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Background
Systems biology takes a holistic view on understanding biological systems, granting 
researchers an exceptional opportunity to dwell on previously scattered associations. 
Moreover, integrating knowledge from different sources on multiple diseases facilitates 
the understanding of Disease-Disease Associations (DDAs). The extraction of patterns 
from the evidence in relation to multiple diseases can ultimately establish networks 
encompassing such diseases. DDAs can be of various types and can be established con-
sidering different criteria as reviewed by Al-Eliwi and co-workers, all benefiting from 
network analysis approaches [1]. However, establishing DDAs using experimental data 
based on gene-disease associations can be tiresome, costly, and complex [2]. Hence, sev-
eral strategies were proposed like: (i) Disease Ontology (DO), which integrates concepts 

Abstract 

Background:  Blood cancers (BCs) are responsible for over 720 K yearly deaths world‑
wide. Their prevalence and mortality-rate uphold the relevance of research related to 
BCs. Despite the availability of different resources establishing Disease-Disease Associa‑
tions (DDAs), the knowledge is scattered and not accessible in a straightforward way to 
the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining 
(TM) approach towards the centralization of DDAs. Our methodology encompasses 
Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the 
DDAs retrieved were compared to the DisGeNET resource for qualitative and quantita‑
tive comparison.

Results:  We obtained the DDAs via co-mention using our SicknessMiner or gene- or 
variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% 
of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to 
our pipeline.

Conclusions:  SicknessMiner is a valuable tool to extract disease-disease relationship 
from RAW input corpus.

Keywords:  Disease-disease associations, Natural language processing, Biomedical 
text-mining, Deep learning, Blood cancers

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Rosário‑Ferreira et al. BMC Bioinformatics          (2021) 22:482  
https://doi.org/10.1186/s12859-021-04397-w

*Correspondence:   
nicia.ferreira@student.uc.pt; 
irina.moreira@cnc.uc.pt 
†Nícia Rosário-Ferreira and 
Victor Guimarães are co-first 
authors
1 CQC ‑ Coimbra Chemistry 
Center, Chemistry 
Department, Faculty 
of Science and Technology, 
University of Coimbra, 
3004‑535 Coimbra, Portugal
5 Department of Life 
Sciences, University 
of Coimbra, Calçada Martim 
de Freitas, 3000‑456 Coimbra, 
Portugal
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04397-w&domain=pdf


Page 2 of 12Rosário‑Ferreira et al. BMC Bioinformatics          (2021) 22:482 

from a plethora of sources to define related pathologies [3] or (ii) DisGeNET that defines 
DDAs as diseases that share, at least, a common gene or variant among the gene-disease 
associations considered in the database. DisGeNET comprises data retrieved from sev-
eral approaches as expert curated resources, animal models, inferred data from Human 
Phenotype Ontology (HPO) and variants-related resources, and previously mentioned 
gene-disease associations [4].

In this work, our goal was to retrieve DDAs while lifting the strain on establishing or 
possessing prior gene-disease lists, and we concentrated herein on cancer with a par-
ticular focus on Blood Cancers (BCs). Cancer is a complex and multifactorial disease 
for which there is a widespread availability of related literature [5], useful for biomarker 
research [6], drug discovery [7], biological pathways detection [8], among others, high-
lighting this technique’s positive contribution to a highly demanding field of study. The 
strength of mining the literature towards building disease networks was tapped into on 
multiple occasions as recently reviewed by Rodríguez-González [9]. In particular, BCs 
or hematologic cancers, which affect the production and function of blood cells encom-
passing the leukemia, lymphoma and multiple myeloma families, represent a large per-
centage of overall detected cancers (higher than 13%) and have a mortality-rate higher 
than 8% in the USA [10], with over 720 K deaths worldwide each year [11].

Biomedical text-mining, henceforth Text-Mining (TM), has already been used as a 
strategy to disclose analogous associations [12, 13]. TM allows the retrieval of inform-
ative data from latent data within biomedical literature, namely toward data-driven 
analysis [14, 15]. TM has greatly benefited from the takeoff of Artificial Intelligence 
(AI) algorithms that can be used for Natural Language Processing (NLP), an AI subfield 
dedicated to bridge the gap between human language and the language of computers. 
TM systems are most often built as pipelines that encompass a variable number of steps 
depending on the general goal of the research. Nonetheless, the initial steps of Named 
Entity Recognition (NER) and Named Entity Normalization (NEN) are generally needed. 
NER processes the input text into a set of entities, whilst NEN maps an entity into a con-
cept in a terminology [16, 17]. State-Of-The-Art methods (SOTA), such as Bidirectional 
Encoder Representations from Transformers for Biomedical Text Mining (BioBERT), 
provide excellent results for the NER step of TM, attaining human-like performance 
[17]. However, there is still a lack of NEN models that can tackle multiple categories 
as well as a need for combined NER and NEN strategies to be time-smart and enhance 
accuracy by integrating other data types such as ontologies directly upon the entity’s 
retrieval step [14].

Herein, we present SicknessMiner,1 a leading-edge TM pipeline encompassing both 
NER and NEN steps. The pipeline uses SOTA models as BioBERT for NER and Nor-
mCo for NEN. SicknessMiner does not require a specific input format and, as such, has 
a broad application and it is easy-to-use. SicknessMiner was fine-tuned for diseases and 
is able to return them as entities mapped to Medical Subject Headings (MeSH) terms 
with top performance. Both models of SicknessMiner were trained on the NCBI Disease 
dataset [18]. SicknessMiner demonstrates that our chosen DDA evaluation, ranking via 

1  SicknessMiner is publicly available at https://​github.​com/​Morei​raLAB/​Sickn​essMi​ner.

https://github.com/MoreiraLAB/SicknessMiner


Page 3 of 12Rosário‑Ferreira et al. BMC Bioinformatics          (2021) 22:482 	

disease-disease co-mention in a set of scientific publications, can be highly useful to find 
meaningful relations. This is a powerful finding, since this technique relies only on NER 
and NEN models. Such high accuracy models can be easily constructed, widening Sick-
nessMiner application as it does not require the existence of other ontologies or knowl-
edge bases regarding each specific domain of application. To further evaluate our DDAs 
results, we compared them with a well-known database, DisGeNET, which classifies 
DDAs based on the similarity of their gene- or variant-disease lists. Figure 1 illustrates 
the methodological pipeline followed to attain, validate and evaluate SicknessMiner.

Results
SicknessMiner two modules, NER and NEN, were trained using a corpus of 793 Pub-
Med abstracts with over 6.8 K disease mentions mapped to 790 unique concepts either 
linked to the MeSH or the Online Mendelian Inheritance in Man (OMIM) databases. 
The NER task consists of identifying entities of interest in a given corpus. For example, 
given a RAW text, the output of the NER module is a set of text spans where the entities 
can be found, in our particular case, known diseases. After the NER step, the retrieved 
text spans related to the entities serve as input to the NEN module, which maps each 
text span to an entry in a given ontology. If an entity is not found in the ontology, it is 
mapped as unknown. The main output of the SicknessMiner consists of a set of entities 
found in a given corpus, with their respective IDs corresponding to the key ontology, as 
well as the place in the text where the entities were found.

Both models of SicknessMiner were trained on the NCBI Disease dataset [18]. For the 
NER, we started the BioBERT model with the BioBERT v1.1 pre-trained weights [17] 
and fine-tuned them in the NCBI Disease train dataset using the default parameter of 

Fig. 1  SicknessMiner pipeline: a TM approach for DDAs. SicknessMiner is a two-step pipeline integrating 
subsequent modules for NER and NEN. First, from the RAW text input, an entity’s list is plotted according 
to co-mentions with more than 1 BC type. To evaluate SicknessMiner, we used the BC5CDR evaluation kit. 
Finally, DDAs were doubly assessed via SicknessMiner and DisGeNET and further evaluation was performed 
for a better understanding of key improvements obtained herein
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the system made available by Lee et al. [17]. For the NEN, we trained the NormCo [19] 
on the NCBI Disease train dataset using the default parameter of the system.

SicknessMiner evaluation

We choose a simple but efficient method to DDA evaluation: ranking via disease-disease 
co-mention. To evaluate the performance of our method in the NCBI Disease test set, 
we used the evaluation kit2 from the BC5CDR task to compute the precision, recall, and 
F1-score for both the NER and NEN steps. The BC5CDR evaluation kit is a program that 
receives a set of labelled text from the user and, by using the predictions of the model as 
input, computes these three performance metrics as output in order to assess the effi-
ciency of the model developed by the user. SicknessMiner attained a precision of 0.87, 
recall of 0.89 and F1-score of 0.88 for the NER module; and a precision of 0.80, recall 
of 0.83 and F1-score of 0.81 for the NEN module given a perfect NER. When the NER 
results were considered, the NEN module achieved a precision of 0.72, recall of 0.79 and 
F1-score of 0.76.

DDAs retrieval

We applied DDA retrieval to BCs as already mentioned. We queried PubMed 
for “((leukemia[Title/Abstract]) OR (multiple myeloma[Title/Abstract])) OR 
(lymphoma[Title/Abstract])” and retrieved over 390 K titles and abstracts. We merged 
all the results and submitted them to the SicknessMiner pipeline. To evaluate the results 
obtained by SicknessMiner, we compared them against DisGeNET with the Concept IDs 
for the BCs types: C0023418, C0024299, and C0026764 for leukemia, lymphoma and 
multiple myeloma, respectively. DisGeNET was chosen for direct performance com-
parison as the existing alternative models exhibit a few difficulties as these sometimes 
are not publicly available, do not encompassed the same group of diseases, or can even 
involve a complex methodological approach, which goes against our main aim of attain-
ing an easy-to-use integrative pipeline [13, 20–25]. Whilst DisGeNET retrieved a total of 
57,624 co-mentions between 22,611 unique diseases and one of the diseases of interest 
(Leukemia, Lymphoma or Multiple Myeloma), SicknessMiner retrieved 12,263 co-men-
tions between 5443 unique diseases.

DDAs evaluation

SicknessMiner was qualitatively and quantitatively compared against the results 
obtained through DisGeNET. To this end, we plotted a graph for each system, where 
each node in the graph corresponds to a disease and each edge connects two related 
diseases (Figs. 2 and 3; full results tables are available as Additional file 1). In Fig. 2, 
every resulting node in the graph is one of the top 100 hits with more shared genes 
connected to 2 or 3 BCs simultaneously from DisGeNET. In Fig. 3, each graph node 
represents one of the top 100 hits regarding the number of co-mentions to the 3 BCs 
via SicknessMiner. To make some sense of the totality of results and how the two sys-
tems compare, we also performed quantitative analysis for each approach (Fig. 4). To 

2  https://​biocr​eative.​bioin​forma​tics.​udel.​edu/​resou​rces/​corpo​ra/​biocr​eative-​v-​cdr-​corpus/.

https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-v-cdr-corpus/
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improve readability, we filtered the 100 most relevant nodes. For the DisGeNET, the 
process was straightforward, since it already provided the data related to our target 
diseases (Leukemia, Lymphoma or Multiple Myeloma). The set of genes of the tar-
get and related disease were sorted using the Jaccard index, and the top 100 diseases 
related to at least two target diseases were chosen. For SicknessMiner, we considered 
that two diseases were related if both of them appeared together in a paper title or 
abstract (i.e., they are co-mentioned). Afterwards, we ranked the co-mentions based 
on the number of times they were in the text set and chose the top 100 related to 
at least two target diseases. To attain realistic DDAs in DisGeNET, we considered a 
threshold for the similar genes of, at least, 20 shared genes to accept a DDA as posi-
tive. While SicknessMiner could retrieve overall minus 5% of DDAs (6455 vs 6087), 

Fig. 2  SicknessMiner Top 100 co-mentioned entries (in this case all entries are related to the 3 BCs since the 
query was combined)

Fig. 3  DisGeNET Top100 entries that are correlated with 2 or 3 BCs and share, at least, 20 genes or variants 
between diseases
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92% of the DDAs delivered by DisGeNET were also available in SicknessMiner. Also, 
SicknessMiner yielded close to 16% unidentified DDAs by DisGeNET, contrasting to 
only 8% diseases from DisGeNET that were unidentified in SicknessMiner (Fig. 4).

We also looked at the results from a biological angle since SicknessMiner’s goal was 
to retrieve diseases from biomedical literature, hence, it is domain-specific in its model. 
The majority of edges detected, thus the majority of the DDAs reported, are some type 
of cancer. However, in the top 100 edges, SicknessMiner retrieved a higher number of 
DDAs/edges representing non-cancerous diseases than DisGeNET, 22% and 4%, respec-
tively. In terms of unique non-cancerous DDAs, SicknessMiner could find 17 entities 
against 3 in DisGeNET. The retrieved non-cancerous DDAs are listed in Table 1.

Discussion
Herein, we presented SicknessMiner, a TM pipeline encompassing our view towards a 
useful NLP approach for biomedical texts. Our approach highlights the usefulness of 
TM pipelines as integrated sources of information and as end-to-end platforms easy-
accessible for beginner users. The use of individual modules in the pipeline allows us 
to easily replace and further optimize or introduce any enhancements independently, as 
new SOTA tools become available, which further improves the results of the pipeline 
as a whole. Furthermore, by using the BioBERT SOTA neural network module, we can 
take advantage of pre-trained weights that are made available, by the community, and 
that can be applied to different tasks beside NER (e.g. Relation Extraction and Question 
Answering) [17], some of which we would like to explore in future works. Moreover, 

Fig. 4  SicknessMiner and DisGeNET comparison
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SicknessMiner benefits from using BioBERT, since transfer learning is a powerful ML/
DL technique that gains from any improved weights that arise in the community.

By using only abstracts rather than full-texts, our aim was to lower the false-positive 
rate for non-existent DDAs that could occur from negative results published in the full-
text reports. Also, this enables a reproducible effect by resorting only to publicly availa-
ble data since full-text articles are often difficult to access due to the existent publication 
fees. Despite some authors ponting to higher performance when using full texts instead 
of abstracts-only TM [26], the fact that the access to papers is not universal, justifies our 
choice to evaluate our results based on abstracts-only. Nonetheless, we also believe that 
to postulate new knowledge, one must always dedicate some human curatorship to the 
hypothesis at hand, which should resolve any errors brought by abstracts-only mining.

With an easy access GitHub repository (https://​github.​com/​Morei​raLAB/​Sickn​essMi​
ner) and reproducible examples, SicknessMiner is a valuable tool for the NER and 
NEN steps of any TM pipeline for disease retrieval. Furthermore, SicknessMiner, via its 

Table 1  Retrieved non-cancerous DDAs from SicknessMiner and DisGeNET

SicknessMiner

Identifier Related disease Identifier Blood cancer type Co-mentions

C538324 3-Hydroxy-3-methylglutaryl-coa lyase deficiency D008223 Lymphoma 907

D000163 Acquired immunodeficiency syndrome D008223 Lymphoma 2358

D000163 Acquired immunodeficiency syndrome D007938 Leukemia 906

D000686 Amyloidosis D009101 Multiple Myeloma 1108

D000740 Anemia D007938 Leukemia 992

D001327 Autoimmune diseases D008223 Lymphoma 1680

D001847 Bone diseases D009101 Multiple Myeloma 1548

D002869 Chromosome aberrations D007938 Leukemia 2834

D002869 Chromosome aberrations D008223 Lymphoma 1161

D007938 Classical lissencephaly and subcortical band 
heterotopias

D054221 Leukemia 1836

D008223 Epstein-barr virus infections D020031 Lymphoma 2985

D005334 Fever D008223 Lymphoma 1878

D005334 Fever D007938 Leukemia 1184

D008223 Genetic diseases, inborn D030342 Lymphoma 25,278

D007938 Genetic diseases, inborn D030342 Leukemia 21,078

D009101 Genetic diseases, inborn D030342 Multiple Myeloma 17,621

D006086 Graft versus host disease D007938 Leukemia 1982

D006402 Hematologic diseases D007938 Leukemia 1751

D008223 HIV infections D015658 Lymphoma 1939

D007938 Myelodysplastic syndromes D009190 Leukemia 2943

D009101 Renal insufficiency D051437 Multiple Myeloma 1356

D007938 Thrombocytopenia D013921 Leukemia 1012

DisGeNET

Identifier Related disease Identifier Blood cancer type Jaccard index

C0004364 Autoimmune Diseases C0024299 Lymphoma 0.24

C0023418 Myelodysplastic Syndrome C3463824 Leukemia 0.25

C0003873 Rheumatoid Arthritis C0023418 Leukemia 0.26

C0003873 Rheumatoid Arthritis C0026764 Multiple Myeloma 0.25

https://github.com/MoreiraLAB/SicknessMiner
https://github.com/MoreiraLAB/SicknessMiner
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co-mention analysis, is also able to successfully establish DDAs. Despite the fact that co-
mention is often referred to as a lesser approach for establishing associations between 
mapped entities, SicknessMiner was able to recover close to 92% of DDAs from a well-
established web server such as DisGeNET and still contribute with 16% of new DDAs. 
These pave the way for further analysis to assess new contributions to the field of BCs 
and related diseases. DisGeNET also includes DDAs from TM approaches and yet its 
performance is not improved compared to SicknessMiner. Moreover, DisGeNET needs 
gene or variant lists related to a disease, which can be tiresome and costly.

When analyzing our graphs (Figs. 2 and 3), the most noticeable aspect was that the 
majority of results obtained were cancers (for full results tables, see Supporting Infor-
mation). Cancer is an intricate process that, despite our scientific advances, still lacks 
a complete thorough understanding. Indeed, cancer can be seen as a systemic process 
that possesses many layers in need of a system’s biology approach [27]. With this in 
mind, we focused instead on the most frequent co-mentioned or the ones with the high-
est Jaccard index non-cancerous diseases in the case of SicknessMiner and DisGeNET, 
respectively. SicknessMiner was able to retrieve nearly 6 times more non-cancerous dis-
eases. In line with the systemic take on cancer, we also believe that the results retrieved 
solely by SicknessMiner as “anemia”, “fever”, and “thrombocytopenia” are encompassed 
in such a way that can grant a preview in the usefulness of such approaches. The only 
DDA reported by DisGeNET not present in the top 100 edges from SicknessMiner was 
rheumatoid arthritis that was assessed as associated with both leukemia and multiple 
myeloma. However, SicknessMiner also retrieved AutoImmune Diseases (AID) MeSH 
term, for which rheumatoid arthritis in one [28], in the top co-mentions. Finally, it is 
noteworthy to mention that the top 30% results retrieved from DisGeNET are some 
form or variation of the original query, as “childhood leukemia” or “adult lymphoma” 
whereas SicknessMiner, comparatively, retrieves less of those variations of the original 
query, highlighting “genetic diseases, inborn”, “epstein-barr virus infections”, and “mye-
lodysplastic syndromes” in the top 30 edges. Nonetheless, the broad scope of non-can-
cerous DDAs found by SicknessMiner can provide a wider, more thorough glimpse and 
complement research lines by providing new insights of relevant DDAs.

During our work, the major problem regarding the NEN step, was the existence of 
several ontologies for diseases with the most eminent being DO [29], MeSH [30], and 
Unified Medical Language System Concept Unique Identifiers (UMLS CUI) [31]. In 
fact, results comparison can be hindered by the existence of several ontologies for which 
a direct correspondence or mapping is not always possible. A centralized ontology or 
the availability of an external mapping tool would be highly beneficial for TM pipelines 
both by enabling comparison, but also by allowing the integration of data from different 
sources onto the same model. Hence, in the future, other categories will be included in 
our model to fully take advantage of such impressive results in the DDA category, and to 
pave a new way towards accessibility in the AI-OMICS-era.

Conclusion
Accurate TM solutions/software’s are sparse and still lack the inclusion of ML/DL 
models. Herein, we introduced SicknessMiner, a novel tool encompassing TM SOTA 
methods to simultaneously perform NER and NEN. SicknessMiner shows a very high 
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performance and can retrieve 92% of all associations fetched by DisGeNET, a respected 
resource for DDAs. Despite the usefulness of obtaining relationships among diseases, 
most available models to tackle this problem tend to encompass a layer of ontology or 
some type of knowledge-based methodology. Our approach, despite seeming simpler, 
aims to harness the already available knowledge enclosed in scientific papers and uses 
text-mining tools to retrieve DDAs. We believe that through the development of Sick-
nessMiner, we were able to build a comprehensive, highly upgradeable and customiz-
able, easy to use TM pipeline to postulate new relevant DDAs.

Methods
TM approach: building sicknessminer

We used SOTA modules as the basis for the two tasks: BioBERT [17] for NER and Nor-
mCo [19] for NEN. BioBERT is a Deep Neural Network (DNN) model, a biomedical 
domain application of the Bidirectional Encoder Representations from Transformers 
(BERT) model [32]. BERT models have shown promising performances in a variety of 
NLP tasks, including NER. BioBERT provides different sets of weights3 to initialize the 
neural network, but the best results require parameter training on a distribution similar 
to the target distribution. We fitted the BioBERT parameters on the NCBI Disease data-
set.4 A similar approach was performed for the NEN task using as basis the NormCo 
[19], a simple, yet powerful, model that uses Recurrent Neural Networks (RNN) to map 
the name of the entities into the IDs in a given ontology. We started from a pre-trained 
set of weights, made available by the authors of NormCo,5 and fine-tuning the model to 
the NCBI Disease Corpus [18].

Both NER and NEN fine-tuning were performed following the experiments described 
in the corresponding papers, and code provided by the authors. In particular, the NER 
system was implemented using TensorFlow,6 an Adam optimizer with a decay rate of 
0.01, and a learning rate of 5e−5 trained for 10 epochs. The NEN system was imple-
mented using Torch,7 with the same optimizer. We used a learning rate of 5e−4 and 
100 epochs. After each epoch, the model was evaluated against a validation set (a set of 
examples distinct from the training and test sets) and stopped if no improvement of the 
model was achieved after 15 epochs.

SicknessMiner evaluation

The evaluation of SicknessMiner was performed in the test set of the NCBI Dataset 
using the BC5CDR evaluation kit to compute the precision, recall and F1-score for both 
NER and NEN. This evaluation kit is commonly used to evaluate such tasks since it 
employs the widely used BC5CDR corpus for results comparison [19]. The NEN was 
performed on the result of the NER module, which means that errors from NER may 
cascade to NEN. We opted to use the BC5CDR evaluation kit, instead of the reported 

3  https://​github.​com/​dmis-​lab/​biobe​rt.
4  https://​www.​ncbi.​nlm.​nih.​gov/​CBBre​search/​Dogan/​DISEA​SE/.
5  https://​github.​com/​IBM/​aihn-​ucsd/​tree/​master/​NormCo-​deep-​disea​se-​norma​lizat​ion.
6  https://​www.​tenso​rflow.​org.
7  https://​pytor​ch.​org.

https://github.com/dmis-lab/biobert
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
https://github.com/IBM/aihn-ucsd/tree/master/NormCo-deep-disease-normalization
https://www.tensorflow.org
https://pytorch.org
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evaluation result implemented by each system, to attain a consistent evaluation across 
all systems. The precision is given by the formula P =

tp
tp+fp , where tp is the number of 

true positives and fp is the number of false positives. The recall is given by the formula 
R =

tp
tp+fn , where fn is the number of false negatives. Finally, the F1-score is given by the 

formula F = 2∗P∗R
P+R  . Intuitively, the precision measures the confidence of the model in 

predicting the true examples, whilst the recall measures the capacity of the model to 
detect the true examples among all data; and the F1-score is a harmonic mean between 
the precision and recall, used to summarize both metrics in a single number, biased 
toward the smaller value between the two metrics.

DDAs retrieval

PubMed used queries were: “((leukemia[Title/Abstract]) OR (multiple myeloma[Title/
Abstract])) OR (lymphoma[Title/Abstract])”, giving a total of 390 K titles and abstracts 
(as of 21st of April 2021). SicknessMiner was compared to DisGeNET with the Concept 
IDs for the BCs types: C0023418, C0024299, and C0026764 for leukemia, lymphoma and 
multiple myeloma, respectively. Upon results collection, and since DisGeNET and Sick-
nessMiner use different ontologies to identify diseases, an extra mapping step was per-
formed to match results from both. DisGeNET uses the UMLS CUI and SicknessMiner 
uses both MeSH and OMIM identifiers. One caveat of mapping at the NEN step was 
related to the mismatch among the ontologies used by different sources that difficulties 
results’ comparison and/or combination. In order to overcome this shortcoming and to 
easily compare SicknessMiner and DisGeNET, we converted the DisGeNET mappings, 
originally in UMLS CUI, to MeSH or OMIM identifiers. To increase the identification 
power of our approach and to include additional identifiers descriptors, further map-
ping was performed recursively searching the xml files desc2021, supp2021, pa2021 and 
qual2021 made available via FTP by NCBI (https://​nlmpu​bs.​nlm.​nih.​gov/​proje​cts/​mesh/​
MESH_​FILES/​xmlme​sh/). All performed mappings are also available on our GitHub 
repository.

DDAs evaluation

SicknessMiner was qualitatively and quantitatively compared against the results 
obtained through DisGeNET by both graph representation and similarity/dissimilarity 
percentage calculations. The set of genes of the target and related disease were sorted 
using the Jaccard index, a measurement of similarity between two different sets (A and 
B), given by the formula |A∩B|

|A∪B|.
Depending on the methodology, we considered that diseases were related in two dif-

ferent ways. For SicknessMiner, we considered that two diseases were positively related 
to each other whenever there was a co-mention amongst the paper title and/or abstract. 
Differently, for DisGeNET, we considered that two diseases were related whenever they 
shared, at least, 20 genes. Hence, relations were extracted for the entirety of the results, 
ranked according to the decrescent number of co-mentions or shared genes for Sick-
nessMiner and DisGeNET, respectively, and the top 100 more frequent relations were 
kept for further analysis.

https://nlmpubs.nlm.nih.gov/projects/mesh/MESH_FILES/xmlmesh/
https://nlmpubs.nlm.nih.gov/projects/mesh/MESH_FILES/xmlmesh/
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