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Background
With recent advancement in single-cell RNA sequencing (scRNA-seq) technologies, it 
has opened up unique opportunities to understand genomic and proteomic changes at 
the single cell resolution. Such data allow us to identify cell type specific differentially 
expressed genes (DEGs) that are associated with diseases, e.g. idiopathic pulmonary 
fibrosis (IPF). There exist many statistical methods that can perform DE analysis for 
scRNA-seq data. First of all, traditional statistical methods such as two-sample t-test, 
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Wilcoxon rank sum test, logistic regression, and negative binomial regression are widely 
used to detect DEGs for scRNA-seq data. DE methods that are tailored for scRNA-seq 
data have also been developed over the last decade. For instance, Single-Cell Differential 
Expression (SCDE) [1] fits a mixture of Poisson model and Negative Binominal model for 
the zeros and positive mean expressions separately. Model-based Analysis of Single-cell 
Transcriptomics (MAST) [2] utilizes a two-part hurdle model to simultaneously model 
the rate of expression and the mean expression level. One novel aspect of MAST is that 
it adjusts the fraction of genes expressed across cells to obtain more reliable estimates. 
scDD [3] uses a conjugate Dirichlet process mixture to identify DEGs. DESingle [4] 
adopts a zero-inflated negative binomial distribution to model count data and identify 
DEGs. Meanwhile, nonparametric methods such as SigEMD [5], EMDomics [6], and 
D3E [7] have also been developed for scRNA-seq data to detect DEGs. Review papers 
[8, 9] have pointed out that methods that were tailored for scRNA-seq data do not show 
significantly better performance compared to traditional methods. Surprisingly, tradi-
tional methods such as t-test and Wilcoxon test also have fairly robust performance.

In addition, several papers [10–12] have pointed out that variations between biologi-
cal replicates should be properly controlled when performing DE analysis, i.e., individual 
effects. As a result, the family of pseudo-bulk methods are also commonly used in the 
DE analysis. These methods usually aggregate cell-level counts into sample-level pseudo-
bulk counts, and then use methods that were originally proposed for bulk RNA-seq data 
to detect DEGs, such as edgeR [13], DESeq2 [14], and limma [15]. On the other hand, 
methods based on mixed models [11] have also been proposed to capture the random 
effects for individuals. However, Crowell [10] showed in their comparison analysis that 
the mixed model-based methods did not perform significantly better compared to the 
aggregation-based pseudo-bulk methods. Moreover, these mixed model-based methods 
also require larger computational resources and longer computational time, which may 
not be worthwhile. Currently the detection of DEGs for scRNA-seq data still remains a 
challenge. Nonetheless, although it is well known that genes and cells do not work inde-
pendently, none of the existing methods take gene network information or dependencies 
among cells into consideration. Given the large scale and complexity of the scRNA-seq 
data, one key challenge is how to appropriately accommodate these dependencies to bet-
ter identify cell-type specific DEGs.

In this paper, we propose a Markov random field (MRF) model that can capture gene 
network and cell type information. We note that the MRF model has been applied to 
both genome-wide association studies and bulk RNA-seq studies to model dependen-
cies in genomic and transcriptomic data. For instance, biological pathways were used to 
model the structure of neighboring genes [16–18]. In addition, the similarities between 
brain regions and adjacent time points were incorporated to jointly model the spatial-
temporal dependencies for human neurodevelopment data [19]. Our method adopts 
local false discovery rate framework that was developed by Efron [20] to identify cell-
type specific DEGs. We implement an efficient EM algorithm [21] with mean field-like 
approximation [22–24] to estimate model parameters. Then we utilize Gibbs sampler to 
estimate the posterior probabilities to infer cell-type specific DE status.

We applied our method to a recent study that collected scRNA-seq data using lung 
tissues from 32 IPF patients and 28 normal controls [25]. The objective of the analysis is 
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to detect cell-type specific DEGs between IPF patients and normal controls. Idiopathic 
pulmonary fibrosis (IPF) is an incurable aggressive lung disease. It progressively scars 
the lung and causes usual interstitial pneumonia (UIP). However, to date, what causes 
the scarring remains unknown. IPF affects around three million people globally [26, 27], 
with its mortality rate much higher than many cancers, and the median survival time 
for patients without a lung transplant is about three to four years [28, 29]. Many efforts 
have been made to understand the pathogenesis and biological processes of this disease. 
For instance, genome-wide association studies (GWAS) have identified 20 regions in the 
human genome that are associated with increased risk to IPF [30–33]. In addition, tran-
scriptome analyses through microarrays [34–37] and RNA-seq [38–40] have revealed 
genes and pathways related to IPF. In particular, a recent review described in detail how 
transcriptome analyses helped to identify novel genes involved in the pathogenesis of 
IPF and the importance of using single-cell RNA-seq analysis to discover cell-type spe-
cific DEGs [41]. In order to assess the performance of our proposed MRF model, simula-
tion study was conducted under various scenarios. The results for simulation study and 
the DE results for the IPF scRNA-seq analysis are shown in the third section. We con-
clude the manuscript with a brief discussion in the last section.

Methods
Markov random field model

Model setup

Given normalized single cell RNA-seq data, let ygcpk denote the normalized observed 
expression of gene g in cell type c in the kth replicate in condition p. We let G denote 
the number of genes and C denote the number of cell types. For simplicity, we assume 
P = 2 . We assume that the cells have been correctly assigned to their corresponding cell 
types. In each group, there are ngcp samples for the pth group (either disease or control 
group). The number of samples here is the number of cells belonging to this cell type. Let 
ygc1 and ygc2 denote the vectors of expression values for gene g in cell type c for the two 
groups. The two-sample t-statistic can be constructed as

Then we transform the test statistic into z-scores,

where ngc1 and ngc2 are the number of samples for the two groups, e.g. disease and con-
trol groups, for gene g in cell type c; � is the cumulative distribution function of a stand-
ard normal distribution; and F is the cumulative distribution function for a student-t 
distribution with ngc1 + ngc2 − 2 degrees of freedom. The gene expression data are then 
represented by a summary statistic matrix Z , where each entry zgc represents the evi-
dence of differential expression between the two groups for each gene across cell types. 
Z is a G × C matrix. Let wgc denote the binary latent state representing whether gene g is 
differentially expressed in cell type c between the two groups. Then W is the latent state 

tgc =
ȳgc1 − ȳgc2

se
(

ȳgc1 − ȳgc2
) .

zgc = �−1
(

Fngc1+ngc2−2

(

tgc
)

)

,
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matrix, which has the same dimension as Z . Because wgc has two states, we assume that 
zgc follows a mixture distribution,

where f0
(

zgc
)

 is the null density and f1
(

zgc
)

 is the non-null density. The null and non-
null densities are estimated through Efron’s nonparametric empirical Bayes framework 
[20]. The inference on the latent state W is our primary objective. In the following, we 
construct the MRF model that accommodates cell type dependencies and gene network 
information. A gene network information is represented by an undirected graph, with 
a set of nodes Vg , which correspond to cell-type specific genes, and a set of edges Eg , 
which represent the relationships among the nodes. For each gene g, we can use the fol-
lowing vector to denote its cell-type specific DE status,

The set of edges Eg can be divided into two subsets, Eg1 and Eg2 . For two genes g and g ′ , if 
there is a known relationship, e.g. from a pathway database, we write g ∼ g ′ . For a given 
gene g, let Ng =

{

g ′ : g ∼ g ′ ∈ Eg1
}

 be the set of genes that have known relationships 
with this gene. Similarly, for two cell types c and c′ , if there is a known relationship, we 
write c ∼ c′ . For a given cell type c, let Nc =

{

c′ : c ∼ c′ ∈ Eg2
}

 be the set of cell types 
that have close relationships with cell type c. Then we can write two sets of edges as

Therefore, edges in Eg1 capture similarities between genes based on gene network infor-
mation, while edges in Eg2 capture the dependencies between cell types. Then we con-
struct a pairwise interaction MRF model [42],

Here I  isan indicator function, i.e., when wgc = 1 , I1
(

wgc

)

= 1 . Let γ = γ1 − γ0 , the 
conditional probability for the cell-type specific DE status is

where

(1)f
(

zgc |wgc

)

=
(

1− wgc

)

f0
(

zgc
)

+ wgc f1
(

zgc
)

,

Vg =
{

Wgc : c = 1, · · · ,C
}

.

Eg1 =
{(

wgc,wg ′c′
)

: g ∼ g ′, c = c′
}

,

Eg2 =
{(

wgc,wg ′c′
)

: g = g ′, c ∼ c′
}

.

p(W |�) ∝

G
∏

g=1

exp

{

γ0
∑

Vg

I0
(

wgc

)

+ γ1
∑

Vg

I1
(

wgc

)

+ βgene
∑

Eg1

[

I0
(

wgc

)

I0
(

wg ′c′
)

+ I1
(

wgc

)

I1
(

wg ′c′
)

]

+ βcell

∑

Eg2

[

I0
(

wgc

)

I0
(

wg ′c′
)

+ I1
(

wgc

)

I1
(

wg ′c′
)

]

}

.

(2)p
(

wgc |W \wgc;�
)

=
exp

{

wgc F
(

wgc,�
)}

1+ exp
{

F
(

wgc,�
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F
(

wgc,�
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(
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)

+ βcell
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(

2wgc′ − 1
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where “\” denotes other than; � =
(

γ ,βgene,βcell
)

 (Additional file  1). Here βgene is the 
parameter that captures the similarities between genes, and βcell is the parameter that 
captures cell type dependencies.

Parameter estimation

For parameter estimation, we adopt the EM algorithm [21] with mean field-like approxi-
mation [22–24]. Let W̃ denote a configuration, the joint distribution p(W |�) can be 
estimated by

where Ñ
(

wgc

)

 represents the neighbors, the nodes that are directly connected to this 
gene g in cell type c, of wgc corresponding to the fixed configuration W̃ . The complete log 
likelihood is

The Q function in the EM algorithm [21] is

Then we use the following EM algorithm to estimate the model parameters 

1.	 Estimate f0 and f1 using R package locfdr based on the z-scores. Then obtain W̃ 
using the mixture model by Equation (1);

2.	 Expectation-step: Let �̂
(k) be the estimated parameters in the kth iteration. The Q 

function Q(� | �̂
(r)
) can be calculated from the fixed configuration W̃;

3.	 Maximization-step: Update � with �̂
(k+1) , which maximizes Q(� | �̂

(k)
);

4.	 Obtain the updated W̃ by sequentially updating w̃gc by the Gibbs sampler with poste-
rior probability proportional to 

5.	 Repeat steps 2-4 until convergence.

Detecting differentially expressed genes

After we obtain the model parameters from the EM algorithm, we use a Gibbs sampler 
to sample the posterior probabilities. We then use the posterior probability-based defini-
tion of FDR [43, 44] to identify DEGs. We first estimate the posterior local FDR pgc using 
Gibbs sampler,

pW̃(W |�) =

C
∏

c=1

G
∏

g=1

p
(

wgc | Ñ
(

wgc

)

;�
)

,

log pW̃(W,Z |�) =
∑

g ,c

log p
(

zgc |wgc

)

+
∑

g ,c

log p
(

wgc | Ñ
(

wgc

)

;�
)

.

Q
(

� | �̂
)

=
∑

g ,c

{

p
(

wgc = 0 | Ñ
(

wgc

)

,Z; �̂
)

log p
(

wgc = 0 | Ñ
(

wgc

)

; �̂
)

+ p
(

wgc = 1 | Ñ
(

wgc

)

,Z; �̂
)

log p
(

wgc = 1 | Ñ
(

wgc

)

; �̂
)

}

.

p(zgc | w̃gc) p(w̃gc |N (w̃gc); �̂
(k+1)

)
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Then we sort pgc in ascending order, and let p(i) denote the sorted values. We find k such 
that

and we reject the first k null hypotheses.

IPF scRNA‑seq data analysis

The gene expression levels were profiled in each single cell in the IPF scRNA-seq 
dataset. We used R package Seurat [45] to perform data preprocessing and qual-
ity control. Specifically, cells that had unique gene counts greater than 5000 or less 
than 200 were filtered out. Cells that had more than 5% mitochondrial counts were 
also excluded from further analysis. After quality control, there were 18,150 protein-
coding genes profiled in 114, 364 cells. We normalized the expression data for each 
cell by the total expression multiplied by a scale factor of 10,000 and then log-trans-
formed the results. Each single cell corresponds to a cell type. Since about 87% of 
the cells were myeloid and lymphoid cells, we focused on the immune cells in further 
analyses. We used UMAP [46], which is a manifold learning technique for dimension 
reduction, to plot the cell types. There were 18 distinct immune cell types (Fig. 1A).

In this paper, instead of considering a network with 18,150 genes across 18 cell 
types, we focused on 2000 genes that exhibited high cell-to-cell variation between 
cell types. Previous research [45, 47] showed that focusing on these highly variable 
genes in DE analysis helps to highlight significant biological signals. We extracted the 
gene network information from two well-known protein-protein interaction network 
(PPIN) databases, BioGrid [48] and IntAct [49]. For these 2000 highly variable genes, 
the BioGrid database have 5,400 edges, while there are 3104 edges in the IntAct 
database. The two gene networks are visualized in Additional file 2: Fig. S1. There is 

pgc = p
(

wgc = 0 |Z; �̂
)

.

k = max







j :
1

j

j
�

i=1

p(i) ≤ α







,

Fig. 1  Cell Type Clusters. A shows the UMAP of eighteen immune cell types, and B shows the network 
among these immune cell types that are determined by domain knowledge
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an overlap of 1754 edges between the two databases. In addition, the dependencies 
among cells were determined by domain knowledge (Fig. 1B).

For these 2000 genes across 18 cell types, we fitted two separate MRF models utilizing 
gene networks from BioGrid and IntAct, respectively. We obtained the parameter esti-
mates by implementing the EM algorithm with 200 iterations. With parameter estimates 
fixed, we then ran 20,000 iterations of Gibbs sampler with 10,000 iterations as burn-in 
to obtain posterior probabilities. These were the two main models of our analysis, and 
we labeled them as Main model with BioGrid and Main model with IntAct, respectively. 
In addition, the model that used only two-sample t-test statistics (no gene and cell net-
works) was labeled as Main model, which was not an MRF model.

In addition, we considered two sets of supplementary models. First, in order to 
assess the importance of cell network structures in the MRF model, we considered two 
additional cell networks C1 and C2 (see Additional file  2: Fig. S3). We used the same 
observed DE evidence as well as the gene network structures in the Main models, and 
fitted four additional MRF models with cell networks C1 and C2. We labeled these mod-
els with the additional annotation of C1 and C2, respectively. Second, our method can 
be generalized to use observed DE evidence from other existing DE methods in addi-
tion to the two-sample t-test. Most DE methods for scRNA-seq data typically output 
p-values and log-fold changes for their differential expression analysis. Our model can 
be readily applied to these existing models with ease. We chose the following two meth-
ods as examples: Wilcoxon and MAST. Based on the simulation results, these two meth-
ods generally have stable and robust performance, especially when the number of cells 
in each subject is small. In our IPF scRNA-seq data, many cell types have a limited num-
ber of cells per subject, i.e., T Regulatory cells and B Plasma cells, so these two meth-
ods are more suitable in our IPF analysis. We used Seurat to obtain DE results for 
these two models. Then we transformed the p-values to z-scores and used the sign of 
log-fold changes to determine the sign of z-scores. With an additional set of observed 
DE evidence (z-scores), we used the same gene sets and biological networks in the Main 
models to fit four additional MRF models. We labeled these models accordingly. For 
instance, the model that only considered DE results from MAST analysis was labeled as 
MAST model, and the MRF model that incorporated MAST DE results with BioGrid gene 
network was labeled as MAST with BioGrid. A table summarizing the models we used in 
this manuscript is provided in Additional file 2: Table S1.

Simulation study

Simulation study was conducted to assess the performance of our proposed MRF pro-
cedure. The single cell RNA-seq data are count data with zero inflation due to drop-
out and over-dispersion; thus, a zero-inflated negative binomial (ZINB) distribution 
is suitable to model the read counts and excessive of zeros in the scRNA-seq data. 
The zero-inflated negative binomial distribution consists of three parameters: mean, 
dispersion, and inflation. We obtained these parameters based on the IPF scRNA-seq 
data. In details, for each cell type, we fitted a ZINB distribution across 2000 highly 
variable genes. We obtained three vectors of estimated parameters for the mean, dis-
persion, and inflation of length 2000. Then we fitted a gamma distribution for the esti-
mated means, a gamma distribution for the estimated dispersion parameters, and a 
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beta distribution for the estimated inflation parameters. We repeated this for eight-
een cell types; thus, for each cell type, we had an estimated gamma distribution for 
the mean, an estimated gamma distribution for the dispersion, and an estimated beta 
distribution for the inflation.

For our simulated data, the number of genes was set at 1000, and we set the number of 
cell types to be 18, which was the same as that in the IPF scRNA-seq data. Two groups 
were considered. We set the number of subjects in each group to be 15, and the number 
of cells for each cell type in each subject to be 50. We also varied the number of subjects 
and number of cells in the sub-settings. The dimension of our simulated data thus was 

# genes × # cell types × # groups × # subjects per group ×
# cells per cell type per subject   . 
For network structures, the cell network was set to be the same as that in the IPF scRNA-
seq analysis (Main models). For gene network, we randomly selected η percentage genes 
to be connected. We varied η = 0.2, 0.4, 0.6, 0.8 to reflect different proportions of con-
nections in the gene network. For differential expression, we first randomly selected κ 
percentage genes to be DE, which gave us the initial states. With the initial states, we 
then used the gene and cell network structures to get the latent states by a Gibbs sam-
pler. In each round of Gibbs sampling, the latent states were updated according to Eq. 
(2). We varied κ = 0.2, 0.4 to reflect different proportions of DEGs in each setting. Then 
we simulated the expression count data with the zero-inflated negative binomial distri-
bution with mean µc , dispersion φc , and inflation γc . The three parameters were sampled 
from the fitted gamma and beta distributions as mentioned before, and they were cell-
type specific and subject-specific. For each individual in the control group, the expres-
sion data for each gene were generated from ZINB(µc,φc, γc) . For the case group, if the 
latent state was 0, the count data were generated from ZINB(µc,φc, γc) ; if the latent state 
was 1, the count data were generated from ZINB(τ · µc,φc, γc) , where τ = � and 1/� 
with equal probability. We chose � to be 2. We performed the same preprocessing and 
quality control procedures as with the IPF single cell analysis. Then we used test statis-
tics from two-sample t-test as the input of observed DE evidence, and incorporated the 
above simulated gene/cell networks to construct the MRF model. In order to reflect the 
role of the number of subjects or cells in our simulations, we considered two sub-scenar-
ios by varying the number of subjects in each group (case/control) to be 30 (Scenario A) 
and the number of cells per cell type in each subject to be 100 (Scenario B). In addition, 
we also considered the case when � is 3 (Scenario C). For each setting, we repeated the 
simulation 100 times.

We compared the results from our proposed MRF model with nine other meth-
ods: the two-sample t-test; the Wilcoxon Rank Sum test; the likelihood ratio test 
that adopts a logistic regression framework (LR); MAST; three pseudo-bulk methods: 
DESeq2, edgeR, and limma; and two mixed model methods, dream and its updated 
version dream2. dream and dream2 [50] were originally designed for bulk RNA-seq 
studies with repeated measurements and were used in the comparative analysis by 
Crowell et al. [10]. The original version of dream uses voom’s [51] precision weights. 
In its updated version, dream2, it adopts the new weighting scheme in the vari-
ancePartition [52]. We chose these methods because they are representative 
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and have shown fairly robust performance as noted in the review papers [8–10]. We 
believe that this was sufficient to demonstrate the performance of our method.

Results
Simulation study

The simulation results are shown in Fig. 2, and the results of the three sub-settings (Sce-
narios A, B and C) are shown in Additional file 2: Fig. S2A-C. The adjusted p-value was 
set at 0.05. Sensitivity is the fraction of DEGs correctly identified by the method; speci-
ficity is the fraction of EE genes identified correctly; and FDR is calculated by the ratio 
of number of false positives to the number of DEGs identified. Each box-plot represents 
100 replications. We note that our proposed MRF model performed significantly bet-
ter than the other nine methods in terms of sensitivity. The traditional methods have 
fairly robust performance. The three pseudo-bulk methods have slightly lower specificity 
and higher FDR compared with other methods. From the two sub-settings, we note that 
when the number of subjects or number of cells per cell type increases, the performance 
of the pseudo-bulk methods and methods based on mixed models also increases as 
expected. Our proposed MRF model still outperforms under these sub-settings. Meth-
ods like MAST and Wilcoxon still have fairly robust performance, especially when the 
number of cells in each subject is small. In addition, in order to assess the impact of 
different thresholds of adjusted p-values on sensitivity, specificity, and FDR, and to see 
the trade-off directly, we chose three other adjusted p-value cutoffs: 0.01, 0.1, and 0.2 in 

Fig. 2  Simulation Results. The results are plotted in terms of sensitivity, specificity and FDR for two-sample 
t-test, the likelihood ratio test that adopts a logistic regression framework, Wilcoxon rank sum test, MAST, 
three pseudo-bulk methods: DESeq2, edgeR, and limma, two mixed model methods: dream and its 
updated version dream2, and the proposed MRF model. Each box-plot represents 100 replications
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addition to 0.05. In Additional file 2: Fig. S2D, we plot sensitivity, specificity, and FDR for 
our proposed MRF model for the eight cases (corresponding to Fig. 2) under different 
adjusted p-value cutoffs. We note that when the adjusted p-value threshold increases, 
sensitivity increases and specificity decreases for all eight cases as expected. Our pro-
posed MRF model achieved the desired FDR control.

IPF scRNA‑seq data analysis

For the Main model with the BioGrid gene network, the estimated param-
eters were γ = −0.33,βgene = 0.18, and βcell = 0.22 , whereas for the Main 
model with the IntAct gene network, the estimated model parameters were 
γ = −0.38,βgene = 0.26, and βcell = 0.22 . We note that βgene and βcell were compara-
ble here in both models. For DE analysis, we set the significance level at α = 0.01 and 
the corresponding posterior probability cutoff was around 0.91 for both models. Out of 
2000 genes across 18 cell types, the Main MRF model with BioGrid gene network iden-
tified 1605 genes that were found DE in at least one cell type. For the IntAct gene net-
work, the Main MRF model identified 1601 genes that were DE in at least one cell type. 
We compared these results with two-sample t-tests using the Benjamini and Hochberg’s 
procedure for FDR, which identified 1472 DEGs. In addition to t-test statistics as input 
for observed DE evidence, we listed the number of DEGs identified by the Wilcoxon test, 
and MAST, and their corresponding MRF models in Table 1. The parameter estimates for 
these additional models were shown in Additional file 2: Fig. S4. We compared cell-type 

Fig. 3  Results from IPF scRNA-seq Data Analysis. A Number of cell-type specific DEGs identified using 
original test statistics alone, and two MRF models with the BioGrid and IntAct database for four types of test 
statistic inputs: two-sample t-test, the Wilcoxon rank sum test, and MAST. For instance, the upper-left figure 
in A shows the number of cell-type specific DEGs inferred using two-sample t-test alone (w/o MRF), and the 
DE results from two MRF models that incorporated t-test statistics as observed DE evidence and two gene 
network structures (MRF w/ BioGrid and MRF w/ IntAct, respectively). B The UpSet plot shows the overlap of 
DEGs identified by the original models and our proposed MRF models utilizing the BioGrid and IntAct gene 
networks. C The top canonical pathways from Ingenuity Pathways Analysis. The p-value cutoff was set at 
0.005 and gene ratio cutoff was set at 0.25 in order to better visualize top enriched pathways
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specific DEGs inferred by the model using the original test statistics alone, and two MRF 
models with the BioGrid and IntAct databases for three types of test statistic inputs: the 
Student’s t-test, the Wilcoxon rank sum test, and MAST in Fig. 3A. We also compared 
DEGs identified across three types of test statistics. The UpSet [53] plot (Fig. 3B) shows 
the overlap of DEGs identified across different models. We discovered that a major pro-
portion of genes were found DE in all models. The detailed gene lists are provided in the 
Additional file 3.

For different test statistics as observed DE evidence, our model was able to identify 
an additional set of novel DEGs utilizing gene-gene and cell-cell networks. We per-
formed pathway analysis using Ingenuity Pathways Analysis (IPA, QIAGEN Inc.) [54] 
to get better biological insights with the inferred DEGs. In order to better visualize top 
enriched pathways, the p-value cutoff was set at 0.005 and gene ratio cutoff was set at 
0.25. The complete list of pathways enriched by each model is provided in Additional 
file 4. Based on the IPA results in Fig. 3C, we found that most pathways were enriched 
in all twelve models, and our proposed MRF models were able to identify an additional 
set of pathways that were related to IPF. In fact, we saw that a number of pathways that 
were related to the T helper cells were found significantly associated with IPF, which was 
not a surprise based on previous research [55–59]. In particular, three pathways: Th1 
Pathway, Differential Regulation of Cytokine Production in Macrophages and T Helper 
Cells by IL-17A and IL-17F pathway, and Differential Regulation of Cytokine Production 
in Intestinal Epithelial Cells by IL-17A and IL-17F were found to be significantly asso-
ciated with IPF under all models. Previous studies [55, 60, 61] showed that IL-17, the 
cytokines produced by the Th17 cells, participated in the development and progression 
of pulmonary fibrosis diseases. In addition, our proposed MRF model was able to iden-
tify the additional Th2 Pathway, and Th1 and Th2 Activation Pathway to be statistically 
significant. Previous findings [58, 62] showed that the Th2 cells stimulated fibroblast 
proliferation and activation, and promoted pulmonary fibrosis. In fact, Th2 responses 
were related to a number of pulmonary diseases. In addition, the VDR/RXR Activation 
pathway was also found significant in our MRF models, which was previously found sig-
nificantly associated with IPF by Boon et al [63]. The authors also noted that in a mouse 

Table 1  Number of DEGs identified under three model settings with three types of test statistics

a Number of genes that were found DE in at least one cell type
b Aggregated number of cell-type specific DEGs

Input statistics Models # DEGsa # Cell-type 
Specific 
DEGsb

t-test Main 1472 3607

Main w/ BioGrid 1605 4880

Main w/ IntAct 1601 4875

MAST MAST 1721 4826

MAST w/ BioGrid 1870 8835

MAST w/ IntAct 1867 8809

Wilcoxon Wilcoxon 1562 3945

Wilcoxon w/ BioGrid 1767 6526

Wilcoxon w/ IntAct 1759 6474
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study [64], the VDR-deficient mice failed to develop experimental allergic asthma, and 
this suggested that vitamin D play a key role in the generation of Th2-driven inflamma-
tion in lung diseases. Moreover, the MRF model also identified the hepatic fibrosis and 
hepatic stellate cell activation pathway. Tsuchida et al. [65] noted in their paper that this 
pathway was well-established as the central driver of hepatic fibrosis in human liver. In 
addition, the authors discovered that HSC-specific deletion of integrin αv protects mice 
from hepatic, renal and pulmonary fibrosis. To sum up, the inferred canonical pathways 
from our approach have biological meanings and are strongly related to IPF.

Furthermore, Additional file  2: Figs. S5 and S6 show the DE analysis results with 
respect to different cell networks when we fixed the observed DE evidence and gene net-
works as the same in the Main models. With different cell network structures, the MRF 
models yielded comparable parameter estimates (Additional file 2: Fig. S5). The UpSet 
plot in Additional file  2: Fig.  S6 shows the overlap of DEGs identified with three cell 
network structures. We note that the DE results were consistent across different cell net-
works with slight variations. In addition, the IPA enrichment results also demonstrate 
that our MRF models have fairly robust performance with respect to different cell net-
work structures.

Conclusions and discussions
By borrowing information through known biological networks, our proposed method, 
MRFscRNAseq, provides differential expression analysis to identify cell-type specific 
DEGs for scRNA-seq data sets with increased statistical power. With observed DE 
evidence, it utilizes a Markov random field model to appropriately take gene network 
information as well as dependencies among cell types into account. We implemented 
an Expectation-Maximization (EM) algorithm with mean field-like approximation to 
estimate model parameters and a Gibbs sampler to infer DE status. Simulation study 
showed that our method has better power to detect cell-type specific DEGs than con-
ventional methods while appropriately controlling type I error rate. In the differential 
expression analysis using an IPF scRNA-seq data set, we have showed that our method 
is able to identify an additional set of novel DEGs using summary statistics from various 
existing differential expression methods. Pathway analysis with IPA also suggests that 
the additional set of pathways have biological meanings that are strongly correlated with 
IPF.

For gene networks, we utilized two protein-protein interaction network databases in 
the IPF scRNA-seq data application, BioGrid and IntAct. In fact, our method can be 
adapted to other networks that have similar structures as BioGrid or IntAct PPIN, i.e., 
KEGG pathways [66–68]. Furthermore, our model can be readily extended to many 
other existing DE methods with ease, just like what we have done with Wilcoxon test or 
MAST in the IPF scRNA-seq data analysis.

One caveat in our model is that the direction of changes in gene expressions is not 
directly incorporated in the model, which means that we are unable to differentiate 
whether these identified DEGs are up-regulated or down-regulated. One possible rem-
edy is to use the sign of the original input test statistics to determine the sign of the DE 
results. For future work, weights could be added in our graphical model. For instance, 
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transcription factors probably should have more weights because of their importance in 
gene regulation.
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