpret the first cluster as a low-risk group and 
the second cluster as a high-risk group.

We selected the SNP pair with the largest CVC as the best interaction model for 
each order. The test score was the average of spatial rank sum statistics calculated 
from the test data set. Empirical p-values were obtained by comparing the test score 
with the statistic from the permuted dataset generated by shuffle phenotype vec-
tors. If the score calculated with the permuted data exceeded our score, that case was 
counted. Then p-value was calculated as a/b, where a is the number of cases with a 
permuted score higher than the original score and b is the total number of trials.

List of the interaction models that had the highest training score at least once dur-
ing the tenfold CV process by MR-MDR is shown in Table 6. For the first-order inter-
action, rs41476549 had the highest CVC and was selected as the most relevant to 
the four phenotypes. rs790410 was selected as the best once during 10 CV processes 
but showed the highest score. All SNPs except rs17168600 had a p-value lower than 
0.05. For the second-order interaction model, the pair of rs41476549 and rs1117105 
showed the highest CVC, while the pair of rs790410 and rs961413 yielded the highest 
test score. However, the CVC value was low in most cases. Among the selected SNPs, 
rs16862782 on chromosome 3 has been reported to be related to BUN in Korean and 
to serum urea measurement in European [47, 50]. rs4686914 on chromosome 3 is also 
known to be related to the kidney function in European and East Asian [47, 51]. Both 
SNPs are mapped to LINC01991 gene. rs17586294 maps to TUBBP11 gene. To the 
best of our knowledge, there are no studies that have analyzed kidney-related GGI in 
a multivariate manner. Therefore, none of the interactions of the selected pair of SNPs 
have ever been reported.

We also applied multi-CMDR and multi-QMDR methods for comparison. Only multi-
QMDR using FPC was considered for comparison, because it showed the highest power 
among three types of multi-QMDRs. There are some similarities between the results of 
MR-MDR and multi-CMDR. However, the results are totally different for multi-QMDR, 
which are expected to be caused by some outlying observations. For example, the pair 
of rs17014894 and rs10517358 was chosen as the best interaction model. However, this 
pair suffers from sparsity and outliers. In particular, there are four cells with zero counts 
and one cell with one count having an outlying observation.

Figure 6 shows the box plots of the phenotypes after removing the noise cluster for 
the genotype combinations of the best model selected by MR-MDR. The distribution 

Table 5  Average of phenotypes for global clusters

Cluster 1 (L) Cluster 2 (H) All

BUN 13.55 16.27 11.06

Serum creatinine 0.78 0.84 0.72

Albumin 2.66 3.39 1.99

RBC 0.20 0.21 0.20

Number of cases 1410 1225 2635
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of each phenotype was different depending on the genotype combination, suggesting 
that there was an interaction effect.

To evaluate pure interaction effects for continuous phenotypes, we adopted the clas-
sical linear model. For the selected SNP combinations, we fit multivariate analysis of 
variance (MANOVA) model including two main effects and the interaction effect. The 
SNP effects were tested for the interaction effect only (H01:β12 = 0) and for the total 
effects including both main and interaction effects (H02:β1 = β12=0 and H03:β2 = β12=0). 
The results nine SNP pairs are summarized in Table 7. None of the selected SNP pairs 
showed significant interaction effects (p > 0.05), while some pairs showed significant 
total effects. This is because most MDR methods tend to choose a model with a large 

Table 6  Best interaction models identified by MR-MDR, multi-CMDR and multi-QMDR

Method First order Second order

rs ID CVC Test Score p-value rs ID CVC Test Score p-value

MR-MDR rs41476549 5 5.05 0.022 rs41476549, 
rs1117105

2 6.23 0.015

rs790410 1 6.20 0.003 rs790410, rs961413 1 7.31 0.002

rs16862782 1 5.17 0.015 rs11250624, 
rs17168600

1 7.21 0.003

rs1348637 1 4.99 0.027 rs41476549, 
rs790410

1 7.01 0.004

rs291877 1 4.94 0.029 rs17168600, 
rs41476549

1 6.94 0.004

rs17168600 1 4.39 0.064 rs291877, rs790410 1 6.48 0.013

rs7706475, 
rs41476549

1 6.20 0.016

rs4686914, 
rs16992376

1 3.38 0.583

rs17586294, 
rs7016675

1 3.33 0.601

Multi-CMDR rs1348637 3 1.32 0.062 rs790410, rs961413 2 1.87 0.003

rs16862821 2 1.23 0.110 rs291877, 
rs7612956

1 1.93 0.002

rs790410 1 1.57 0.012 rs291877, 
rs17168600

1 1.73 0.007

rs291877 1 1.54 0.015 rs291877, rs961413 1 1.65 0.012

rs4686914 1 1.45 0.027 rs291877, 
rs17643945

1 1.45 0.038

rs41476549 1 1.17 0.162 rs17142042, 
rs1160759

1 1.19 0.002

rs17142042 1 0.89 0.538 rs17643945, 
rs291877

1 1.45 0.038

rs12337165, 
rs9958995

1 1.01 0.364

rs9812308, 
rs12860002

1 0.78 0.733

Multi-QMDR_FPC rs10517358 6 27.05  < 0.001 rs17014894, 
rs10517358

6 51.05  < 0.001

rs7265852 3 2.86 0.002 rs41457747, 
rs10517358

2 27.58  < 0.001

rs17014894 1 24.17  < 0.001 rs41457747, 
rs17014894

1 24.35  < 0.001

rs1631834, 
rs10517358

1 2.97  < 0.014
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total effect ignoring pure interaction effects. However, our further empirical study 
showed that the introduction of noise cluster by fuzzy k-means increased the power of 
detecting interaction effects. The same MANOVA model were fit to the trimmed data 

Fig. 6  Box plots of four phenotypes after removing the noise cluster for the best SNP combination identified 
by MR-MDR ((i, j): ith genotype for rs1117105 and jth genotype for rs41476549, s creatinine, ALBU albmin)

Table 7  p-values from MANOVA test for the SNP combination selected by MR-MDR

* H01:β12=0
** H02:β1 = β12=0
*** H03:β2 = β12=0

rs ID Original data (including noise) Trimmed data by MR-MDR 
(excluding noise)

H01
*

H02
**

H03
***

H01
*

H02
**

H03
***

rs41476549, rs1117105 0.6971 0.5841 0.2237 0.9209 0.2201 0.1516

rs790410, rs961413 0.6887 0.00001 0.4374 0.4077 0.0546 0.0140

rs11250624, rs17168600 0.4574 0.0000002 0.5569 0.0388 0.0258 0.0027

rs41476549, rs790410 0.7868 0.2603 0.6852 0.7505 0.1327 0.0970

rs17168600, rs41476549 0.7221 0.7838 0.1680 0.4196 0.0704 0.0477

rs291877, rs790410 0.2365 0.0065 0.0543 0.0107 0.0009 0.0009

rs7706475, rs41476549 0.2289 0.5622 0.0586 0.0211 0.0278 0.0024

rs4686914, rs16992376 0.6290 0.0008 0.8686 0.8155 0.0004 0.7291

rs17586294, rs7016675 0.8552 0.6386 0.8003 0.0003 0.0007 0.0011
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after removing the noise cluster by MR-MDR. As expected, several significant interac-
tion effects were successfully identified after trimming. Although MANOVA requires a 
Gaussian assumption, the process removing the noise cluster in the proposed method 
had the effect of yielding more robust and reliable MANOVA results. Among the nine 
SNP pairs with non-significant interactions, four pairs showed significant interaction 
effects. The results are summarized in the last three columns of Table 7.

Discussion
The proposed MR-MDR method is a non-parametric approach assuming no particular 
genetic model. To assign samples to two risk groups, MR-MDR uses the fuzzy clustering 
technique, as in the multi-CMDR method. MR-MDR uses the spatial rank sum statistic 
as evaluation measure for comparing two groups whereas Hotelling’s T2 statistic is used 
in multi-CMDR and multi-QMDR. Therefore, robust results can be expected in MR-
MDR for skewed distributions or those with outliers.

When calculating the spatial rank statistic, a data-driven transformation matrix was 
needed to make the statistic invariant. It is known that an affine-invariant test performs 
better than noninvariant angle coordinate-wise sign tests when there is significant devia-
tion from spherical symmetry caused by the presence of correlations among observed 
variables. Moreover, the affine-invariant test outperforms Hotelling’s T2-test for heavy-
tailed non-normal multivariate distributions [52]. As can be seen in our toy example, the 
invariant statistic differed from the untransformed statistic, especially in the presence of 
a high correlation between phenotypes.

The problem with using Tyler’s transformation statistic is that it takes much longer to 
calculate than the untransformed statistic. However, the change of the spatial ranks due 
to the Tyler’s transformation is trivial even when the correlation is moderate (r = 0.4), as 
seen in the toy example. Moreover, the simulation results showed that there was little 
improvement in performance compared to untransformed versions of MR-MDR. This 
phenomenon was also observed in the case of negative correlation. Therefore, we rec-
ommend using the untransformed MR-MDR version if the absolute value of correlation 
between phenotypes is not too high (e.g., |r|< 0.5).

To apply the proposed method for GWAS data, we considered a filtering procedure to 
reduce the number of SNPs to be investigated. We selected SNPs with significant mar-
ginal effects and investigated the interactions. Since MDR is an exhaustive method, this 
kind of filtering is needed. However, this filtering process can lead to ignoring gene–
gene interactions for the SNPs with weak marginal effects.

Conclusions
In this paper, we proposed the MR-MDR method to detect the best interaction model 
for multivariate quantitative traits. MR-MDR is based on the fuzzy clustering technique 
and spatial rank-sum statistic. Intensive simulation studies comparing MR-MDR with 
several current methods showed that the performance of MR-MDR was outstanding for 
skewed distributions. The difference in power between the MR-MDR and other methods 
increased as the sample size became smaller and the correlation became stronger. Addi-
tionally, for symmetric distributions, MR-MDR showed comparable power. Therefore, 
we conclude that MR-MDR is a useful multivariate non-parametric approach that can 
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be used regardless of the phenotype distribution, the correlations between phenotypes, 
and sample size.
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