
Comparison of sequencing data processing 
pipelines and application to underrepresented 
African human populations
Gwenna Breton1* , Anna C. V. Johansson2, Per Sjödin1, Carina M. Schlebusch1,3,4 and Mattias Jakobsson1,3,4* 

Abstract 

Background: Population genetic studies of humans make increasing use of high-
throughput sequencing in order to capture diversity in an unbiased way. There is 
an abundance of sequencing technologies, bioinformatic tools and the available 
genomes are increasing in number. Studies have evaluated and compared some of 
these technologies and tools, such as the Genome Analysis Toolkit (GATK) and its “Best 
Practices” bioinformatic pipelines. However, studies often focus on a few genomes of 
Eurasian origin in order to detect technical issues. We instead surveyed the use of the 
GATK tools and established a pipeline for processing high coverage full genomes from 
a diverse set of populations, including Sub-Saharan African groups, in order to reveal 
challenges from human diversity and stratification.

Results: We surveyed 29 studies using high-throughput sequencing data, and 
compared their strategies for data pre-processing and variant calling. We found that 
processing of data is very variable across studies and that the GATK “Best Practices” are 
seldom followed strictly. We then compared three versions of a GATK pipeline, differing 
in the inclusion of an indel realignment step and with a modification of the base qual-
ity score recalibration step. We applied the pipelines on a diverse set of 28 individuals. 
We compared the pipelines in terms of count of called variants and overlap of the 
callsets. We found that the pipelines resulted in similar callsets, in particular after callset 
filtering. We also ran one of the pipelines on a larger dataset of 179 individuals. We 
noted that including more individuals at the joint genotyping step resulted in different 
counts of variants. At the individual level, we observed that the average genome cover-
age was correlated to the number of variants called.

Conclusions: We conclude that applying the GATK “Best Practices” pipeline, including 
their recommended reference datasets, to underrepresented populations does not 
lead to a decrease in the number of called variants compared to alternative pipelines. 
We recommend to aim for coverage of > 30X if identifying most variants is important, 
and to work with large sample sizes at the variant calling stage, also for underrepre-
sented individuals and populations.
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generation sequencing (NGS), High coverage genomes, Underrepresented ancestry, 
Comparison of pipelines

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Breton et al. BMC Bioinformatics          (2021) 22:488  
https://doi.org/10.1186/s12859-021-04407-x BMC Bioinformatics

*Correspondence:   
gwenna.breton@ebc.uu.se; 
mattias.jakobsson@ebc.uu.se 
1 Human Evolution, 
Department of Organismal 
Biology, Evolutionary Biology 
Centre, Uppsala University, 
Norbyvägen 18C, 752 
36 Uppsala, Sweden
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-4100-9963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04407-x&domain=pdf


Page 2 of 24Breton et al. BMC Bioinformatics          (2021) 22:488 

Background
Describing and understanding diversity has been a focus of biology for a long time. In 
particular, genetic diversity is informative about the demographic and selective pro-
cesses which have shaped all species—including humans. Over the last few decades, our 
understanding of genetic diversity has increased dramatically, thanks to methodologi-
cal developments. However, many methods—such as single nucleotide polymorphisms 
(SNPs) arrays—suffer from ascertainment bias and bias towards known variants. This 
is particularly problematic when investigating diversity in non-model organisms or in 
populations highly diverged from the population(s) the SNPs were discovered in. In 
humans, ascertainment bias is limiting our understanding of the diversity in populations 
of Sub-Saharan African ancestry. The development of resequencing and high-through-
put sequencing (HTS) technologies enabled us to come closer to the “true” diversity 
while being more affordable and less time intensive than other methods such as Sanger 
sequencing of entire genomes or de novo assemblies. However, even if we assume that 
all the necessary information about an individual’s genome is contained in the raw HTS 
data (i.e. in the raw reads), there are many steps and decisions between that raw data 
and a set of non-ascertained variants. The key steps are: mapping to a reference genome; 
quality control and processing of the resulting files (often in BAM format); variant call-
ing; and callset refinement. Numerous softwares and algorithms are available to perform 
each of these tasks [1, 2].

The challenge can be daunting, both when deciding on a workflow to process new HTS 
data, and when assembling a comparative dataset to put the new results into perspec-
tive. There are two main options in terms of assembling a comparative dataset: either the 
data is provided as the end result (i.e. a variant file, often in VCF format) or the raw data 
is available. In the latter case, this means that the data has to be processed again, a com-
putationally intensive and time-consuming process. At the same time, we are starting 
to realize that combining datasets at the end stage (VCF) without accounting for differ-
ences in the processing workflows can lead to biases and signals which have no biologi-
cal meaning but are solely due to differences in sequencing technologies or processing 
steps [3].

There is presently a deficiency of comparisons of processing workflows, and thus many 
questions remain open in terms of which choices matter. A few studies have compared 
and evaluated workflows, e.g. Hwang et al. [4] compared seven short-read mappers and 
ten variant callers (including three Genome Analyses Toolkit (GATK) [5] variant call-
ers) on whole genome data for two individuals. The authors focus on minimizing false 
negatives and work with only two individuals (one of European and one of Sub-Saharan 
African ancestry). One of the results was that the common combination of alignment 
with bwa [6] (mem algorithm) and variant calling with GATK’s HaplotypeCaller (HC) 
does not perform worse compared to other methods—for example methods combining 
several variant callers. Another study [7] focused on establishing a standard BAM pro-
cessing pipeline. However, the focus in this study was less on the development of the 
pipeline than on evaluating whether the pipeline run at different sequencing centers 
gives the same results. Moreover, it was targeted at very large datasets (tens of thou-
sands of genomes), a sample size that few studies obtain. In a third study [8], different 
workflows were applied to a dataset of low-coverage genomes; the union of the callsets is 
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the input for downstream filtering and analyses (together with data from high coverage 
genomes, exomes and SNP arrays).

In this study, we focus on the effect of applying different workflows on a dataset con-
sisting of 28 high-coverage genomes (minimum depth after processing: 18.9X). Moreo-
ver, we chose to focus on the GATK, a set of tools to discover variants in HTS data. 
The GATK provides tools to perform different tasks, and proposes “Best Practices work-
flows” that are developed specifically for certain types of data, such as the “Germline 
short variant discovery (SNPs + Indels)” [9, 10]. In the following, when writing the “Best 
Practices workflow” we refer to the “Germline short variant discovery (SNPs + Indels)” 
workflow. The Best Practices workflow details the different steps of processing pipelines, 
with the associated tools (of which not all are GATK tools) and parameter values. One 
advantage of following the GATK’s Best Practices workflow is that it is well documented 
and tested, and used in many studies, in particular those focusing on humans. The Best 
Practices workflow might however not be optimal for all human studies, as it requires 
a number of reference datasets that are ascertained towards specific human ancestries, 
in particular for one step of the BAM processing (Base Quality Score Recalibration, or 
BQSR) and one callset refinement step (Variant Quality Score Recalibration, or VQSR). 
Moreover, the Best Practices are constantly evolving, which can complicate the aggrega-
tion of data processed using different versions of the Best Practices.

We started by reviewing the processing workflows of 29 HTS studies, most of them 
using GATK tools. The goal of this review was to investigate whether the Best Practices 
are followed in practice and which GATK tools are most used. We then compared three 
HTS processing pipelines on a set of 28 individuals of diverse ancestries—with a focus 
on Sub-Saharan African populations. We compared the 2019 version of the Best Prac-
tices (using GATK version 3), the 2015 version of the Best Practices, and a pipeline that 
contains most of the Best Practices steps but in which the BQSR step is replaced by a 
custom BQSR step, the purpose of which was to diminish the possible effect of using 
ascertained reference datasets. We then compared the last pipeline with an identical 
pipeline except that it comprised more individuals at the joint genotyping step [11]. 
Finally, we tested the correlation between coverage and number of variants, to discuss 
whether all “high coverage” genomes (≥ 20X) are equivalent (for example in terms of 
number of called variants).

Results
Literature survey

We reviewed the processing pipelines of 29 HTS studies, 23 of which focus on human 
populations and six on other mammals (listed in Table 1).

We summarized the information for some processing steps in Table 2 (see Additional 
file 1 for more details): BAM processing (indel realignment and GATK’s BQSR), variant 
calling (GATK’s HaplotypeCaller (HC) and GenotypeGVCFs or GATK’s UnifiedGeno-
typer (UG)), and callset recalibration (GATK’s Variant Quality Score Recalibration 
(VQSR) or hard filtering).

“BQSR” is a step in the BAM processing pipeline, where base quality scores are recali-
brated, to correct for biases due to the sequencing. It requires a set of known variants, 
for example dbSNP [40].
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“Hard filtering” designates a callset filtering strategy where variants are kept or 
removed depending on user defined thresholds for variants’ annotations of inter-
est. VQSR, on the other hand, is an approach that learns the features of “true” vari-
ants and gives a score to the remaining variants. It requires several datasets: a “truth 
resource” (used here: HapMap 3 and polymorphic sites from the Omni 2.5  M SNP 
array), a “training resource” (used here: 1000G) and a “known sites resource” (used 
here: dbSNP). The truth and the training resources are used to train the recalibra-
tion model which tries to characterize the relationship between the variants’ anno-
tations and the probability that a variant is a true variant or an artefact. The known 
sites resource is used to stratify metrics (such as the transition to transversion ratio) 
between variants found in the known sites resource and new variants. The user then 
decides on a “tranche threshold”. For example, a tranche threshold of 99.9 means that 
99.9% of the variants in the truth set will be included—and all of the variants which 
have a score as high as these 99.9% will pass the filter. For more background, see [9, 
10, 41].

Table 1 List of studies included in the literature survey

Studies are ordered first by species (Human / other), then by date, and finally by alphabetical order of first author’s last name

Study Species Populations

[12] Human Malay

[13] Human Khoe-San

[8] Human Worldwide

[14] Human Dane

[15] Human Icelandic

[16] Human Japanese

[17] Human UK

[18] Human Qatari

[19] Human Chadian, Greek, Lebanese

[20] Human Aboriginal Australian

[21] Human Worldwide

[22] Human Worldwide

[23] Human Swede

[24] Human South African

[25] Human Peruvian

[26] Human Korean

[27] Human Nepalese

[28] Human US, Finn, Estonian

[29] Human Japanese

[30] Human Various African

[31] Human Various African

[32] Human North African, Basque, Iraqi

[33] Human Worldwide

[34] Macaque –

[35] Wolf, dog –

[36] Dog –

[37] Dog –

[38] Macaque –

[39] Green monkey –
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Among the 29 HTS studies, the pipelines are very diverse (Table 2 and Additional 
file 1). Of the 23 studies on human data, only four have the BQSR, HC + GenotypeG-
VCFs and VQSR steps; of these, three also ran the indel realignment step with GATK 
while the fourth did it with another software. Of the six studies on other mammals, 
two have the BQSR, HC + GenotypeGVCFs and VQSR steps. We observe that the 
majority of the included studies use GATK for at least one step (20 from 23 human 
studies, six from six studies with other mammals); however this is possibly an effect 
of our strategy for selecting studies. 13 of the 23 human studies use GATK for at least 
two steps. Of the human studies, we could determine with certainty that GATK was 

Table 2 Overview of the steps in 29 HTS studies

BQSR Base Quality Score Recalibration, HC HaplotypeCaller + GenotypeGVCFs, VQSR Variant Quality score Recalibration, UG 
UnifiedGenotyper
BP GATK tool in the Best Practices in 2019
* Species other than human
# Reports using BQSR, HC + GenotypeGVCFs and VQSR
1 Uncertainty as to which GATK variant caller was used (HC or UG)
2 Various uncertainties or use of alternative software for indel realignment or BQSR

Study Indel realignment BQSRBP HCBP UG Other 
variant 
caller

VQSRBP Hard filtering

[12] No No No No Yes No Yes

[13] Yes No No No Yes No Yes

[8] Yes Yes NA NA NA NA NA

[14]# Yes Yes Yes No No Yes No

[15] Yes Yes Maybe1 Maybe1 No No Yes

[16] No No Yes No Yes No Yes

[17] Yes Yes No Yes Yes Yes No

[18] Yes?2 Yes?2 Maybe1 Maybe1 No No Yes

[19] NA NA No No Yes NA NA

[20] Yes No No No Yes No Yes

[21] No No No Yes No No No

[22] No No No No Yes No No

[23]# No Yes Yes No No Yes No

[24]# Yes (other)2 Yes Yes No Yes Yes Yes

[25] Yes Yes Yes No No No No

[26] Yes (NA)2 Yes (NA)2 No Yes No No Yes

[27] Yes Yes No No Yes No Yes

[28] cohort 1 No Yes (other)2 No No Yes No Yes

[28] cohort 2 No No Yes No No Yes Yes

[29]# Yes Yes Yes No No Yes Yes

[30] No No No Yes No No No

[31] Yes Yes No Yes No Yes No

[32] Yes Yes No Yes No Yes No

[33] No No Yes No No Yes Yes

[34]* Yes Yes No Yes No No Yes

[35]* Yes Yes No Yes No No Yes

[36]*# No Yes Yes No No Yes No

[37]*# No Yes Yes No No Yes No

[38]* Yes No Yes No No No Yes

[39]* Yes Yes Yes No No No Yes
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used for indel realignment in 11 studies; BQSR in 11 studies; HC for eight studies; 
VQSR for nine studies; and UG for six studies.

The majority of variants are identical for different BAM processing (for a given set 

of individuals)

We compared three BAM processing pipelines (pipelines 1, 2 and 3 in Fig.  1). 
“BP2019” is the output of the Best Practices workflow in 2019. The “BP2015” workflow 
includes an extra step, indel realignment, corresponding to the Best Practices in 2015. 
That step is redundant with the HC variant caller (because HC includes local remap-
ping in regions where there seem to be variants) but was not removed from the Best 
Practices directly after the introduction of HC. The “3mask” workflow has a custom 
BQSR step (as in [3], and similar to what is done when working with organisms lack-
ing reference datasets [34, 42, 43]). We performed SNP VQSR with a tranche thresh-
old of 99.9 for each of these callsets, resulting in “BP2019vqsred”, “BP2015vqsred” and 
“3maskvqsred”.

The three pipelines were applied to a set of 28 high coverage genomes (average 
genome depth, with duplicates, directly after mapping: 19.6X–74.6X, mean across 
individuals: 39.3X, Additional files 2, 3) [8, 21, 44]. The individuals represent five dif-
ferent ancestries, with a focus on Sub-Saharan African ancestries: the dataset includes 
six individuals with European background; four Yoruba individuals (western Africa); 
four Dinka individuals (eastern Africa); seven Khoe-San individuals (five Ju|’hoansi, 
two #Khomani), representing hunter-gatherers from southern Africa; and seven rain-
forest hunter-gatherers (two Biaka, five Mbuti) from central Africa.

Fig. 1 Three (plus one) BAM processing and variants calling pipelines. The dashed lines are relative to the 
comparisons mentioned in the text. Ind. = individuals
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We collected various metrics of the callsets using Picard’s CollectVariantCallingMet-
rics, before and after VQSR, for the entire callset and for each individual. Some of these 
metrics are reported in Table 3.

Since we do not have a bona fide true callset to compare our results to, we decided 
to consider “BP2019” as the callset to compare the other callsets to, hence all com-
parisons are relative to “BP2019” (if not specified otherwise). Before VQSR, the callset 
for “BP2019” consists of 20,301,167 biallelic SNPs, 85,510 multiallelic SNPs, 2,599,873 
simple indels, 737,325 complex indels (see [45] for a definition of complex indels), and 
7,975,044 singletons (variants appearing only once in the whole sample—depending 

Table 3 Metrics in “BP2019”, “BP2015”, and “3mask”, at callset and individual level, before and after 
VQSR

Only SNPs are considered after VQSR

Metrics BP2019 BP2015 3mask

Counts for the entire callset

Before VQSR Biallelic SNPs 20,301,167 20,301,911 20,312,127

Multiallelic SNPs 85,510 85,517 85,725

Simple indels 2,599,873 2,601,041 2,601,657

Complex indels 737,325 738,010 737,834

Singletons 7,975,044 7,974,844 7,980,292

Biallelic SNPs in dbSNP (%) 96.68% 96.68% 96.67%

Simple indels in dbSNP (%) 94.30% 94.30% 94.29%

After VQSR Biallelic SNPs 19,619,238 19,596,831 19,591,088

Multiallelic SNPs 75,300 75,132 75,115

Singletons (SNPs) 6,930,326 6,921,952 6,923,568

Filtered SNPs 692,139 715,465 731,649

Biallelic SNPs in dbSNP (%) 96.87% 96.88% 96.88%

Average (and standard deviation (stdev)) per individual

Before VQSR Biallelic SNPs (average) 4,443,858.18 4,444,067.04 4,445,566.93

Biallelic SNPs (stdev) 438,889.45 438,945.07 438,990.07

Biallelic SNPs (min) 3,442,414 3,442,476 3,443,131

Biallelic SNPs (max) 4,916,206 4,916,439 4,917,928

Multiallelic SNPs (average) 32,357.82 32,354.79 32,414.75

Multiallelic SNPs (stdev) 3943.62 3943.33 3961.22

Simple indels (average) 508,131.89 508,474.93 508,597.68

Simple indels (stdev) 46,623.55 46,488.14 46,465.10

Complex indels (average) 346,817.75 347,534.14 347,547.21

Complex indels (stdev) 25,452.05 25,499.59 25,401.04

Singletons (average) 284,823.00 284,815.86 285,010.43

Singletons (stdev) 69,889.22 69,906.60 69,862.20

After VQSR Biallelic SNPs (average) 4,302,149.93 4,301,534.07 4,299,853.14

Biallelic SNPs (stdev) 429,408.28 428,949.56 428,861.99

Biallelic SNPs(min) 3,393,736 3,394,064 3,393,934

Biallelic SNPs (max) 4,744,903 4,743,518 4,741,343

Multiallelic SNPs (average) 28,690.14 28,664.71 28,645.43

Multiallelic SNPs (stdev) 3028.99 3022.11 3019.16

Singletons (SNPs, average) 247,511.64 247,212.57 247,270.29

Singletons (SNPs, stdev) 62,155.76 61,953.47 61,967.99

Filtered SNPs (average) 145,375.93 146,223.04 149,483.11

Filtered SNPs (stdev) 46,580.10 46,955.26 48,246.66
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on the type, these are a subset of the SNPs or indels) (Table  3). 3.32% of the biallelic 
SNPs and 5.70% of simple indels are absent from dbSNP v.151. Similar counts are 
obtained in “BP2015” and “3mask”; the largest difference is for the number of multi-
allelic SNPs in “3mask”, which is increased by 0.2514% compared to “BP2019” (i.e. 
count in “3mask” = 1.002514 * count in “BP2019”). “BP2015” and “3mask” have higher 
counts than “BP2019” for all but the number of singletons, where “BP2015” has a count 
decreased by 0.0025% compared to “BP2019”. The difference between “3mask” and 
“BP2019” is larger than between “3mask” and “BP2015”, except for the number of com-
plex indels that shows the reverse tendency.

After running VQSR for SNPs, respectively 3.36% of biallelic SNPs and 11.94% of 
multiallelic SNPs are filtered out in “BP2019”. The corresponding percentages for 
“BP2015” are 3.47% and 12.14%, and for “3mask” they are 3.55% and 12.38%. Thus, the 
fraction of filtered SNPs is larger in “BP2015” and in “3mask” than in “BP2019”. This 
reverses the tendency of more SNPs in “BP2015” and “3mask” before VQSR: after VQSR, 
there are less bi- and multiallelic SNPs and less singletons in “BP2015” and “3mask” 
than in “BP2019”. In fact, “BP2015” has 3.37% more filtered variants and “3mask” 5.71% 
(these large differences with “BP2019” are a combination of less variants to start with 
in “BP2019” and a smaller proportion of filtered out variants in “BP2019”). After SNP 
VQSR, “3mask” has 0.14% less biallelic SNPs, 0.25% less multiallelic SNPs, and 0.10% 
less SNP singletons than “BP2019”; the corresponding percentages for “BP2015” are 
0.11%, 0.22% and 0.12% less than “BP2019”. The proportion of biallelic SNPs absent from 
dbSNP v.151 decreases to 3.13% in “BP2019”.

We also looked at individual metrics (Table  3 and Additional file  3). On average in 
“BP2019”, an individual has 4,443,858 (stdev: 438,889.45) biallelic SNPs (by “biallelic 
SNPs” we mean than an individual’s genotype is different from homozygous reference, 
at a position with one alternative allele in the callset); 32,358 (stdev: 3,943.62) multial-
lelic SNPs (same definition as above except for positions with two or more alternative 
alleles in the callset); 508,132 (stdev: 46,623.55) simple indels; 346,818 (stdev: 25,452.05) 
complex indels; and 284,823 (stdev: 69,889.22) singletons. The individual with the high-
est number of biallelic SNPs (4,916,206) is a Ju|’hoansi (SGDPJUH1) while the individual 
with the lowest number of biallelic SNPs (3,442,414) is a French sample (HGDPFRE4). 
Similarly, it is always a French sample that has the lowest counts for multiallelic SNPs, 
simple and complex indels and singletons. A Khoe-San individual has the highest counts 
for multiallelic SNPs and simple indels; a Biaka individual (rainforest hunter-gatherer) 
has the highest count for the number of singletons; and, surprisingly, a non-African, the 
1000GCEU2 individual (European ancestry from Utah, 1000 Genomes dataset) has the 
highest count of complex indels.

Comparing “3mask” and “BP2015” to “BP2019” we observed similar patterns for aver-
ages per individual as for the entire callset: in general, higher counts in “3mask” and 
“BP2015” (except for the count of multiallelic SNPs and singletons in “BP2015”), the larg-
est difference being an increase of 0.2103% for the average number of complex indels in 
“3mask”. The increase in variants per individual in “3mask” compared to “BP2019” is sig-
nificant for the five types of variants considered (one-sided paired t-test, p-values: 2*10–

12 for biallelic SNPs, 1*10–11 for multiallelic SNPs, 2*10–4 for singletons, 3*10–5 for simple 
indels and 2*10–7 for complex alleles). The increase in “BP2015” compared to “BP2019” 
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is significant for three types of variants (one-sided paired t-test, p-values: 3*10–10 for 
biallelic SNPs, 4*10–5 for simple indels and 2*10–12 for complex alleles); for multiallelic 
SNPs and singletons there is no significant difference. The SNP VQSR filter removes 
more variants in “3mask” and “BP2015” than in “BP2019”: 0.5827% more filtered SNPs 
in “BP2015” and 2.8252% more in “3mask”. Consequently, after SNP VQSR the average 
number of bi- and multiallelic SNPs and singletons are highest in “BP2019”: “3mask” 
has 0.0534% less biallelic SNPs, 0.1559% less multiallelic SNPs, and 0.10% less single-
tons than “BP2019”. The corresponding percentages for “BP2015” are 0.0143%, 0.0886%, 
and 0.12% (less than “BP2019”). The decrease in variants in “3mask” and “BP2015” com-
pared to “BP2019” is significant (one-sided paired t-test, p-values: respectively 2*10–10 
and 5*10–4 for biallelic SNPs, 2*10–11 and 6*10–8 for multiallelic SNPs, 4*10–4 and 9*10–4 
for singletons).

The similarities of counts for different features, for the entire callset and by individual, 
after three different ways of processing BAM files, suggest that the callsets are similar. 
We investigated this using GATK CombineVariants. Figure  2A and Additional file  4A 
show the partitioning of all variants (SNPs and indels). Before VQSR, the majority of 
the variants (99.82% of all variants combined) are identified by the three approaches. In 
particular, 99.94% of “BP2019” variants are in the intersection. The next largest fraction 
is variants found only in “3mask” (20,234 variants or 0.0845% of the combined variants). 

Fig. 2 Most variants are common to “BP2019”, “BP2015” and “3mask”. Venn diagrams of the variants in 
“BP2019”, “BP2015” and “3mask” before VQSR (A and B) and after VQSR (C and D). The diagrams are not to 
scale. The percentages in parenthesis represent the percentage of all variants combined which are in the 
intersection. A All variant sites, before VQSR. B Biallelic SNPs, before VQSR. C All variant sites, after VQSR. D 
Bbiallelic SNPs, after VQSR
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The pair of VCFs sharing most variants is “BP2015” and “BP2019”, followed by “3mask” 
and “BP2015”. The “3mask” approach results in the most private variants and “BP2015” 
the least. When summing all variants for each of the approaches—based on the Combi-
neVariants output—we obtain higher counts than those reported in Table 3. This is due 
to complex variation, for example at the same position one of the VCFs has a SNP and 
the other has an indel. We verified the patterns described above by using GATK Combi-
neVariants on the biallelic SNPs only (Fig. 2B, Additional file 4B). The same patterns are 
observed.

Finally, we performed the same analysis after VQSR. The results for all variants are in 
Fig. 2C and Additional file 4C, and for biallelic SNPs in Fig. 2D and Additional file 4D. 
Similar tendencies are observed for all variants and for biallelic SNPs. Considering bial-
lelic SNPs, 96.23% of all variants are retained in the three VCFs after VQSR; 3.29% are 
removed from the three VCFs. The remaining 0.49% are variants found in only one 
VCF or variants found in two or three VCFs that have different filtering status. After 
VQSR, “BP2019vqsred” has almost three times more private biallelic SNPs (33,088) than 
“3maskvqsred” and “BP2015vqsred” (respectively 12,879 and 12,124). The same pair of 
VCFs than before VQSR share the most variants: “BP2015” and “BP2019”.

The overlap between the three pipelines is larger when restricting the analysis to 
regions of the genome accessible to short-read sequencing (1000 Genomes accessibility 
mask) (Additional file 5). Before VQSR (Additional file 5A, B), the results are qualita-
tively similar to those presented in Fig. 2 (e.g. most private variants in “3mask”). After 
VQSR (Additional file 5C, D), the tendencies are different, with roughly three times as 
many private variants in “3maskvqsred” and “BP2015vqsred” than in “BP2019vqsred”.

We were interested in a possible effect of the population background (or ancestry) on 
the differences between the callsets. We plotted the difference in total number of SNPs 
by individual (kept after VQSR) between “3maskvqsred” and “BP2019vqsred”. Figure 3A 
shows the corresponding boxplots for each ancestry. The medians are similar in the 
five ancestries, and there is less variation in the Khoe-San and in the rainforest hunter-
gatherers (RHG). When plotting according to dataset (Fig. 3B) the effect is much clearer. 
The difference between “3mask” and “BP2019” is smallest for the individuals from 
[44]-referred to as HGDP dataset- (average: + 0.004%), followed by the “1000 Genomes” 
two individuals (average: − 0.038%), and finally the individuals from the Simon Genome 
Diversity Project (SGDP) dataset (average: − 0.068%). Similar tendencies are observed 
for the difference in total number of indels by individual: the dataset impacts more the 
difference than the ancestry (Additional file 6). On the other hand, another metrics, the 
percentage of known variants (i.e. present in dbSNP v.151), seems to depend rather on 
the ancestry than on the dataset (Additional files 7, 8).

The callset is impacted by the number of individuals at the joint genotyping step

One specificity of the GATK Best Practices is that the BAM pre-processing and the 
initial variant calling (HC) is run by individual. Only the joint genotyping step (Gen-
otypeGVCFs) and downstream analyses (for example VQSR) are performed for the 
entire cohort at the same time. We compared the variant counts for our 28 individu-
als, first when the joint genotyping is done only for these 28 individuals (“3mask”), 
second when joint genotyping is done in a larger cohort (179 individuals) and the 28 
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individuals are extracted (“3mask + 28”, see Fig.  1). Note that this analysis was not 
done with the GATK Best Practices (i.e. not with “BP2019”). Metrics are reported in 
Table 4.

Before VQSR, there are more variants in the “3mask + 28” callset than in the “3mask” 
callset (+ 0.60% for SNPs and + 1.23% for indels). This is also observed at the individual 
level, though to a smaller extent (+ 0.09% for SNPs and + 0.54% for indels). For SNPs, 
the increase is larger for multiallelic SNPs -i.e. SNPs that have more than one non-ref-
erence allele in the subset of 28 individuals- (for example before VQSR for the entire 
callset: + 0.60% for bi- and + 9.70% for multi-allelic SNPs). For indels on the other hand, 
the increase is due solely to more complex indels—there is a decrease in the proportion 
of simple indels. After SNP VQSR, we observed less biallelic SNPs in “3mask + 28” than 
in “3mask” at the callset level (− 0.23%). The number of multiallelic SNPs remains higher 
in “3mask + 28” (+ 6.43%). At the individual level, both the number of bi- and of multial-
lelic SNPs remain higher in “3mask + 28” (respectively 0.12% and 3.57%).

In the same way that we compared the variants in “BP2019”, “BP2015” and 
“3mask”, we investigated whether similar sets of variants were found in “3mask” and 
“3mask + 28”. Before filtering, 98.66% of the combined variants are called in the two 
VCFs. 1.06% are called only in “3mask + 28” and about four time less (0.28%) are 

A.

B.

Fig. 3 Differences in number of SNPs per individual are explained by dataset rather than ancestry. Boxplots 
of the difference between the number of SNPs per individual in “3maskvqsred” and “BP2019vqsred”, in 
percentage of “BP2019vqsred” (a negative percentage indicates more variants in “BP2019vqsred”). A 
Individuals are grouped by ancestry. B Individuals are grouped by dataset
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called only in “3mask”. After SNP VQSR, 94.73% of the combined variants pass in the 
two callsets and 2.84% fail in the two callset. 1.46% of variants were found with both 
approaches but have different filtering outcomes.

Table 4 Metrics in “3mask” and “3mask + 28”, at callset and individual level, before and after VQSR

Only SNPs are considered after VQSR. Metrics names in italics have been calculated by the authors (i.e. not an output of 
Picard’s CollectVariantCallingMetrics)

Metrics 3mask 3mask + 28

Counts for the entire callset

Before VQSR Biallelic SNPs 20,312,127 20,434,008

Multiallelic SNPs 85,725 94,044

Total SNPs 20,397,852 20,528,052

Simple indels 2,601,657 2,564,122

Complex indels 737,834 816,453

Total indels 3,339,491 3,380,575

Singletons 7,980,292 8,123,791

Biallelic SNPs in dbSNP (%) 96.67% 96.67%

Simple indels in dbSNP (%) 94.29% 94.21%

After VQSR Biallelic SNPs 19,591,088 19,544,864

Multiallelic SNPs 75,115 79,945

Total SNPs 19,666,203 19,624,809

Singletons (SNPs) 6,923,568 6,902,425

Filtered SNPs 731,649 903,243

Biallelic SNPs in dbSNP (%) 96.88% 96.96%

Average (and standard deviation (stdev)) per individual

Before VQSR Biallelic SNPs (average) 4,445,566.93 4,448,252.21

Biallelic SNPs (stdev) 438,990.07 440,005.98

Biallelic SNPs (min) 3,443,131.00 3,442,837.00

Biallelic SNPs (max) 4,917,928.00 4,922,667.00

Multiallelic SNPs (average) 32,414.75 33,932.54

Multiallelic SNPs (stdev) 3961.22 4451.22

Total SNPs (average) 4,477,981.68 4,482,184.75

Simple indels (average) 508,597.68 490,154.68

Simple indels (stdev) 46,465.10 46,446.32

Complex indels (average) 347,547.21 370,585.18

Complex indels (stdev) 25,401.04 30,851.51

Total indels (average) 856,144.89 860,739.86

Singletons (average) 285,010.43 290,135.39

Singletons (stdev) 69,862.20 70,494.15

After VQSR Biallelic SNPs (average) 4,299,853.14 4,305,202.11

Biallelic SNPs (stdev) 428,861.99 430,653.45

Biallelic SNPs (min) 3,393,934.00 3,394,319.00

Biallelic SNPs (max) 4,741,343.00 4,749,854.00

Multiallelic SNPs (average) 28,645.43 29,668.04

Multiallelic SNPs (stdev) 3019.16 3267.90

Total SNPs (average) 4,328,498.57 4,334,870.14

Singletons (SNPs, average) 247,270.29 246,515.18

Singletons (SNPs, stdev) 61,967.99 62,371.91

Filtered SNPs (average) 149,483.11 147,314.61

Filtered SNPs (stdev) 48,246.66 48,020.13
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Thus, it appears that in general, the two approaches call the same variants; with slightly 
more variants when there are 179 individuals at the joint genotyping step rather than 28. 
In particular, there is an increase of multiallelic SNPs and complex indels. However, for 
biallelic SNPs the picture changes after SNP VQSR at the callset level, with slightly less 
biallelic SNPs in “3mask + 28” than in “3mask” at the callset level.

For the SNPs kept after VQSR, some of the multiallelic variants in “3mask + 28” are 
biallelic in “3mask” (from 2.1% for chromosome 6 to 18.9% for chromosome 1, average 
when summing across chromosomes: 6.5%). These variants have a higher missingness 
than SNPs in general (18.15% average missingness, versus 1.44% average missingness for 
SNPs kept after VQSR in “3mask”). We investigated these sites more closely to deter-
mine which allele is called in place of the third allele in “3mask” (the reference or the 
first alternate allele). We looked at the number of alleles as a proxy for that, but we did 
not check the genotypes at an individual level. 6.1% of the variants have complex pat-
terns, e.g. different numbers of alleles genotyped in the two VCFs (annotation “AN”) or 
three alternate alleles in “3mask + 28”. Another 84.4% of the variants have the reference 
allele called in “3mask” (for at least one of the second alternate allele copies); and the 
remainder, 9.5%, have the alternate allele called in “3mask”. The mean number of cop-
ies of the second alternate allele (in “3mask + 28”) did not differ significantly between 
the sites where the reference respectively the alternate is called (1.15 respectively 1.14 
alleles, Student’s t-test: p value 0.6126); nor did the mean number of genotyped alleles 
(46.69 respectively 46.27 alleles, Student’s t-test: p value 0.4106). We conclude that there 
is a bias towards the reference allele at these sites, but note that these sites have higher 
than average missingness and are likely difficult to sequence, map or call.

The same approach could be applied to indels, though it is more complicated as the 
indels that differ between the two callsets are often in complex regions (for example with 
several indels in a row).

Individual coverage might impact the number of variants

When possible, it is recommended to work with “high coverage” (or high depth) data. 
However, coverage can vary a lot between and within studies, which can potentially lead 
to biases. Here, we examined the correlation between individual coverage and number 
of SNPs (Fig. 4, Spearman’s rank correlation test, rho: 0.18, p value: 0.3576). We started 
by testing whether having an average depth above 30X (referred to as “> 30X”) or below 
or equal to 30X (referred to as “≤ 30X”) has an impact on the total number of SNPs after 
VQSR (for this we used “BP2019vqsred”). Five individuals, one from each of the popula-
tions, are in the “≤ 30X” category. The minimum coverage is ~ 19X. The difference in 
mean number of SNPs between the two groups is not significant (Wilcoxon rank-sum 
test, p value: 0.07112). As suggested by Fig. 4A, a confounding factor could be the popu-
lation background: we know that the number of SNPs is greater in African than in non-
African individuals. We performed the Wilcoxon rank-sum test in each population; the 
difference in mean number of SNPs between the two groups was not significant in any of 
the five populations.

Another limitation with “BP2019vqsred” could be the sample size. We performed 
the same test in a larger dataset: the “3mask + vqsred” dataset—same processing as in 
“3mask” but over 100 individuals at the joint genotyping step (Fig. 5, Spearman’s rank 
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correlation test, rho: 0.3887117, p value: 9.713e-08). In this dataset, there is a significant 
correlation between coverage and number of SNPs called. The difference in mean num-
ber of SNPs between the “> 30X” and the “≤ 30X” samples is also significant (Wilcoxon 
rank-sum test, p value: 0.000136). There are two differences between “BP2019vqsred” 
and “3mask + vqsred”: number of individuals and processing. To rule out that the signifi-
cance in “3mask + vqsred” and the non-significance in “BP2019vqsred” is due solely to 
the difference in processing, we did the same test in “3maskvqsred” (same processing as 
“3mask + vqsred” for the same set of individuals as “BP2019vqsred”); here the test is not 
significant (p value: 0.08204), i.e. the same as for “BP2019vqsred”. Thus it is more likely 
that the lack of significance of the tests in “BP2019vqsred” and “3maskvqsred” is due to 
the small sample size.

Another factor which impacts the number of variants is the population background. 
In “3mask + vqsred”, the proportion of individuals of non-African ancestry is larger in 
the “≤ 30X” group (0.42) than in the “> 30X” group (0.11). In order to limit the effect 
of the population background, we performed a Wilcoxon rank-sum test between 
the “> 30X” and “≤ 30X” groups considering individuals of African ancestry only. The 
number of SNPs is significantly different (greater) in the individuals with a coverage 
above 30X (p value: 0.007375). We note that the Wilcoxon rank-sum test with different 

A.

B.

Fig. 4 The total number of SNPs by individual is a function of coverage and ancestry. Total number of SNPs 
(bi- and multiallelic) per individual in “BP2019vqsred”. The y-axis starts at 3,400,000 SNPs. A Coloured by 
ancestry (the dots from a given ancestry are connected by lines). B Coloured by dataset
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coverage thresholds, for example 20X or 40X, are also significant (p value of 0.03323 and 
1.461e−05 respectively). When we use a different metrics, the proportion of the genome 
with a depth of at least 15X, we observe a similar relationship with average genome cov-
erage, but no effect of the ancestry (Additional file 9).

Discussion
In this study, we undertake a comparison of pipelines based on the GATK Best Prac-
tices for Germline short variant discovery (SNPs + Indels) and using a realistic setting 
for a study of human genetic variation. We start by reviewing 29 studies of HTS data, 
focusing on their processing workflows, in particular the BAM processing, variant 
calling and callset refinement (Tables 1, 2). GATK tools are over-represented in this 
survey due to how the studies were selected. However, only few studies do include 
the three key steps of the Best Practices (BQSR, HC + GenotypeGVCFs and VQSR). 
This does not necessarily mean that these studies followed entirely the Best Practices, 
which include other steps as well, some not based on GATK tools (such as marking 
duplicates reads). Users might also choose different reference datasets than the ones 
recommended by GATK, or modify the behavior of tools in other ways. Moreover, 
the Best Practices change over time; for example, the indel realignment step is not 
recommended anymore. When citing the Best Practices, it would thus be informative 
to mention a date and to explicitly name which steps were included (and in the case 
of variant calling with GATK, whether UG or HC was used). This is why in this study, 
we prefer not to state whether a pipeline followed the Best Practices or not; rather we 
report whether different tools (with a focus on GATK) were used (Table 2). We also 

Fig. 5 The total number of SNPs by individual in a larger dataset. Total number of SNPs (bi- and multiallelic) 
per individual in “3mask + vqsred”. The y-axis starts at 3,100,000 SNPs. Dots are coloured according to groups 
(the dots from a given group are connected by lines). The non-hunter-gatherer Sub-Saharan Africans are not 
shown as it is a very diverse group with respect to ancestry. RHG = Rainforest hunter-gatherers
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note that we could not identify all of the steps and/or softwares used for some of the 
published pipelines. More details are provided in Additional file 1. Overall, in order 
to enable easier comparisons between studies, HTS studies would benefit from more 
details in the description of their processing pipelines.

We applied several pipelines to the same set of genomes and compared the outcomes. 
One shortcoming of our study is that we do not have a “truth” set and have to resort 
to relative comparisons. We could have included genomes from the Genome in a Bot-
tle Consortium [2, 46], for which reference material—including short variant calls—are 
available. One limitation is that such reference material is presently not available for Sub-
Saharan African populations. Another option would have been to use SNP array results 
for the individuals included here (though the comparison is limited to ascertained vari-
ants in that case). Morever, this study uses GATK version 3, while the current version of 
GATK is version 4. However we think that our results should be transferable.

The three pipelines we compared differ in two steps: presence or absence of the indel 
realignment step, and recommended BQSR step versus custom BQSR step. Overall 
the callsets are very similar, though we observed that the Best Practices 2019 (no indel 
realignment and recommended BQSR) finds less variants than the other two pipelines 
before VQSR, while this tendency is reversed after VQSR. Concerning the indel realign-
ment step, it is not surprising that the separate indel realignment step was abolished as 
it became obsolete after the introduction of the variant caller HC which performs local 
re-assembly of haplotypes and local indel realignment. Concerning the BQSR step, our 
concern was that the recommended procedure with the reference dataset dbSNP, where 
Sub-Saharan African variation is under-represented (although this is changing), would 
result in a loss of variation. However, this does not seem to be the case, as the callsets 
from the different approaches are very similar (in particular for SNPs after VQSR, and 
when restricting to the most accessible regions of the genome). We did not investigate in 
detail how the recommended versus the custom BQSR step impact base quality scores 
as the differences in the final callset (which is what interests us) were minimal. We did 
not observe clear effects associated to ancestry background, except that the variance of 
the difference between “3mask” and “BP2019” is smaller for the two groups of hunter-
gatherers. This might be due to population structure for example. On the other hand, 
we did observe an effect of the dataset, particularly between “HGDP” and “SGDP”. The 
number of samples is much higher in the SGDP dataset (in this study) but the five differ-
ent populations are represented at similar proportions in the datasets. The most obvious 
difference between these datasets is the average coverage (lower in HGDP).

The second comparison we conducted concerned one specific step of the pipeline: 
the joint genotyping step. We compared callsets for the same 28 individuals, where the 
joint genotyping was performed in only these 28 individuals or in a larger dataset of 
179 individuals. We observed that callsets are overall very similar, but that more vari-
ants are found in the callset resulting from a larger number of individuals. However, 
this is true only for multiallelic SNPs after VQSR. If finding more variants is desired, 
it appears that including more individuals at the joint genotyping is an advantage—
even if some of the individuals are not considered in downstream analyses. There is 
also an interplay between bi- and multiallelic SNPs, and possibly indels (when these 
different types of variants overlap, comparisons of callsets become complicated).
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Finally, we looked into the correlation between coverage and number of variants. It 
is common to distinguish between “low coverage” (< 10X) and “high coverage” data. 
Exactly how much coverage is enough is unclear, and depends on the aim of the study; 
the choice of a sequencing depth is often a compromise with the sample size. We do 
observe in the larger dataset that coverage (> 30X or ≤  30X) correlates with the num-
ber of SNPs after VQSR, even when removing some of the signal which might be due 
to ancestry. This is a simple analysis and more data points (particularly in the range 
25-35X) would be needed to issue more accurate recommendations; another possible 
analysis would be to downsample some of the higher coverage samples, and compare the 
number of variants found for different coverages. This was done for pigs (with a maxi-
mum coverage of 20X), where the authors recommend a depth of 10X [47]; in [48], the 
authors focus on detecting singletons in the context of human diseases and study the 
trade-off between depth of coverage and sensitivity. They conclude that a coverage of 
15-20X is a good compromise between sample size and detection of singletons for asso-
ciation studies. As for the present study, the increase in number of SNPs as a function of 
coverage seems to level off at around 30–40X (Figs. 4, 5). This suggests that to capture as 
much of the variation as possible (for example to estimate heterozygosity as accurately as 
possible), at least 30–40X coverage is a good aim.

From our observations, we conclude that following the Best Practices (2019 version) 
for germline short variant discovery, with the GATK recommended datasets, does not 
limit the discovery of variants in Sub-Saharan African populations—at least when com-
pared with other pipelines that use the same variant caller. This is an advantage as it 
is the fastest pipeline, it is well documented (compared to other less common pipe-
lines), and does not require the user to assemble custom reference datasets. However 
we encourage the user to be cautious when using non-default options, such as working 
with all sites VCF (i.e. including non-variant sites), as they are less well documented (see 
the commands in Additional file 10 for an example). In particular, VQSR does not recal-
ibrate non-variant sites, which means that variable sites are more likely to have been 
filtered out, creating a possible bias in downstream analyses. Most studies focus on vari-
able sites only, but see [33] for a strategy to filter non-variable sites.

Regarding our concern of failing to call all of the true diversity present in the samples, 
comparing GATK tools to other variant callers would constitute an interesting study. 
This has been done in some studies [8, 16, 24], though often only the variants found by 
several approaches are kept—and variants found by a single variant caller are discarded. 
Thus, variants found by several variant callers were employed as a measure of accuracy. 
Another avenue to explore is the alternatives to mapping to a single reference genome, 
such as graph assemblies [49]. We also note that the present study focused mostly on 
SNPs, as they are the focus of many studies and are more easily tractable; however, it 
would be interesting to look more closely into the effect of different pipeline options on 
the quality of indel calling.

Conclusions
We reviewed the processing pipelines of 29 HTS studies and found that while many 
studies used one or several GATK tools, few followed entirely the Best Practices and / 
or explicitly documented it. We compared several processing pipelines and found that 
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following GATK 2019 Best Practices seems appropriate for populations of Sub-Saharan 
African ancestry. We also observed a correlation between average genome coverage and 
number of called variants. Taken together, this study allows us to make several recom-
mendations, such as extensive documentation of HTS data processing, even when fol-
lowing GATK Best Practices; no obvious issues with following the Best Practices for 
underrepresented human populations; a large number of individuals at the joint geno-
typing step is preferred; and the average coverage matters, even above 20X coverage.

Methods
Literature review

We selected 29 studies using high coverage, high-throughput sequencing (HTS) data (23 
focusing on humans, and six focusing on other mammals). These studies were selected 
by looking for papers citing one of the Genome Analysis Toolkit (GATK) articles (for 
example [10]). Several other articles were considered but not included, for example 
because we could not find enough information about the methods [50]; or because the 
pipeline was not comparable [51] (used Complete Genomics technology and pipelines). 
The included studies are summarized in Table 1.

We gathered information for different aspects of each study (Additional file 1). First 
we described the type of sample (species and in the case of human, population; sam-
ple size; sequencing platform). We then focused on the processing pipeline, which we 
divided into the following stages: steps prior to mapping (e.g. adapter removal) and 
mapping; information about the reference genome, such as build and inclusion of decoy 
sequences; BAM processing; variants calling; and callset recalibration. For each step, we 
reported (when information was available) the software used as well as the version of the 
software.

Evaluation of BAM processing pipeline and of callset refinement strategies

Dataset assembly

We assembled a dataset of 28 individuals for which sequences are publicly available 
[8, 21, 44]. The type of data is Illumina paired-end short reads (Simon Genome Diver-
sity Project (SGDP) [21]: 100  bp, HiSeq2000, insert length distribution 314 + − 20  bp; 
1000 Genomes [8]: 250 bp, HiSeq2500 with modified chemistry; [44] (HGDP): 100 bp, 
HiSeq2000). Coverage is around 20X for the HGDP samples and ≥ 40X for the rest of 
the samples, with two samples (the two CEU samples from 1000 Genomes) > 60X. The 
individuals are distributed in five populations: six individuals with European background 
(two CEU, four French); four Yoruba; four Dinka; seven Khoe-San (five Ju|’hoansi, two 
#Khomani); and seven rainforest hunter-gatherers (two Biaka, five Mbuti). The data for 
[8, 21] was obtained from the EBI European Nucleotide Archive. The data for [44] was 
downloaded from (http:// www. cbs. dtu. dk/ suppl/ malta/ data/ Publi shed_ genom es/ bams/, 
not accessible anymore). The accessions numbers of the included individuals, their origi-
nal IDs and IDs used in this study, as well as final coverage (duplicates removed) with 
processing pipeline “3mask”, are summarized in Additional file  2. Information about 

http://www.cbs.dtu.dk/suppl/malta/data/Published_genomes/bams/
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the number of reads, the number of mapped reads, and variant counts, are provided in 
Additional file 3.

We also performed some analyses on a larger dataset (179 individuals) comprising 
published [8, 21, 44, 52] and new unpublished human genomes. The proportions of 
the different human groups (non African; Khoe-San; rainforest hunter-gatherers; West 
African not hunter-gatherer; East African not hunter-gatherer) are similar in the two 
datasets.

Generalities about processing and mapping

Reference files

The human reference genome (hg38) with decoy sequences was downloaded from the 
European Bioinformatics Institute (EBI 1000 Genomes GRCh38 reference genome) [53]. 
The reference was indexed with samtools/1.1 [54] (faidx), bwa/0.7.12 [6] (index) and pic-
ard/1.127 [55] (CreateSequenceDictionary).

A VCF file for dbSNP [40] version 144 was downloaded [56]. The chromosome names 
were changed to fit the notation in the reference genome. The file was then indexed 
with tabix/0.2.6 [57] (tabix). The same procedure was applied to more recent versions 
(dbSNP150 and dbSNP151). The version used at each step is specified in the detailed 
commands (Additional file 10).

For the VQSR, several resource datasets were downloaded on 2016-08-16 from the 
GATK beta bundle for hg38: a list of SNPs from phase 1 of 1000 Genomes; a high quality 
SNP callset from HapMap; and a set of SNPs produced by the Omni genotyping array.

The 1000 Genomes phase 3 accessibility mask was obtained to stratify variants (http:// 
ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/ data_ colle ctions/ 1000_ genom es_ proje ct/ worki ng/ 
20160 622_ genome_ mask_ GRCh38/).

Mapping and duplicate marking

Detailed commands are provided in Additional file 10.
For mapping, we used bwakit/0.7.12 which is a package of scripts and binaries tailored 

for hg38. In particular, it deals with the “ALT contigs” and performs typing of the HLA 
regions. We used the mapping algorithm bwa mem [6]. The resulting BAM files were 
sorted and indexed with picard/1.126. The data from [44] was downloaded as mapped 
BAM. Thus, before mapping we reverted the mapped BAM to unmapped BAM with 
picard/1.126 RevertSam and then we shuffled and reverted the BAM to a FASTQ with 
samtools/1.1 [54] (bamshuf, bam2fq). The output of bam2fq is an interleaved FASTQ 
which was piped into the same mapping commands as for the rest of the samples.

In order to reduce the size of the BAM files we separated mapped and unmapped reads 
into two BAM files using samtools/1.1 (view). We went on processing the first file only.

Finally, we marked duplicates with picard/1.2.6 (MarkDuplicates).

Processing of BAM: four processing pipelines

Detailed commands are provided in Additional file 10.
We compared three (plus one, see below) different pipelines for the processing of 

BAM. They are shown in Fig. 1. Briefly, the first pipeline—“BP2019”—corresponds to the 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/
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2019 “GATK Best Practices for Germline short variant discovery”. It contains a BQSR 
step with recommended reference dataset, a two steps variant calling step—HC and 
GenotypeGVCFs—and a callset refinement step, VQSR, which was run for SNPs only. 
Strictly speaking, the steps described in the previous section—mapping and marking 
duplicates—are also part of the GATK Best Practices.

The second pipeline—“BP2015”—has an extra step before the BQSR: indel realign-
ment. It corresponds to the 2015 GATK Best Practices.

The third pipeline—“3mask”—has two extra steps: indel realignment as well as a vari-
ation of the BQSR step. We call this variation “triple mask BQSR” and it is described in 
[3]. In the recommended setting for BQSR, variants present in a reference dataset—for 
humans, dbSNP—are masked and variants not present in the reference dataset are recal-
ibrated to obtain more accurate base quality scores. In the “triple mask BQSR”, we use 
dbSNP to mask, but also two VCFs obtained by calling variants on the sample itself, one 
after the default BQSR step, one without BQSR step (see Fig. 1 and Additional file 10). 
This is similar to the pipeline for organisms lacking reference datasets [34, 42, 43]. By 
masking with variants found in the sample itself, we hope to penalize less variation 
absent from the reference datasets.

Finally, the fourth pipeline—“3mask +”—is identical to the third pipeline except for 
the number of individuals at the joint genotyping (GATK’s GenotypeGVCFs) step—in 
the fourth pipeline there are 179 individuals. To be able to compare callsets across pipe-
lines, we selected the 28 individuals from the large dataset directly after joint genotyp-
ing, using GATK’s SelectVariants with the trimAlternates option, and applied VQSR 
only to the subset (“3mask + 28”).

Comparison of callsets

Picard/2.10.3 CollectVariantCallingMetrics counts variants in different categories (bial-
lelic SNPs, multiallelic SNPs, indels, complex indels, singletons, filtered variants) and 
calculates some statistics (for example the percentage of variants present in a given 
dbSNP version). Count of variants are used for characterization and comparison of the 
different callsets.

GATK/3.7 CombineVariants was used to compare two or more callsets. We then used 
GATK/3.7 SelectVariants to generate the VCF files for the different sets.

VCFtools (version 0.1.13) [58] was used to analyze the VCF files, and in particular to 
extract annotations of interest.

Custom bash and Python (version 2.7.17) scripts were used to compare datasets; in 
particular a Python script was used to investigate variants multiallelic in one callset and 
biallelic in another.

R [59] was used to perform statistical tests, in particular Student’s t-test, Wilcoxon 
rank-sum test, and Spearman’s rank correlation coefficient.

Abbreviations
GATK: Genome Analysis Toolkit; SNP(s): single nucleotide polymorphism(s); HTS: high-throughput sequencing; HC: Hap-
lotypeCaller (GATK tool); Best Practices workflow: GATK best practices for germline short variant discovery (SNPs + indels); 
BQSR: Base Quality Score Recalibration (GATK tool); VQSR: Variant Quality Score Recalibration (GATK tool); UG: UnifiedGen-
otyper (GATK tool); RHG: rainforest hunter-gatherers (from central Africa); SGDP: Simon Genome Diversity Project; HGDP: 
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