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Background
Subcellular locations of a protein is crucial in understanding its function and physico-
chemical characteristics; computational methods are necessary in the research of pro-
tein analysis since traditional protein subcellular localization methods are laborious and 
time-consuming [1]. There are a group of membrane-bound organelles in the eukary-
otic cells, such as Nucleus, Centriole, Ribosome, vesicle, Mitochondria, Golgi apparatus 
and so on [2]. Since such compartments perform various functions decided by protein 
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complexes, ascertain the location of a protein in a cell can direct protein function dis-
covery [3]. Traditional protein subcellular localization methods, such as immunofluores-
cence techniques and expression system fused with green-fluorescent protein, recognize 
the subcellular location of proteins from the vision of protein layout which is formed 
with fluorescent protein and fluorescence microscope [4]. However, those traditional 
methods are laborious and time-consuming, which become limitations to widely utilize 
[5]. In order to mitigate those limitations, a lot of computational methods were devel-
oped in the past few decades [6].

One major branch of subcellular localization prediction method is to use features 
extracted from protein sequence and a classifier that separates those features into dif-
ferent patterns to predict the protein subcellular location in cells. The method SubLoc, 
developed by Hua et al. in 2000, uses basic sequence vector with a dimension of 20 as 
there are 20 natural amino acids, and Support Vector Machine (SVM) [7] to classify pro-
teins [8]. Each unit of this method’s input vector stands for one amino acid. SVM con-
structs an optimal hyperplane in the high dimensional feature space to separate samples 
into positive group and negative group. By using SVM as sample classifier, the protein 
subcellular localization prediction problem can be solved by finding a suitable kernel 
function to define the inner product in the feature space.

In order to improve the subcellular localization prediction accuracy, many feature 
extraction methods based on protein sequence were defined, and many classifiers inher-
ited from SVM were generated. For example, the method published by Shen et  al. in 
2018 takes multi-kernel SVM as a classifier, and applies features extracted from evolu-
tion and physicochemical information other than sequence vectors as the input of clas-
sifier [9]. Extra features, such as PsePSSM, PsePP and so on, expand the feature vector 
of the model to thousands of dimensions, and extend the ability of protein representa-
tion that also includes the correlation between amino acid sites that are not adjacent to 
each other. At the same time, multi-kernel SVM enables the classifier to combine mul-
tiple kernel functions that are defined for different feature spaces into one kernel func-
tion with suitable weights [10, 11]. To improve the proficiency, Ding et al. applied Fuzzy 
Support Vector Machine (FSVM) instead of multi-kernel SVM in the classification task. 
Fuzzy support vector machine was developed by Lin et al. based on standard SVM with 
an extra value for each sample to denote its membership value, with a goal of adjusting 
the weights of outliers in the trained classification model [12, 13]. Ding et  al. applied 
KNR (Kernelized Neighborhood Representation) function, a kernel function proposed 
by them to identify protein crystallization that generates the membership values from 
input samples for FSVM [14], to fully represent the spatial distribution of feature space 
and control the interference of outliers effectively [15].

Features of proteins can be extracted not only from raw protein sequences but also 
from correlations between amino acid sites indirectly. The method proposed by He et al., 
Imbalanced Multi-Model Multi-Label Learning with Gaussian Process (IMMMLGP), is 
one of the methods that uses sequence information and Gaussian Process Prior to pre-
dict subcellular localization of protein [16]. The authors of this method applied a gauss-
ian process model to effectively exploit the correlations among multiple locations that 
are important in improving the prediction accuracy of multi-localized proteins [17, 18]. 
Furthermore, this method is robust on imbalanced data sets because optimal linear 
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combinations of various feature extraction technologies were included. Currently, a Java 
library named MULAN, which was proposed by Tsoumakas et al., offers programmatic 
application interface for multi-label learning [19]. Wei et  al. selected 11 simple multi-
label classifiers from MULAN library to fuse a mean ensemble classifier after each sin-
gle classifier was trained and clustered [20]. Overall, the general procedure of building 
up a subcellular localization prediction method is to first extract features from protein 
sequence comprehensively; then find a suitable classifier algorithm according to the fea-
ture space and adjust the classifier to fit the problem; lastly analyze the performance of 
the classifier after training and testing on some benchmark datasets.

The prediction method mGOASVM utilizes BLAST [21] search to find out the acces-
sion numbers of a given protein’s homologs, then it searches the Gene Ontology anno-
tation database for the GO terms of the given protein. The GO terms are processed 
into feature vectors, then those features are used to train a SVM classifier which can 
predict the subcellular locations of protein accurately. In addition to the achievement 
of mGOASVM, the prediction method mLASSO-Hum takes one step further. It uses 
a one-vs-rest LASSO-based classifier, instead of a SVM classifier to improve the inter-
pretability of the classification results and the robustness of classification model [22]. 
Since the GO terms have high dimensional features, classifiers using this kind of infor-
mation tend to overfit the train dataset. The LASSO-based classifier identified impor-
tant features from all the GO terms, by which the dimension of the feature vector was 
significantly reduced. With these advantages introduced by informative GO terms and 
functional classifiers, the method mLASSO-Hum outperforms several other subcellular 
localization methods on prediction accuracy. Furthermore, its result has strong inter-
pretability which provides insight into the relationship between proteins and subcellular 
locations [23].

Protein sequence information and its GO annotations are widely used in subcellu-
lar location prediction methods. For example, the method Hum-mPLoc 2.0, proposed 
by Shen et al. in 2009 established on Hum-mPLoc, is a synthesized prediction method 
that incorporates both protein sequence and GO terms [24, 25]. The method Hum-
mPLoc takes the GO terms into account but is still restricted by the shortage of acces-
sion numbers and evolution information, so the performance of this predictor is not as 
satisfactory on some specific problem sets. For this reason, Shen et al. made improve-
ments on this method by adding domain and evolution information extracted from 
protein sequence to the feature list, which boosted the performance of the classifier on 
the problem sets [26]. The method iLoc-Hum is another method that uses GO terms 
besides protein sequence [27]. Prediction methods, such as pLoc_bal-mAnimal [28] and 
pLoc-mGneg [29], apply over-sampling algorithm and under-sampling algorithm on 
imbalanced datasets to balance the training dataset, and train the prediction model with 
balanced samples in order to overcome the limitation of machine learning algorithm.

Deep neural networks extract features from input data automatically and predict the 
output of the model based on those features, which can predict the subcellular locations 
of a protein sequence without feature extraction methods. Deep learning has become 
more and more popular in the research field of artificial intelligence in the past few years 
[30]. There are a lot of deep neural network models that focus on accurate prediction of 
protein subcellular localization. The method DeepLoc, proposed by Armenteros et al. in 
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2017, takes recurrent neural network to processes the entire protein sequences, and it 
also applies attention mechanism which identifies the important protein regions for the 
subcellular localization in the neural network model [31]. With the support of the recur-
rent neural network, feature extraction methods are omitted from the construction of 
prediction method. And the attention mechanism improves the accuracy of prediction.

Before training the neural networks, protein sequences can be reformulated to gen-
erate an effective representation of the biological sequence samples. Sequence based 
subcellular localization prediction methods, such as pLoc_Deep-mHum [32], pLoc_
Deep-mEuk [33], pLoc_Deep-mvirus [34] and so on, pre-process the protein sequences 
with Pseudo Amino Acid Composition algorithm [35], then train a convolutional neural 
network or a recurrent neural network with the new generated property vectors. The 
neural network can learn the patterns in proteins more effectively from the reformulated 
properties than from the original protein sequences. The method DeepPSL, developed 
by Wei et  al., uses an adaptive skip dipeptide composition to calculate the fraction of 
adjacent residues in the protein sequences, then uses a stacked auto-encoder to encode 
those fraction properties into subcellular location labels [36]. Protein physicochemial 
properties are also used by DeepPSL as a sequence representation; those properties 
enlarge the feature space and improve the prediction accuracy [37].

Deep learning models can predict protein subcellular locations from images. The 
method ImPLoc, proposed by Long et  al., predicts protein subcellular locations from 
IHC (immunohistochemistry) images [38]. In this method, deep convolutional neural 
network extracts image features, self-attention encoder aggregates the extracted fea-
ture vectors, fully connected network predicts the location labels. Similar to ImPLoc, 
the method DeepYeast also applies deep convolutional neural network in the subcellu-
lar localization prediction from high throughput microscopy images [39]. Image pre-
processing algorithms, such as Gamma correction, Morphological Closing and so on, 
are widely used to improve the quality of images. The method proposed by Masurkar 
et al. takes this strategy to revise the result predicted from microscopy images [40]. Deep 
learning was also applied in the prediction of messenger RNA subcellular location or 
long non-coding RNA subcellular location. Those RNA subcellular localization predic-
tion methods include IncLocator [41], RNATracker [42], DeepLncRNA [43] and so on.

In this paper, we introduce a deep learning-based protein subcellular localization 
prediction method which uses bidirectional long short-term memory network as an 
encoder and takes evolution information into account. Experiment results shows that 
our method can predict protein locations accurately.

Method
Protein sequence encoding

Amino acids construct various proteins that can fulfill the basic functions in cells. Each 
kind of amino acid has a unique side chain that determines its property and action. The 
amino acid sequence represents the primary structure of a protein. The composition of 
amino acids decides the structure and function of proteins, so the amino acid sequence 
becomes the major research target to analyze proteins. Given a protein sequence P 
which consists of n amino acids, it can be defined as:
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and ai represents the amino acid at ith position in the protein.
One of the most widely used encoding algorithm in computational biology methods 

is one-hot encoding, which converts nucleotide sequence or amino acid sequence into a 
list of binary vectors [44, 45]. Each amino acid will be encoded into a binary vector with 
only one specific position being 1 and other positions being 0s based on its type. The 
one-hot encoding of protein p is:

in which pi,j is 0 or 1, and 
∑22

j=0 pi,j = 1 . The encoded matrix can be used to train neural 
network.

Position specific scoring matrix

Position Specific Scoring Matrix (PSSM), introduced by Gary Stormo et al. in 1982, is 
the consensus score and evolution information of protein sequences [46, 47]. The score 
in the matrix is the substitution probability of amino acids at specific positions in a pro-
tein sequence. High score means more frequent substitution in an alignment, which low 
value means less frequency.

PSSM can be gnerated by BLASTing the protein sequence with Position Specific Iter-
ated BLAST (PSI-BLAST) tool on the server of National Institutes of Health, of which 
the URL is: https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi?​PROGR​AM=​blastp.

The PSSM of a protein sequence p is:

in which si,j is the substitution frequency from ith amino acid in the protein sequence to 
amino acid j. Positive values indicate the substitution occurs more frequently, while neg-
ative values indicate less frequent substitution. A convolutional neural network extracts 
features from the generated PSSM. Those features represent the consensus properties of 
protein functions.

The protein sequences used in the experiment of this project had been pre-processed 
and the corresponding PSSM was uploaded into github repository (https://​github.​com/​
Paeans/​subce​llular).

Bidirectional long short‑term memory network

Long short-term memory (LSTM) network is a special kind of recurrent neural net-
work (RNN), which is widely used in the field of deep learning to process time series 
data [48]. The LSTM network has four interactive neural network layers which com-
bine the previous states and current input. The architecture of LSTM avoid the long 
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term dependency problem, and the output formulate the entire sequence of input 
data [49]. Bidirectional LSTM (BLSTM) contains two LSTM networks, of which 
one LSTM network process protein sequence from beginning to end while another 
one process the sequence from end to beginning [50]. Since the LSTM network can 
memory the states at different locations of a sequence, it was widely used to encode 
sequence samples [51].

With a one hot encoding matrix of a protein P, the LSTM network can encode the 
matrix into a state matrix which includes the functions expressed by different protein 
sites. For an input Pt , the state and output of the model node are defined as:

and Wf  , Wi , WC and Wh are the weight matrices applied on input matrix, bf  , bi , bC and bh 
are the bias matrices, ft is the forgetting coefficient, it is the remembering coefficient, Ct 
is the current state and ht is the output.

The Bidirectional LSTM network processes the protein sequence from two direc-
tions. The raw vector of amino acids is translated into another numerical vector 
which includes position information and relation information between different func-
tion sites.

Convolutional neural network

Convolutional neural network (ConvNet) utilizes regularized filters and activation 
nodes to discover patterns from input matrices; it had been widely used in image pro-
cessing, natural language processing, financial trends analysis, and so on [52–55]. Con-
vNet also has a lot of applications in the research fields of computational biology, such 
as non-coding gene function prediction [56], methylation sites classification on whole 
genome sequence [57], protein-protein interaction analysis [58], and low quality Hi-C 
data denoising [59]. ConvNet can extract features from raw input automatically, and the 
important features can be filtered out with kernel weights.

The convolutional layers are the core building blocks of ConvNet; those layers consist 
of a group of kernels that can be adjusted according to the loss values of prediction dur-
ing the backward pass [60]. The kernels in ConvNet are small size matrices. The convo-
lution function between kernel matrix ω and input volume X is:

and Ci,j is the convolution value of kernel ω on region X[i:i+m,j:j+n] . With backpropaga-
tion algorithm, the values in kernel ω can be optimized according to the value ∂L

∂ω
 which 

is the partial derivative of error L with respect to ω [30]. Figure 1 shows the architecture 
of our method.

ft = σ(Wf × [ht1 ,Pt ] + bf )

it = σ(Wi × [ht−1,Pt ] + bi)

C̃t = tanh(WC × [ht−1,Pt ] + bC)

Ct = ft × Ct−1 + it × C̃t

ht = σ(Wh × [ht−1,Pt ] + bh)× tanh(Ct)

Ci,j =

|ω|
∑

m,n=0

ωm,nXi+m,j+n
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Fig. 1  The workflow of our method. Our method composes 5 components which are sequence pre-process 
layer, bidirectional LSTM encoder, 2 convolutional neural network and prediction layer. a Sequence 
pre-process layer processes protein sequences into one-hot encoding matrix and position-specific scoring 
matrix. One protein sequence is converted into two matrix which are the inputs of following deep learning 
neural networks. b Bidirectional LSTM encoder takes an one-hot encoding matrix as input and processes 
the items in the matrix sequentially. This encoder includes two LSTM layers. One layer processes the matrix 
from beginning to end while another layer processes the matrix backwards from end to beginning. After two 
direction encoding, the original one-hot encoding matrix is encoded to 256 values. c Convolutional neural 
network. The convolutional neural network is used to extract features from pssm matrix and encoded matrix. 
Two identical neural networks are used in our method. One network learns pssm matrix and another one 
learns encoded matrix. In the network, 4 convolution layers are included to filter out main features and 3 
maxpooling layers are inserted among the convolution layers to choose outstanding features. The number 
of kernels in the 4 convolution layers are 256, 128, 64 and 32 respectively, and the kernel size of each layer is 
4 × 3, 3 × 3, 3 × 3 and 3 × 3 correspondingly. d). Prediction layer produces the possibility of each subcellular 
location. At the beginning of this layer, the outputs from previous two convolutional neural networks 
are concatenated together, then the concatenated matrix is flattened into one dimensional array. A fully 
connected network integrate those features together and Sigmoid function computes the corresponding 
possibility at each location. Based on the output possibility, the subcellular locations of a protein can be 
decided
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Activation function

Activation function transforms the weighted input into an activation output of the neu-
ral network node. This function simulates the stimulation happened between biological 
neurons [61]. In this method, rectified linear activation function (ReLU) is applied in the 
convolutional layer nodes and sigmoid function is used to generate output labels. The 
ReLU in the node is defined as:

which means the node can only be stimulated by signals that are strong enough [62]. It 
is a linear function when the input is greater than 0, but it also introduces non-linearity 
property into the neural network model at point 0 [63].

Sigmoid function translates the input into a value in the range 0 to 1. The formula of 
this function is:

with x as the input of node. When the input signal is strong, the output possibility value 
is close to 1, otherwise the output value is close to 0. On multi-label classification prob-
lems, the sigmoid function is used in the output layer of the neural network to generate 
the possibility for each output label [64].

Loss function

Loss function maps prediction values onto real values representing the distance between 
model outputs and targets. The optimization algorithms minimize the loss function dur-
ing training process. Protein subcellular localization prediction method needs to gen-
erate multiple binary labels for a protein; in order to train the model in our method 
effectively, binary cross entropy loss function is applied to compute the cross-entropy 
loss between predicted labels and true labels [65].
L2 regularization prevents model overfitting by imposing a cost on the loss function 

[66]. The L2 penalty ||ω||2
2
 is the squared magnitude of kernel in ConvNet, and this pen-

alty can regulate the weights applied on input signals [67]. The loss function with L2 
regularization is:

in which ỹi is the prediction on ith label while yi is label i with value 0 or 1, n is the size 
of labels, ω is the kernel of ConvNet while � is the coefficient of regularization penalty.

Results
Benchmark datasets

Our method was tested on two benchmark datasets, D3106 and D4802. Benchmark 
dataset D3106, generated by Shen et al. in 2009, includes 3106 protein sequences which 
are located at 14 subcellular locations [26]. The number of protein sequences located at 

r(x) = max(0, x)

S(x) =
ex

ex + 1

L = −
1

n

n
∑

i=1

(

yi × logỹi + (1− yi)× log(1− ỹi)
)

+ �||ω||22
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each subcellular location in dataset D3106 is listed in Table 1 and the detailed informa-
tion about correlations of subcellular locations is listed in Additional file 2. Benchmark 
dataset D4802, generated by Wei et al. in 2016, contains 4802 protein sequences located 
at 33 subcellular locations [20]. The number of proteins at each subcellular location in 
dataset D4802 is listed in Table 2 and the correlations between each subcellular location 
are listed in Additional file 3. The protein sequence distribution in Tables 1 and 2 shows 
that most of the proteins are located in Nucleus and Cytoplasm, and only a small number 
of proteins are in Peroxisome and Synapse; the samples in the datasets are unbalanced.

The correlations between each subcellular location of dataset D3106 which are listed 
in Additional file  2 respectively show that there are 480 proteins in D3106 which are 
located in two different subcellular, while 43 proteins exist at three different locations 
and 3 proteins are in four cell constituents at the same time. Dataset D4802 has 1354 
two-subcellular samples, and the number of those protein samples is in Additional 
file 3. From the table in Additional file 3, we can see that 401 protein sequences exist 
at Nucleus and Cytoplasm at the same time and 268 protein sequences exist at both 
Nucleus and Nucleolus, between which high correlations are exhibited.

Evaluation metrics

To evaluate the accuracy of prediction results, ranking loss, coverage and average pre-
cision are commonly used in multi-label deep learning [68, 69]. Those functions are 
defined as:

Table.1  Number of protein sequences in benchmark dataset D3106 created by Shen et al.

The dataset D3106 covers 14 subcellular which are listed at the first column of this table. And the numbers of proteins 
located at each subcellular location are listed at the second column. There are 3106 protein sequences in this dataset, and 
the total number of subcellular locations is 3681 since many certain sequences can be found in multiple locations. The 
sequences distribute at those 14 locations unevenly. 32.9% sequences are located at Nucleus and 26.3% sequences are at 
Cytoplasm, while less than 1% sequences are located at Synapse. This dataset is unbalanced. 3681 positive cases take only 
8.47% of all 3106 × 14 cases

Subcellular location Number 
of protein 
sequences

Nucleus 1021

Cytoplasm 817

Extracellular 385

Mitochondrion 364

Plasma membrane 354

Endoplasmic reticulum 229

Golgi apparatus 161

Cytoskeleton 79

Centriole 77

Lysosome 77

Peroxisome 47

Endosome 24

Microsome 24

Synapse 22

Total 3681
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Table.2  Number of protein sequences in benchmark dataset 4802 created by Wei et al.

In this dataset, 4802 protein sequences are identified in 33 subcellular locations. The first column is the name of the 
subcellular covered by this dataset, and the second column is the number of proteins located at each subcellular location. 
The total number of subcellular locations is 6198 since each sequence can be found in multiple subcellular locations. 
The sequences distribute at those 33 locations unevenly. 35.8% of sequence samples are located at Nucleus and 21.9% 
sequences are located in Cytoplasm, while only 3 sequences are identified in Golgi Trans Cisterna. The number of positive 
cases in this dataset is 6198, and the positive case rate is 3.9% (6198/(4802 × 33))

Subcellular location Number 
of protein 
sequences

Nucleus 1720

Cytoplasm 1050

Plasma membrane 836

Extracellular 487

Mitochondria 407

Endosome 342

Golgi apparatus 272

Nucleolus 268

Lysosomes 125

Endoplasmic reticulum 120

Cytoskeleton 89

Centrosome 81

Peroxisome 67

Early endosomes 52

Nuclear envelope 47

Cytoplasmic vesicles 46

Basolateral plasma membrane 29

Synaptic vesicles 28

Microtubule 26

Apical plasma membrane 16

Late endosomes 16

Golgi trans face 11

Secretory granule 10

Tight junction 9

Golgi cis cisterna 7

Medial-golgi 7

Melanosome 6

Secretory vesicles 5

Cellular component 4

ERGIC 4

Inner mitochondrial membrane 4

Transport vesicle 4

Golgi trans cisterna 3

Total 6198
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ranking loss

coverage

average precision

in those functions, n is the number of samples, yij is the ground truth label of sample i 
at label j, and ỹ is the output score matrix of all the samples. |X| is the number of ele-
ments in the set X while ||X ||0 is the number of nonzero elements in the set. Those three 
functions are defined based on the label pairs that are incorrectly ordered. For example, 
ranking loss function computes the proportion of true labels which get lower score than 
false labels, coverage function computes the average rank of lowest prediction values 
for true labels, and average precision is the average fraction of true labels among all the 
labels which are higher-ranked than the lowest true label rank. Those three functions 
will be used to evaluate the performance of our method on the test samples.

The F1 score (F1), Matthews Correlation Coefficient (MCC) and Area under the ROC 
curve (AUC) are defined to measure the quality of binary classification [70]. The bal-
anced F1 score in machine learning can measure the quality of binary classifications 
on unbalanced datasets. It is a weighted average of the precision and recall with values 
range from 0 to 1. The function of F1 score is:

with precision PPV = tp/(tp + fp) and recall TPR = tp/(tp + fn) in which tp, tn, fp and fn 
are true positive, true negative, false positive and false negative, respectively.

The MCC is a balanced measure of the quality of binary classifications even when the 
test dataset is an unbalanced dataset [71]. The value of MCC is between −1 an inverse 
prediction and 1 a perfect prediction. The MCC function for binary classification is:

and tp, tn, fp and fn are the true positive, true negative, false positive and false negative, 
respectively.

The AUC computes the area under the receiver operating characteristic (ROC) curve, 
which is created with true positive rate and false positive rate at various threshold [72]. It 
reflects the probability that a classifier generates higher scores on true instances than on 

RL =
1

n
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∑
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||yi||0(n− ||yi||0)
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1

n
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1

n

n−1
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false instances. We will compute the F1 score, MCC and AUC on each subcellular label 
to evaluate the performance of our method.

Model performance

In this experiment, we test four different models with benchmark datasets D3106 and 
D4802 and compare the prediction accuracy of those models with five existing sub-
cellular localization methods. The four models tested in this experiment are model 
BLSTM which uses 2 bidirectional LSTM layers to encode the protein sequences into 
subcellular location labels, model BLSTM plus ConvNet1 which takes 4 convolution 
layers and 3 maxpooling layers following 2 bidirectional LSTM layers, model Con-
vNet2 which utilizes PSSM of protein sequences and a 7 layer convolutional neural 
network to predict protein subcellular locations, and model BLSTM plus 2 ConvNet 
which uses BLSTM, ConvNet1 and ConvNet2. At first, we evaluate the performance 
of each model on single subcellular location prediction, then evaluate the accuracy 
of multi-subcellular locations prediction. The detailed testing results can be found in 
additional file document.

The performance of the four models on single label prediction is listed in Table 3. 
On dataset D3106, the AUC of model BLSTM reaches to 0.9242 on subcellular Lyso-
some, but the worst AUC is 0.8315 on subcellular Peroxisome. The average AUC of 
this model on dataset D3106 is 0.8841. The model BLSTM performs better on data-
set D3106 than on dataset D4802, while the best AUC on D4802 is 0.9121 which is 
worse than the best result on D3106 and the average AUC on D4802 is 0.1178 less 
than the average result on D3106. The values of MCC and F1 score also show that 
model BLSTM works better on dataset D3106.

Full list of AUC values of each subcellular location prediction on dataset D3106 is 
in Additional file 4 and statistical values are listed in Additional file 1: Table S1. The 
statistical values in Additional file  1: Table  S1 show that the model BLSTM plus 2 
ConvNet has best performance on 10 of 14 subcellular location predictions, while the 
model BLSTM plus ConvNet1 performs best on other 4 predictions. Predictions on 
8 subcellular locations have average AUC values greater than 0.9 and the standard 
deviations of those predictions are less than 0.03 on AUC values. On dataset D4802, 
all AUC values of prediction are in Additional file 5 and statistical values are listed in 
Additional file 1: Table S2. Additional file 1: Table S2 shows that the model BLSTM 

Table 3  The F1 score, MCC and AUC of subcellular location prediction generated by model BLSTM, 
BLSTM + ConvNet1, ConvNet2 and BLSTM + ConvNet1 + ConvNet2

The four models were tested on datasets D3106 and D4802. On dataset D3106, the highest F1 score and AUC are achieved 
by the model BLSTM + ConvNet1 + ConvNet2, while the model BLSTM + ConvNet1 has the highest MCC. On dataset 
D4802, the model BLSTM + ConvNet1 + ConvNet2 was the best among the four models

D3106 D4802

F1 MCC AUC​ F1 MCC AUC​

BLSTM 0.7473 0.6001 0.9242 0.7419 0.5705 0.9121

BLSTM + ConvNet1 0.7775 0.6419 0.9255 0.7801 0.6284 0.9327

ConvNet2 0.6475 0.4819 0.8785 0.6696 0.4259 0.9297

BLSTM + ConvNet1 + ConvNet2 0.7843 0.6410 0.9458 0.7842 0.6411 0.9434
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plus ConvNet1 is the best model to prediction subcellular locations based on sam-
ples in dataset D4802 and the model BLSTM plus 2 ConvNet can not out perform it. 
Model BLSTM plus ConvNet1 gets highest AUC on 30 subcellular location predic-
tions and most of those 30 predictions have AUC value greater than 0.9. However, the 
standard deviation of predictions by model BLSTM plus 2 ConvNet is lower than the 
value of predictions by model BLSTM plus ConvNet1. The standard deviation reduc-
tion shows that the extra ConvNet2 makes the model more stable.

The model BLSTM plus ConvNet1 achieves similar performance on dataset D3106 
as the model BLSTM with best AUC 0.9255, MCC 0.6419 and F1 score 0.7775. How-
ever, the best AUC of model BLSTM plus ConvNet1 on D4802, 0.9327 is better than the 
achievement on D3106, which is different from model BLSTM. The F1 score of model 
BLSTM plus ConvNet1 on D4802 is 0.7801, and the MCC is 0.6284. Overall, the model 
BLSTM plus ConvNet1 has better performance than model BLSTM. So, we can see that 
the ConvNet1 takes effects during the learning process, since the convolution layers can 
extract features from the encoded vectors. The performance of our method on single 
subcellular location prediction shows that BLSTM component in our method is the most 
important part to make accurate prediction on protein subcellular localization. In our 
method, BLSTM component encodes protein sequence into feature matrices. So the key 
factor of subcellular localization model is encoding method. This encoding method can 
also be applied to other biological computational methods, especially methods which 
take protein sequences as input.

Model ConvNet2 with PSSM as inputs is out of expectations. On dataset D3106, 
model ConvNet2 only gets 0.8785 of AUC, 0.4819 of MCC and 0.6475 of F1 score. On 
dataset D4802, the best MCC of this model is .4259 which is worse than the performance 
of this model on dataset D3106. When comparing the testing results of this model and 
BLSTM model on datasets D3106 and D4802, we can see that BLSTM model performs 
better than this model. The reason of bad performance is that the PSSM can represent 
the evolution information of proteins but can not replace the sequence information in 
subcellular location prediction. With bidirectional LSTM, protein sequences can be 
translated into matrix form which is rich of function information.

When appending ConvNet2 to the model BLSTM plus ConvNet, the accuracy of sin-
gle subcellular location prediction has no big difference. The model BLSTM plus 2 Con-
vNet gets best AUC on most of the 14 subcellular locations in dataset D3106 according 
to the results listed in Additional file 1: Table S1. However, when using t test to evaluate 
the difference between models with and without ConvNet2, we can see that the differ-
ence is not significant to prove that ConvNet2 makes the model better on single subcel-
lular prediction ( pvalue > 0.5 ). The t test results are listed in Additional file 1: Table S3. 
Testing results show similar conclusion with dataset D4802. The AUC of each subcellu-
lar location prediction has no significant changes when ConvNet2 was appended to the 
model BLSTM plus ConvNet. So, ConvNet2 has no effect to single subcellular predic-
tion. The statistical values in Additional file 1: Table S3 show that ConvNet1 makes great 
improvement to the accuracy of single subcellular location prediction on both dataset 
D3106 and dataset D4802.

The best AUC and average AUC of the joined model on dataset D3106 are 0.9458 
and 0.9046, respectively. According to the AUC values, the joined model has great 
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improvements on protein subcellular localization prediction. The F1 score and MCC of 
this model, 0.7843 and 0.6410 respectively, are also higher than the values of another 
three models. We plot the ROC curves of predictions in Figs.  2 and 3. All the ROC 
curves of fivefold cross validation are plotted in Additional file 1: Figures S1 and S2. The 
plots in supplement figures are similar to the corresponding ones in Figs. 2 and 3 since 
each model has similar performance on each fold data. Those plots show that model 
BLSTM plus ConvNet1 is better than the joined model since some predictions created 
by joined model are not good enough. The reason of accuracy deduction is that the Con-
vNet2 network introduces extra parameters into the joint model and those parameters 
affect the training process and model optimization.

When evaluating the performance of the four models as multi-label classification 
models, we can get similar conclusion from the results of ranking loss, coverage and 
average precision. The results of experiment are listed in Table 4. The model ConvNet2 
has the worst performance on both dataset D3106 and dataset D4802. And the best one 
is the joined model with average precision of 0.7901, ranking loss of 0.0758 and cover-
age of 1.2848 on dataset D3106. The prediction accuracy of the joined model on dataset 
D4802 is not as good as the accuracy on dataset D3106, but the model can still get aver-
age precision of 0.7414 and ranking loss of 0.0637. We use fivefold cross validation to 
test our method comprehensively and plot the box chart of accuracy in Figure 4. Addi-
tional file 1: Table S4 contains ranking loss, coverage and average precision of fivefold 
cross validation on dataset D3106 and D4802. All the four models were tested on data-
set D3106 and D4802 and the corresponding validation results are in Additional file 1: 
Table S4.

Discussion
The experiment results listed in Additional file 1: Table S4 show that model BLSTM plus 
2 ConvNet has highest accuracy on dataset D3106 and model BLSTM plus ConvNet1 is 
the best with dataset D4802. According to average precision and coverage results, model 
BLSTM plus 2 ConvNet performs better on dataset D3106 than on dataset D4802, but 
the ranking loss value of it on D4802 is lower than the value on D4802. The possible rea-
son of bad performance on dataset D4802 is that the unbalanced samples takes higher 
proportion in D4802 which makes model over-fitting under same training procedure. 
Samples which have high correlation between subcellular locations are suitable to our 

Table 4  The average precision, ranking loss and coverage of model BLSTM, BLSTM  +  ConvNet1, 
ConvNet2 and BLSTM + ConvNet1 + ConvNet2

On dataset D3106, the BLSTM + ConvNet1 + ConvNet2 has the best performance with lowest ranking loss, 
coverage and highest average precision which are 0.0758, 1.2848 and 0.7901, respectively. However, the model 
BLSTM + ConvNet1 + ConvNet2 is not as good as model BLSTM + ConvNet1 when tested on dataset D4802. The best 
values are marked out with bold text

D3106 D4802

RL Cov AP RL Cov AP

BLSTM 0.0967 1.5895 0.7523 0.0820 3.3916 0.6901

BLSTM + ConvNet1 0.0778 1.3113 0.7876 0.0603 2.9225 0.7453
ConvNet2 0.1294 2.0113 0.6430 0.0673 3.2868 0.6214

BLSTM + ConvNet1 + ConvNet2 0.0758 1.2848 0.7901 0.0637 3.0528 0.7414
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method. Since our method considers relations between each subcellular location as a 
feature, high correlation improves the prediction accuracy of subcellular location, of 
which the training samples are insufficient. Our method takes advantage of this relation 
and the accuracy of prediction has significant improvement.
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Fig. 2  ROC curves (Receiver operating characteristic curve) of model BLSTM, BLSTM + ConvNet1, ConvNet2 
and BLSTM + ConvNet1 + ConvNet2, on benchmark dataset D3106. Those models were tested with fivefold 
cross validation. This figure plots the result of one fold validation, and all five fold testing results can be found 
at Additional file 1: Table S3 and Additional file 1: Figure S1. a 14 curves of model BLSTM. The best one with 
AUC value 0.9242 is achieved on location prediction of subcellular Lysosome, while prediction of subcellular 
Peroxisome is the worst one with AUC value 0.8480. The average AUC value of this model is 0.8841. The plot 
shows that the curves of predictions on 13 subcellular locations, except subcellular Peroxisome, are centered 
together. b Validation of model BLSTM + ConvNet1. With an extra convolutional neural network to extract 
features from encoded protein sequences, the AUC on subcellular Lysosome and Peroxisome reached to 
0.9255 and 0.9134. The average AUC value of this model is 0.9064. All 14 curves are convergent together. 
This model is the most robust model among all the four models. c ROC curves of model ConvNet2. Different 
from curves in (b), those 14 curves are divergent. The max AUC value is 0.8785 and the min AUC value is 
0.7058. Since it only extracts features from evolution information, this model performance isn’t as good as 
the other three models. d With combination of sequence information and evolution information, model 
BLSTM + ConvNet1 + ConvNet2 improves the best AUC value to 0.9458. However, predictions of several 
subcellular locations are effected by the parameters in Convnet2, so the curves of those predictions are 
divergent from center
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The t test statistic of average precision, ranking loss and coverage is in Additional 
file  1: Table  S5. In order to make t test statistic on prediction result, the prediction 
task was taken out on sub-group testing samples multiple times. The detailed informa-
tion about average precision, ranking loss and coverage on dataset D3106 and D4802 
is listed in Additional files 6 and 7 respectively. The data in Additional file 1: Table S5 
shows that ConvNet2 has nothing to do with average precision when the method was 
tested on dataset D3106 as the change between average precision values is insignificant 
( pvalue > 0.5 ). The differences of ranking loss and coverage are significant. With Con-
vNet2, our method gets better ranking loss and coverage on dataset D3106 with signifi-
cant decrease ( pvalue < 0.5 ). However, on dataset D4802, ConvNet2 makes the situation 
worse. The reason caused this situation could be the limitation of our method on data-
sets which has less multi-cellular samples. From Additional file 1: Figure S3 we can see 
that dataset D4802 has more 2-cellular samples than dataset D3106 while 3-cellular 
samples and 4-cellular samples in D4802 are less than the ones in D3106. The percent-
ages of 3-cellular samples and 4-cellular samples in dataset D3106 are 8.17% and 0.57% 
respectively, while the percentages of those kind of samples are 2.96% and 0.22% in data-
set D4802. Since D4802 covers total of 33 subcellular locations and D3106 covers only 
14 subcellular locations, the cellular position density in D4802 is lower than the one in 
D3106. Then ConvNet2 reduces ranking loss and coverage when the dataset contains 
more multi-cellular samples and the density of cellular coverage is higher. However, this 
conclusion needs more evaluation of those models on different datasets, which could be 
done in future researches.

We compared our method with five currently available methods which had been 
tested on the benchmark datasets D3106 and D4802. The evaluation results are listed in 
Table 5. The results in this table show that our method performs better on protein sub-
cellular localization prediction than the other five methods. Our method gets average 
precision 0.7901 which is 0.08 higher than the average precision of method FSVM-KNR 
on dataset D3106, and both the ranking loss and coverage are also better than method 
FSVM-KNR. Only the coverage of our method on D4802 is worse than the coverage of 
FSVM-KNR. The t test statistic results of average precision are listed in Additional file 1: 
Table S6. The results in this table show that our method has higher average precision 

Table 5  The average precision, ranking loss and coverage of IMMMLGP, Hum-mPloc, mGOF-loc, 
MKSVM, FSVM-KNR and out method when they are tested on datasets D3106 and D4802

Our method has great improvements on subcellular localization prediction than five currently available methods when 
tested on dataset D3106. The average precision of our method is 0.7901 which is 0.08 greater than the average precision 
of FSVM-KNR. The ranking loss and coverage of our method are lower than the values of other five methods. On dataset 
D4802, our method did not get the lowest ranking loss and coverage. However, the average precision of our method on 
dataset D4802 is the highest among those six methods with 0.7414. The best values are listed out with bold text

D3106 D4802

RL Cov AP RL Cov AP

IMMMLGP 0.4190 4.3030 0.5810 0.2436 4.9772 0.5725

Hum-mPloc 0.4906 5.3170 0.5790 0.3145 5.6830 0.5644

mGOF-loc – – – 0.0606 3.0227 0.6482

MKSVM 0.1085 1.7193 0.7065 0.0662 2.9753 0.6889

FSVM-KNR 0.1071 1.7025 0.7108 0.0971 2.6339 0.6916

Our Method 0.0758 1.2848 0.7901 0.0637 3.0528 0.7414
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than the other four prediction methods on dataset D3106 and D4802. The improve-
ments on average precision by our method are significant.

Additional file 1: Table S7 is the t test statistic results of ranking loss. On dataset D3106, 
our method is better than the other four methods with great significance. Model BLSTM 
plus ConvNet1 is also better than the other four methods. On dataset D4802, our method 
has no big advantage than other four methods even it performs better than methods 
IMMMLGP, Hum-mPloc and FSVM-KNR. Our method only got similar ranking loss val-
ues with method MKSVM since the difference between them is insignificant ( pvalue > 0.5 ). 
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Fig. 3  ROC curves (Receiver operating characteristic curve) of model BLSTM, BLSTM + ConvNet1, ConvNet2 
and BLSTM + ConvNet1 + ConvNet2, on benchmark dataset D4802. This figure plots one fold validation 
result. Detailed information about the fivefold cross validation results can be found at Additional file 1: 
Table S4 and Figure S2. Those plots shows that those four models perform worse on dataset D4802 than on 
dataset D3106. a 33 curves of model BLSTM. The best AUC is 0.9121, however the worst one is 0.7072. The 
average AUC value of this model is 0.7696. The plot shows that a small group of curves are centered together, 
while other curves are divergent from one another. b 33 curves of model BLSTM + ConvNet1. Two curves 
around the diagonal show that the accuracy of prediction on two subcellular positions is bad. The average 
AUC value of this model is 0.8543 which is better than the average value of model BLSTM. c ROC curves 
of model ConvNet2. This plot is similar to the (c) in Figure2 but with several curves under diagonal. So the 
prediction on some subcellular locations isn’t better than random guess. The max AUC value is 0.8986 and 
the min value is 0.5080. The average AUC value is 0.6806. d In this plot, there is still one curve that is under 
diagonal. However, the best AUC value reaches to 0.9434 and the average AUC value reaches to 08594. In 
general this model performs better than the other three models
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When compared with method mGOF-loc, our method is worse than mGOF-loc. The 
ranking loss of our method increases to 0.0637 with a difference of 0.0031 from ranking 
loss of mGOF-loc and t test shows that this difference is significant ( pvalue < 0.05 ). The t 
test statistic results of coverage, which are listed in Additional file 1: Table S8, deliver the 
same conclusion as the statistic results of ranking loss. Our method outperforms methods 
IMMMLGP, Hum-mPloc, MKSVM and FSVM-KNR on dataset D3106 with significant 

0.60

0.65

0.70

0.75

0.80

A
P

AP, RL, COV on dataset D3106

0.60

0.65

0.70

0.75

0.80
AP, RL, COV on dataset D4802

0.06

0.08

0.10

0.12

0.14

R
L

0.06

0.08

0.10

0.12

0.14

BLSTM
BLSTM ConvNet1 ConvNet2

BLSTM ConvNet1 ConvNet2
1.0

1.5

2.0

2.5

3.0

3.5

C
O
V

BLSTM
BLSTM ConvNet1 ConvNet2

BLSTM ConvNet1 ConvNet2
1.0

1.5

2.0

2.5

3.0

3.5

a

c

e

b

d

f

Fig. 4  Box chart of prediction accuracy on benchmark datasets D3106 and D4802. The three plots 
in left column are box charts of average precision (AP), ranking loss (RL), coverage (COV) on dataset 
D3106, and the plots in right column are box charts of corresponding results on dataset D4802. Model 
BLSTM + ConvNet1 + ConvNet2 is the best one among the four models with highest average precision 
and smallest divergence on dataset D4802. However, the ranking loss and coverage of this model is greater 
than the ones of model BLSTM + ConvNet1. On dataset D3106, model BLSTM + ConvNet1 + ConvNet2 
is better than the other three models in average precision, ranking loss and coverage. In average precision 
and coverage, those four models perform better on dataset D3106 than on dataset D4802. The ranking 
loss values of those four models on dataset D4802 are lower than the values on dataset D3106. a This plot 
shows the average precisions of model BLSTM, model BLSTM + ConvNet1, model ConvNet2 and model 
BLSTM + ConvNet1 + ConvNet2 when they are tested on dataset D3106 with five-fold cross validation. 
Model BLSTM + ConvNet1 + ConvNet2 has the greatest average precision than the other three models, 
while model BLSTM + ConvNet1 has stable performance. b The average precisions of those four models 
when they are tested on dataset D4802. Model BLSTM + ConvNet1 has the best performance on this 
dataset, however model BLSTM + ConvNet1 + ConvNet2 is more stable on this dataset. c The ranking loss 
values of those four models when they are tested on dataset D3106. d The ranking loss of them with dataset 
D4802. e The coverage results of predictions by model BLSTM, model BLSTM + ConvNet1, model ConvNet2 
and model BLSTM + ConvNet1 + ConvNet2 on dataset D3106. f The coverage results of predictions by those 
four models on dataset D4802
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decrease in coverage values ( pvalue < 0.05 ). However our method is only better than 
methods IMMMLGP, Hum-mPloc on dataset D4802. It has similar coverage as methods 
MKSVM and mGOF-loc with insignificant differences ( pvalue > 0.05 ), but it is worse than 
method FSVM-KNR by an increase of 0.4 on coverage. So, from those results, we can see 
that our method performs well on D3106 while it does not have good performance on 
D4802, which means it has limitations on some kinds of datasets, such as datasets have few 
multi-cellular samples and datasets have low cellular density. Previous research shows that 
almost half of human proteins localize to multiple subcellular locations [73], so our method 
has potential to perform well at real biological problems.

Conclusion
The experiment results in the previous section show that bidirectional LSTM and Con-
vNet are able to accurately predict protein subcellular localization with information of 
protein sequences and evolution matrices. By comparing our method with five currently 
available methods, it is obvious that our method outperforms those five. Therefore, the 
method we proposed is excellent in protein subcellular localization prediction. With the 
prediction results of our method, the locations and functions of proteins can be refined 
to remove bias or errors existed in traditional methods. Also, predictions at different 
stage can find out the changes of protein locations, which can be used to make biological 
pathway analysis. At the same time, we also realize that our method performs worse on 
some datasets due to the composition of training samples. For example, the performance 
on dataset D4802 is not as good as the performance on dataset D3106 because the 
unbalance property of samples and the high correlations between subcellular locations.

Furthermore, our experiments show that evolution information alone is insufficient to 
classify the proteins into groups, and amino acid composition of proteins is crucial in the 
prediction of protein subcellular localization. However, it is remain reasonable to apply 
evolution information in biological prediction problems as an additional information, 
since our method which applies evolution information achieves small improvements on 
prediction accuracy of multi-cellular localization, especially when a dataset has a large 
proportion of multi-cellular samples. Besides PSSM, there are also other forms of evo-
lution information such as mutation rate, mutation bias, phylogenetic tree, and so on. 
Those kinds of information are also helpful to biological predictions.

Sequence information encoding is very important to the success of biological predic-
tion methods. The performance of model BLSTM shows that protein sequence encoding 
method is essential in deep learning-based protein subcellular localization prediction 
methods. There is an increasing number of deep learning models that are being pro-
posed to process sequence data, which are beneficial to protein classification. However, 
a fine encoding method is pivotal in translating raw protein sequences into learn-able 
matrices in order to utilize the proposed models in bioinformatics research.

Our method can not only predict subcellular locations of proteins, but also can predict 
other properties of proteins based on protein sequence and evolution information. For 
example, our method can predict protein functions besides locations. Novel application 
such as protein structure prediction can be developed based on the architecture of our 
model. However, this needs further work to make it work.
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