
EFMlrs: a Python package for elementary flux
mode enumeration via lexicographic reverse
search
Bianca A Buchner1,2 and Jürgen Zanghellini3* 

Introduction
Arguably one of the most successful approaches in systems biotechnology and meta-
bolic engineering are constraint-based methods (CBMs). These methods reconstruct
(genome-scale) metabolic networks from genetic information and combine it with
steady-state analysis to predict phenotypes from genotypes [2]. The success of CBMs
is owed to the wealth of available metabolic information. Importantly, CBMs do not

Abstract 

Background:  Elementary flux mode (EFM) analysis is a well-established, yet computa-
tionally challenging approach to characterize metabolic networks. Standard algorithms
require huge amounts of memory and lack scalability which limits their application
to single servers and consequently limits a comprehensive analysis to medium-scale
networks. Recently, Avis et al. developed mplrs—a parallel version of the lexico-
graphic reverse search (lrs) algorithm, which, in principle, enables an EFM analysis on
high-performance computing environments (Avis and Jordan. mplrs: a scalable parallel
vertex/facet enumeration code. arXiv:​1511.​06487, 2017). Here we test its applicability
for EFM enumeration.

Results:  We developed EFMlrs, a Python package that gives users access to the
enumeration capabilities of mplrs. EFMlrs uses COBRApy to process metabolic
models from sbml files, performs loss-free compressions of the stoichiometric matrix,
and generates suitable inputs for mplrs as well as efmtool, providing support not
only for our proposed new method for EFM enumeration but also for already estab-
lished tools. By leveraging COBRApy, EFMlrs also allows the application of additional
reaction boundaries and seamlessly integrates into existing workflows.

Conclusion:  We show that due to mplrs’s properties, the algorithm is perfectly
suited for high-performance computing (HPC) and thus offers new possibilities for the
unbiased analysis of substantially larger metabolic models via EFM analyses. EFMlrs is
an open-source program that comes together with a designated workflow and can be
easily installed via pip.

Keywords:  Elementary modes, Cobrapy, Metabolic modelling, Mplrs, Lexicographic
reverse search, Systems biology

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547
https://doi.org/10.1186/s12859-021-04417-9 BMC Bioinformatics

*Correspondence:
juergen.zanghellini@univie.
ac.at
3 Department of Analytical
Chemistry, University
of Vienna, Vienna, Austria
Full list of author information
is available at the end of the
article

http://arxiv.org/abs/1511.06487
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04417-9&domain=pdf

Page 2 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

require any kinetic data as they focus on a steady-state description. In particular lin-
ear programming-based flux balance analysis (FBA) approaches have proven useful and
scalable. Yet, FBA is biased as it selects the solution based on the optimal performance
of an (selected) objective function. In fact, FBA characterizes optimal modes of opera-
tion rather than the available solution space.

In contrast, EFM analysis allows an unbiased characterization of a metabolic network,
as it describes all feasible steady-state phenotypes in terms of elementary pathways, so-
called EFMs, without the necessity of an optimality criterion [3]. EFMs are (support)
minimal sets of reactions that can operate at steady-state while using all irreversible
reactions in the appropriate direction [4]. The minimality property means that no reac-
tion can be removed from the set of flux-carrying reactions without losing the ability to
keep up a non-zero steady-state flux.

However, this definition of EFMs allows only two homogeneous inequality constraints
- the steady-state assumption and the sign restrictions on the rates of irreversible reac-
tions. Thus, a more general definition that also allows the incorporation of other inho-
mogeneous linear constraints, such as upper and lower reaction bounds, was needed. In
2007 Urbanczik et al. presented such a concept for the first time and expanded the defi-
nition of EFMs by introducing elementary flux vectors (EFVs) [5]. Although this concept
initially received little attention, over the years it has been taken up again and further
explored [6–8].

In further course we use the definition as proposed by Klamt et al. in 2017. It is an
equivalent but more general definition of EFMs that also includes EFVs, by specifying
EFMs as convex-conformally non-decomposable pathways [8] in a metabolic network.
The latter definition also allows including inhomogeneous flux bounds into the analy-
sis. Therefore, biologically, EFMs/EFVs (EFM/Vs) represent potential functional units
in metabolic networks. In fact, every steady-state flux can be represented as a convex
combination of its EFVs plus a conical linear combination of its EFMs [9, 10]. These
properties make EFM analysis a powerful tool in basic biological research and metabolic
engineering.

However, the enumeration of EFM/Vs is challenging, as the numbers of EFM/Vs grow
combinatorially with the size of the metabolic network [11], which essentially limits the
applicability of EFM analysis to small or medium size metabolic networks. Standard
tools, e.g efmtool [12] or the FluxModeCalculator (FMC) [13], are difficult to parallel-
ize and suffer from exorbitant memory consumption. Alternatives, e.g. Song et al. [14],
Pey et al. [15] or Marashi et al. [16], use optimization principles to sequentially enumer-
ate EFMs. In general, the latter are much slower than the former and only allow one to
sample a subset of EFMs. Thus, the complete enumeration of EFM/Vs in genome-scale
metabolic models remains intractable with current approaches [17].

Mathematically, the enumeration of EFM/Vs in metabolic networks is a vertex enu-
meration problem in convex polyhedra. There are essentially two approaches to solve this
problem: (i) reverse search [18], and (ii) double description [19]. The former is typically
considered unsuitable for enumerating vertices in highly-degenerate networks [20], such as
metabolic networks. Recently, this assumption has been challenged by a multi-threading,
parallelized version of the lrs algorithm [21]—mplrs [1]. Performance tests of this algo-
rithm indicate that it is almost embarrassingly parallel and best suited for HPC due to its

Page 3 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

excellent scalability and negligible memory consumption. Here, we test the suitability of
mplrs [1] for EFM enumeration in metabolic networks.

Methods
Mathematical representation and its geometric interpretation

In the following and without loss of generality, we assume that all variables unconstrained
in sign are replaced by the difference of two non-negative variables. Thus, all variables are
non-negative. In metabolic terms, this means that every reversible reaction was replaced by
two counteracting irreversible reactions.

A convex polyhedron P is defined as the set of solutions to a system of linear inequalities

with a matrix A ∈ R
k×l and a vector b ∈ R

k . Geometrically, P can be thought of as an
intersection of half-spaces. As we assume x ≥ 0 , (1) describes a pointed convex polyhe-
dron sitting in the non-negative orthant.

Any convex polyhedron can be represented not only as an intersection of half-spaces [as
in (1)], but also as a (Minkowski) sum of a “bounded” polytope and an “unbounded” cone

where

and

denote polytope and cone spanned by the convex and conic combination of all extreme
points, εi , and extreme rays, ej , of the convex polyhedron P, respectively. Here, “extreme
ray” means that not only the point ej is extreme and part of the convex polyhedron P, but
all points sitting on the ray {αe|α ≥ 0} are too.

In the following, it will prove useful to explicitly collect equalities, inequalities, and state
non-negativity in corresponding matrices and vectors and write (1) as

with C ∈ R
k1×l , d ∈ R

k1 , E ∈ R
k2×l , f ∈ R

k2 , and an l × l identity matrix I . By setting

the representation in (1) is recovered.

(1)P = {x ∈ R
l | Ax ≥ b},

(2)P = conv (ε1, ..., εm)+ cone (e1, ..., en),

(3)conv (ε1, ..., εm) =

{

∑

i

αiε
i

∣

∣

∣

∣

∣

∑

i

αi = 1,αi ≥ 0

}

,

(4)cone (e1, ..., en) =







�

j

βje
j

�

�

�

�

�

�

βj ≥ 0







(5)P = {x ∈ R
l | Cx = d, Ex ≥ f , Ix ≥ 0},

(6)A =







C
−C
E
I






, and b =







d
−d
f
0






,

Page 4 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

In general, (5) describes a convex polyhedron. We can transform this polyhedron into
a convex polyhedral cone PC by embedding the polyhedron into a higher dimensional
space

with

where we have introduced a new slack variable ζ , which for ζ = 1 returns (5). Thus, it is
possible to transform every polyhedron, specially every (“bounded”) polytope, into an
(“unbounded”) convex cone that is embedded in a higher dimensional space. By doing
so, every vertex enumeration problem can also be understood as an extreme ray enu-
meration problem.

In metabolic pathway analysis, we encounter a special convex polyhedron, referred to
as flux cone

Here, N ∈ R
m×n and I denote the stoichiometric matrix of the metabolic network and

the n× n unity matrix, respectively, and r ∈ R
n denotes the vector of the flux distribu-

tion through the metabolic network. Biologically, Nr = 0 and Ir ≥ 0 encode the steady-
state condition and the irreversibilities of the reaction fluxes, respectively.

Clearly, by setting

(9) is a special case of (5). Conversely, by setting

and using the slack variables ξ ∈ R
k2
≥0 and ζ ∈ R≥0 we transform the polyhedron (5) into

a flux cone (9).
In metabolic terms, the extreme rays of the flux cone (9) correspond to EFMs, if we

disregard “two-cycle modes” that consist of the forward reaction and backward reaction
of an originally reversible reaction.

Additionally, we can “read” the polyhedron (5) metabolically. For d = 0 and x = r , we
can interpret C as a stoichiometric matrix, Ex ≥ f as allocation and capacity constraints,
and Ix ≥ 0 as irreversibly constraints on the reaction fluxes. Except for two-cycle modes
(see above), the extreme points and extreme rays of this polyhedron are then the EFVs
and EFMs of the metabolic network.

Similarly, every element of a pointed flux cone can be represented as a conical combi-
nation of its extreme rays, which correspond to EFMs (if we again disregard ”two-cycle
modes”). Thus, we can understand any flux distribution as a superposition of elementary
metabolic units.

(7)PC =

{

y ∈ R
l+1 | Gy = 0, Hy ≥ 0

}

,

(8)G =
(

C −d
)

, H =

(

E − f
I 0

)

, y =

(

x
ζ

)

,

(9)FC = {r ∈ R
n | Nr = 0, Ir ≥ 0}.

(10)C = N , E = 0, d = 0, f = 0, and x = r,

(11)N =

�

C 0 − d
E − I − f

�

, and r =





x
ξ
ζ



 ,

Page 5 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

Both, EFMs and EFVs can be computed with mplrs [1] using either the formulations
(1), (5), (7), or (9). However, efmtool [12] can only enumerate EFMs of the flux cone
(9) making a transformation according to (6) necessary.

Algorithms for calculating EFMs

Double description method

The most commonly used method for the complete enumeration of EFMs in metabolic
networks is the double description method (DDM).
efmtool uses the binary null-space implementation [22] of the DDM [23] to enu-

merate the “edges”, i.e. extreme rays, of a pointed flux cone. The algorithm starts from
the kernel of the stoichiometric matrix N and iteratively converts it to binary form. For
each reaction (i.e. in each row of the matrix) every column with a negative value at this
reaction is replaced by all possible combinations of pairs of columns such that their
conic sum is zero (Fig. 1). Eventually, the currently processed row of the such augmented
matrix contains only non-negative numbers, which can be binarized. Some of the newly
added columns may contain redundant information if they are super-sets of other col-
umns and thus can be removed. For instance, the combinations (e2, e4) and (e2, e5) in
Fig. 1b are super-sets of the new rays e6 and e7 . The iteration stops if all reactions are
processed and the resulting matrix contains all (binarized) EFMs in its columns.

During the iteration phase many candidate EFMs (i.e. columns in the matrix) are con-
structed that are not present in the final list of EFMs. For instance, the intermediate
EFMs e1 to e3 in Fig. 1 are only required to construct e6 and e7 . Thus, computational time
and resources are used on calculating EFM candidates instead of actual EFMs. This is a
major limitation of the DDM as due to this ex-post validation procedure it needs to keep
all intermediate results in memory. Therefore, DDM requires a huge amount of random
access memory (RAM) which for single core as well as for parallelized implementations,
has to be available on one single server. Although, the required memory can be stored in
an out-of-core memory instead as well, this approach is not computationally performa-
tive and was therefore disregarded. Hence, the RAM requirements of the DDM can eas-
ily exhaust even state-of-the-art systems [19]. Additionally, the unknown complexity of

Fig. 1  Iteration step of the DDM method visualizing the generation of a new set of extreme rays. a shows a
cone with the rays e1 to e5 . b shows the creation of a new set of extreme rays ( e6 and e7 ) through hyperplane
intersection and the pairwise combination of adjacent rays e.g. e5 and e1 result in the new extreme ray e6 , e4
and e3 in e7 . Other combinations e.g e5 and e2 are super-sets of e6 and e7 and do not result in new extreme
rays. c shows the final cone with all redundant rays removed thus it only consists of the actual EFMs e4 , e5 , e6
and e7

Page 6 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

the DDM poses another obstacle since the required run time cannot be estimated from
the input data.

Through parallelization and optimization techniques efmtool [12, 24] is one of the
fastest implementations of the DDM. As efmtool runs on a Java virtual machine it is
easily accessible and thus one of the most popular and commonly used implementations.
Although FMC [13] is a more efficient implementation of the binary null-space DDM, it
runs MATLAB and requires a paid license. Therefore, we decided to include support for
efmtool in EFMlrs and use it as the representative of the DDM for comparisons with
mplrs [1].

Lexicographic reverse search

mplrs [1] is an improved and parallel implementation of the reverse search algorithm
[18]. It first finds some extreme point (thus the polyhedron needs to be pointed) and
then systematically traces the polyhedron until no new extreme point or extreme ray
can be found. It has been shown that this is in principle possible [25]. In fact, reverse
search works by “inverting” the simplex algorithm for linear programming. The simplex
algorithm first finds an extreme point (a basic feasible solution) and then moves along an
edge of the polyhedron to an adjacent vertex, where the objective function has a greater
value. This continues until the optimum (if it exists) is reached. With an appropriate
pivot (i.e. a rule to pick an adjacent vertex) a unique path from any starting vertex to
the optimum can be guaranteed. Collecting all these paths from all vertices generates
a spanning tree [26] rooted at the optimum vertex. Reverse search starts at an extreme
point, finds an objective function that makes this starting point optimal and maps out
the spanning tree in depth-first order [18].

Figure 2 shows the path of the simplex algorithm for a simple tetrahedron. A polyhe-
dron is regarded as simple or non-degenerate if each vertex lies on exactly l hyper-planes
and therefore has a unique base. For such polyhedra, lrs is very efficient as the resulting
spanning forest has a single component such that each vertex is produced once [21]. For
these simple polyhedra, the run time only depends on the input data [1]. Yet, the flux
cones of metabolic models are highly degenerate which is the main reason why lrs was
regarded as not suitable for EFM/Vs enumeration.

However, in 2017 Avis et al. presented an improved and parallel implementation of lrs
[21]—the mplrs [1] algorithm. It uses message passing interface (MPI), a well-known
interface for parallel computing architectures, together with an improved load balanc-
ing strategy to utilize up to 2000 cores in a cluster at once. The load balancing strategy
divides processes into three categories: a master, a consumer and multiple workers. The
master process handles the input data and runs in a main loop that consists of distrib-
uting sub-problems to the workers and receiving unfinished sub-problems from them.
The master process starts by choosing an initial worker which it sends the initial sub-
problem to. This worker then sends unfinished sub-problems back to the master as soon
as its budget is exhausted or the problem is solved. The budget defines the maximum
number of nodes that can be visited by a worker. It is dynamically calculated by mplrs
depending on the number of available threads and the current size of the sub-problem
list. As soon as the initial worker sends back unfinished sub-problems, the master starts

Page 7 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

distributing these sub-problems to all workers available. Each worker receives one sub-
problem and only solves this assigned task. Unsolved sub-problems are sent back to
the master and solved ones are sent to the consumer process which collects all results
received from the workers and builds the output stream [1].

Duplicates are avoided as only solutions with a lexicographically minimum basis are
printed. However, uniqueness can only be guaranteed when the polyhedron is a pointed
cone with the origin as the only vertex ε0 . For unbounded polyhedra duplicates can
occur during facet enumeration as there are multiple vertices. To guarantee unique solu-
tions it would be necessary to keep a record of all solutions in memory in order to find
the true minimum basis. Since this would increase memory requirements and negatively
impact performance it was not included in the current version of mplrs. Hence, during
EFV enumeration duplicates can occur [21].

Regarding lrs’s load balancing strategy, it becomes clear that real parallelization
requires at least 4 processes, since two processes are always occupied by master and con-
sumer. This way of balancing the load gives three main advantages: (i) workers can solve
their assigned sub-problems independently, (ii) the required amount of RAM is distrib-
uted equally over a cluster and (iii) it’s possible to stop and later continue calculations
from the last calculated result at any time [1].

These properties make mplrs [1] highly scalable and an ideal algorithm for HPC.
In the context of metabolic networks and EFM/V analysis, mplrs is a completely new
approach and the first that can truly utilize state of the art high-performance systems.
Thus, EFM analysis is no longer bound to a single server, does not require an incredible
amount of RAM, but only depends on the number of available CPU cores in a shared
memory cluster.

Fig. 2  Path of the simplex method through a simple tetrahedron calculated with lrs [21]. For better
readability we transformed the cone from Fig. 1 into a tetrahedron and only highlighted the path of the
simplex method. a shows the path and direction of the simplex method indicated by the red arrows. b shows
the corresponding reverse search tree. The black arrows indicate the path of the reverse search which starts
at the origin vertex ε0 and results in a search tree with a depth of 2

Page 8 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

EFMlrs
The main purpose of EFMlrs is the pre- and post-processing of metabolic models for
enumeration of EFM/Vs on HPC clusters via mplrs [1]. In addition, EFMlrs also sup-
ports EFM enumeration via efmtool [12].
EFMlrs is an open-source program, implemented in python 3 under the GPLv3

license, supported on Linux and macOS. Common python libraries (COBRApy, NumPy,
SymPy and Pandas) are used for parsing sbml models, numerical computation and data
processing. EFMlrs is part of the python package index and can therefore be easily
installed via pip. The complete python code, further documentation as well as a tuto-
rial are available on GitHub (http://​github.​com/​BeeAn​ka/​EFMlrs). Additionally, detailed
documentation about the structure of the code and the functions used can be accessed
on https://​efmlrs.​readt​hedocs.​io.
EFMlrs comes together with a designated workflow that consists of three stages:

pre-processing metabolic models including transformation and loss-free compressions
of the stoichiometric matrix, computations of EFM/Vs in the compressed system, and
post-processing which includes decompression of EFM/Vs. An overview of the complete
workflow is given in Fig. 3.

The computations are intentionally not directly included in the program as mplrs
[1] is meant to be executed on a HPC cluster or multiple servers with shared memory.
Although efmtool [12] can be executed on a desktop machine too, due to its high
memory requirements it is recommended to use a server. Pre- and post-processing on
the other hand can be executed on a desktop machine and represent core elements of
EFMlrs. Besides, this setup gives the users more flexibility as switching between com-
puting platforms is already taken into consideration, especially since computing time on
HPC systems is often limited.

Compressions

The compression algorithms used by EFMlrs are already known in the metabolic
modeling community, have been discussed e.g. by Gagneur et al. [22] and have been
implemented in e.g. efmtool [12]. Additional file 1: Table S1 compares the compres-
sion results of EFMlrs and efmtool. Since the compressions of both tools are based
on the same algorithms, their results are very similar as well. However, for 3 out of 4
models (Table 1) used in this paper, EFMlrs could achieve a stronger compression and
efmtool was not able to further compress any models compressed by EFMlrs. Only
for the EColiCore2 [29] model the compression results of both tools were equivalent.
A compression comparison the other way round - first compressions by efmtool and
then by EFMlrs could not be done, since efmtool does not output the compressed
files needed for this.

We attribute the slightly different compression results to the different order and num-
ber of iteration steps found in the respective implementations of the compression algo-
rithms. However, at this moment the exact reason is unknown and subject of future
investigations. It should be noted that the stronger compressions of EFMlrs together
with the implementation in Python and the usage of SymPy lead to longer compression
times compared to efmtool [12] which is implemented in Java - a statically typed and
compiled and therefore faster programming language compared to Python. However,

http://github.com/BeeAnka/EFMlrs
https://efmlrs.readthedocs.io

Page 9 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

Fig. 3  Overview of the EFMlrs workflow. It consists of three main stages: pre-processing, computation
of EFM/Vs, and post-processing. The computations are intentionally not directly included in the program
as mplrs [1] is meant to be executed on a HPC cluster, whereas pre- and post-processing, as well as
computations with efmtool [12], can be done on a single machine

Page 10 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

Ta
bl

e 
1 

O
ve

rv
ie

w
 o

f m
et

ab
ol

ic
 m

od
el

s
an

d
ge

ne
ra

l p
ol

yh
ed

ra
 u

se
d

fo
r p

er
fo

rm
an

ce
 te

st
s

an
d

co
m

pa
ris

on
s

of
 e
f
m
t
o
o
l

 [1
2]

 a
nd

 m
p
l
r
s

 [1
].

Fo
r m

et
ab

ol
ic

 m
od

el
s

th
e

nu
m

be
r

of
 r

ow
s

co
rr

es
po

nd
s

to
 t

he
 n

um
be

r
of

 m
et

ab
ol

ite
s

an
d

th
e

nu
m

be
r

of
 c

ol
um

ns
 t

o
th

e
nu

m
be

r
of

 r
ea

ct
io

ns
 w

ith
 n

um
be

rs
 in

 b
ra

ck
et

s
re

fe
rr

in
g

to
 t

he
 n

um
be

r
of

 r
ev

er
si

bl
e

re
ac

tio
ns

. F
or

 th
e

m
et

ab
ol

ic
 m

od
el

s
th

e
di

m
en

si
on

s
of

 th
e

or
ig

in
al

 u
nc

om
pr

es
se

d
m

od
el

 a
nd

 a
 c

om
pa

ris
on

 b
et

w
ee

n
th

e
co

m
pr

es
si

on
s

of
 e
f
m
t
o
o
l

 a
nd

 E
F
M
l
r
s

 a
re

 g
iv

en
. F

or

th
e

po
ly

to
pe

s,
th

e
m

at
rix

 d
im

en
si

on
s

of
 th

e
or

ig
in

al
 u

nc
om

pr
es

se
d

(u
nc

m
p.

) p
ol

yt
op

e
P,

th
e

tr
an

sf
or

m
ed

 u
nc

om
pr

es
se

d
an

d
vi

a
e
f
m
t
o
o
l

 c
om

pr
es

se
d

m
od

el
 in

 th
e

flu
x

co
ne

FC

 a
re

 s
ho

w
n.

 A
ll

po
ly

to
pe

s
w

er
e

ob
ta

in
ed

 fr
om

 th
e

lrs
 h

om
ep

ag
e

[2
7]

. c
om

p.
, c

om
pr

es
si

on
; D

eg
.,

de
gr

ee
 o

f d
eg

en
er

ac
y

M
od

el
un

cm
p.

 P
un

cm
p.

 F
C

ef
m

to
ol

 c
om

p.
EF

M
Ir

s
co

m
p.

EF
M

s
D

eg
.

Co
lu

m
ns

Ro
w

s
Co

lu
m

ns
Ro

w
s

Co
lu

m
ns

Ro
w

s
Co

lu
m

ns
Ro

w
s

EC
ol

iC
en

tr
al

 [2
8]

71
 (1

5)
53

44
 (1

1)
26

44
 (1

1)
21

42
9,

27
6

H
ig

h

EC
ol

iC
or

e2
 [2

9]
82

 (2
2)

54
58

 (1
8)

30
58

 (1
8)

30
34

,8
96

,4
77

H
ig

h

iP
S1

89
 [3

0]
27

7
(2

1)
27

1
67

 (1
3)

42
63

 (1
3)

35
3,

25
2,

68
6

H
ig

h

JC
VI

-s
yn

3A
 [3

1]
31

6
(8

)
28

6
10

0
(7

)
50

10
0

(7
)

48
?

H
ig

h

cp
6

[2
7]

16
 (1

5)
36

8
38

4
(1

5)
36

8
38

4
(1

5)
36

8
32

H
ig

h

bv
7

[2
7]

57
 (5

6)
69

10
6

(5
6)

69
49

 (0
)

12
5,

04
0

H
ig

h

m
it7

1
[2

7]
61

 (6
0)

71
13

2
(6

0)
71

13
2

(6
0)

71
3,

14
9,

57
9

M
od

er
at

e

fq
48

-1
9

[2
7]

19
 (1

8)
48

67
 (1

8)
48

48
 (0

)
29

11
9,

18
4

M
od

er
at

e

m
it

[2
7]

9
(8

)
72

9
73

8
(8

)
72

9
72

9
(0

)
72

0
4,

86
2

M
od

er
at

e

pe
rm

10
 [2

7]
11

 (1
0)

10
23

10
33

 (1
0)

10
23

10
33

 (1
0)

10
23

36
28

80
0

Si
m

pl
e

Page 11 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

since in contrast to efmtool the compressions of EFMlrs are not directly coupled
with the following calculations and the compressions have to be done only once, the
overall time loss is not a big factor when calculating large models. Further details on
EFMlrs workflow, the compression algorithms used and a visual comparison between an
uncompressed and a compressed metabolic network (see Additional file 1: Figure S1) are
provided in the Additional file 1.

Results and discussion
In the following, the different requirements and performances of mplrs [1] and efm-
tool [12] are evaluated and compared. The main aspects of these analyses are run time
and memory requirements, since these two factors are the main obstacles preventing
further widespread use and application of EFM analysis. Also, the scaling behavior of the
different parallelization techniques is examined and compared in more detail, as well as
the performance of the two algorithms when computing models with different degrees
of degeneracy. Furthermore, we investigated which formulation is most suitable for
computations with mplrs and show that a “minimal” cell is maybe not so minimal at all.

All metabolic models and polytopes used in this work are summarized in Table 1. The
wall time and the RAM requirements were obtained using the time command. Calcula-
tions were partly performed on servers provided by acib [32] and partly on the Vienna
Scientific Cluster (VSC) [33].

101

102

103

104

105

w
al

l t
im

e
/ [

s]

(a) EColiCentral

101

102

103

104

105
(b) iPS189

1 min

1 hour1 hour

1 day

1 week

(c) EColiCore2

1 2 4 6 10 20 50 100 300 672

(f)

mplrs uncomp
mplrs / thread

mplrs comp
mplrs total

efmtool
efmtool total

1 2 4 6 10 20 50 100 300 672

small
scale

cluster

Vienna
Science
Cluster 3

1 2 4 6 10 20 50 100 300 672

(e)

number of threads

1 2 4 6 10 20 50 100 300 672

small
scale

cluster

Vienna
Science
Cluster 3

10-2

10-1

100

101

1 2 4 6 10 20 50 100 300 672

m
ax

im
u

m
 r

es
id

en
t

se
t

si
ze

 /
[G

B
]

(d)

10-2

10-1

100

101

1 2 4 6 10 20 50 100 300 672

small
scale

cluster

Vienna
Science
Cluster 3

Fig. 4  Performance comparison of efmtool [12] (circles) and mplrs [1] (full squares) enumerating EFMs
in the flux cone (9) of the three compressed metabolic models: EColiCentral [28] (a, d), EColiCore2 [29] (b, e)
and iPS189 [30] (c, f). Top panels compare run time as function of thread number. Additionally, we checked
mplrs’s run time behavior for the uncompressed models (triangles). Dotted lines indicate efmtool’s
minimum wall time, and a power-law fit to mplrs’s wall time, respectively. The intersections of the dotted
lines mark (predicted) points where mplrs is as fast as the fastest efmtool run. We validated these points
by running mplrs with the predicted number of threads (open squares). Note, open squares were not
used in the power-law fit. The 4 thin gray lines indicate 1 min, 1 h, 1 day and 1 week—as stated in the upper
middle plot. Bottom panels compare maximum resident set size during EFM enumeration as function of
thread number. For mplrs, we also plotted the maximum resident set size per thread (open squares). Two
different clusters were used for this analysis as indicated by the different background shadings

Page 12 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

Comparison of run times, memory requirements and scaling behavior of efmtool [12]

and mplrs [1]

We enumerated all EFMs in the flux cone (9) of the metabolic models EColiCentral [28],
EColiCore2 [29], and iPS189 [30] with efmtool and mplrs. Figure 4 illustrates a run
time comparison between both tools as function of the number of available threads. In
single-thread mode efmtool enumerates EFMs many times faster than lrs [21]. Only
when using several hundred threads does mplrs become as fast as efmtool, see Fig. 4.
efmtool [12] scales rather poorly with the number of threads. On average already

with two threads, efmtool loses 12.5% of the maximally achievable parallelization
gain. Apparently independent of the enumeration problem, efmtool works fastest with
approximately six threads, see Fig. 4. However, with six threads efmtool utilizes only
53.3% of the ideal parallelization gain. More than six threads obstruct each other and
any parallelization gains are quickly lost if the number of threads is increased further.
This may not be a problem for small models, which can be analyzed on desktop comput-
ers, but it essentially excludes the use of highly parallelized HPC infrastructures.

In contrast, mplrs [1], although rather slow when using only a few threads, is almost
ideally parallelizable and – when run with a few hundred threads—outperforms efm-
tool [12], see Fig. 4. Lossless network compression strongly improves mplrs’s
performance.
efmtool’s run time advantage comes at the price of enormous memory consump-

tion. Even the smallest model with ≈ 0.5 × 106 EFMs required already 10 GB, see Fig. 4.
Shared memory demand rises further for the two larger models reaching 25 GB for the
enumeration of ≈ 35 × 106 EFMs in EColiCore2 [29]. The large memory consumption
essentially limits the scalability of efmtool [12] and reflects the fact that during the
iteration phase the DDM constructs many intermediate EFMs that are not elements of
the final polyhedron, see the red vertex in Fig. 1. However, in all cases, the maximum
memory consumption was essentially independent of the number of available threads.
This is a characteristic of the DDM, which requires storing all intermediate results.
Hence, more threads do not give an advantage concerning to the amount or distribution
of required shared memory.

This is in strong contrast to mplrs’s performance, which consumes a constant,
machine-dependent but very small amount of memory (several ten MB) per thread.
Thus, total memory consumption scales linearly with the number of threads and is—in
contrast to the efmtool [12]—no longer limiting.

Next, we wanted to compare the performances of the DDM and mplrs [1] with a
fixed number of threads in enumerating extreme rays and extreme vectors in six general
polyhedra of various degeneracy, see Fig. 5. Since efmtool [12] is specialized on meta-
bolic models, we also included polco [12], another but more general implementation
of the DDM, in this comparison. All of the models used are freely available for down-
load on the lrs homepage [27]. For computations with mplrs and polco, the polyhedra
were taken as provided in the H-representation. For use with efmtool, the input matri-
ces needed to be transformed into a flux cone (9) as described in the method section. To
ensure the fairest possible comparison no compressions—neither through EFMlrs nor
through internal compression methods of polco or efmtool—were applied and no
output was written.

Page 13 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

Figure 5 shows the results of this comparison. For highly to medium degenerate pol-
ytopes polco [12] and efmtool [12] were faster, with the exception being mit71, a
moderately degenerate polytope. Within five days efmtool was unable to finish enu-
meration, while polco needed less than a minute and mplrs [1] less than 30 min. For
the two simple polytopes (mit and perm10) mplrs was by far the fastest. The differ-
ence becomes most evident for the perm10 model. Here the DDM based tools needed a
bit more than 3 h, while mplrs was able to solve it in less than a minute. Additionally,
looking at the average amount of RAM needed for calculating one model, it shows that
the fast performance of DDM-based methods is payed in memory. On average, polco
needed 153.5 GB, efmtool 116.2 GB and mplrs 0.2 GB of RAM per model. Our results
are well in line with conventional wisdom that mplrs is faster for non-degenerate mod-
els, whereas DDM-based methods, like efmtool or polco, perform better in highly
degenerate cases [19], but require a huge amount of memory.

Performance of mplrs in different geometric shapes

mplrs [1] offers the possibility to formulate the EFM enumeration problem in different
geometric objects, i.e. as in (5) as polyhedron P, as in (7) as polyhedral cone PC, or as

Fig. 5  Comparison of the run times for six general polyhedra with different grades of degeneracy of mplrs
[1] and two representatives of the DDM—efmtool and polco [12]. The y-axis shows the measured wall
time in units suitable for the respective calculations, varying from seconds to hours. The x-axis shows the
results of the three tools. 20 threads were used for all calculations. For calculations with polco and mplrs,
the models were taken in the H-representation as provided on the lrs homepage. Only for use with efmtool,
the input matrices first needed to be transformed into a flux cone (9) as described in the method section.
To make the comparison as fair as possible no compressions–neither through EFMlrs nor through internal
compression methods of polco or efmtool, were applied and no output files were written. The models
are sorted in descending order according to their degree of degeneracy. From cp6 and bv7 being highly
degenerate to perm10 a simple 9-dimensional polytope. The DDM-based tools were faster for the high to
moderate degenerate models, while mplrs outperformed both efmtool and polco on the simple
models. For the calculations of the mit71 polco needed 33 s and mplrs 22 min. Unfortunately calculations
with efmtool could not be finished and were aborted after 5 days. In the plot this is indicated by a gray
column. All in all, our results confirm the widespread assumption that the DDM is faster for degenerate
polyhedra, whereas mplrs was faster for the simple polyhedra. This can be seen particularly well in the
perm10 model for which mplrs required less than a minute while the DDM based methods needed a bit
more than 3 h

Page 14 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

in (9) as flux cone FC. Thus, we tested if this flexibility allows us to accelerate mplrs’s
performance.

We used EColiCore2 [29] subject to all combinations of constraints listed in Table 2
and computed all EFM/Vs in the different geometric formulations (flux cone, (9), poly-
hedral cone (7), and general polyhedron (5)) with mplrs [1]. Prior to the calculations,
all uptake reactions including thereby orphaned metabolites for carbon uptake were
removed with the exception of glucose. Table 3 lists the dimensions of the input matrices
for these different scenarios. We observe that both run time and output size of mplrs
heavily depend on the problem formulation.

The smallest output size is achieved if the enumeration problem is formulated as a
(flux or polyhedral) cone (see Additional file 1: Figure S2b). If, however, the problem is
formulated as a general polyhedron still all EFM/Vs get enumerated but some are listed
multiple times [27], which increases the output size. In our examples, every EFM/Vs gets
enumerated 10.8 times on average. Figure 6 shows the ratios between multiple possi-
ble occurrences of EFM/Vs found in a general polyhedron and the set of unique EFM/
Vs found in the cone shapes. Typically the larger output size of the general polyhedron
increases the run time on average by a factor of 1.5 compared to the flux cone and by 1.2
compared to the PC. Yet, we found one case (ATPM) where the enumeration of EFM/
Vs in a general polytope took 30% of time used in the flux cone formulation although
the output size increased by 30%. Similarly, EFM/V enumeration in a polyhedral cone
is on average 1.6 times slower than in the corresponding flux cone. Again we found one
counterexample—the model with bounds on the reactions GlcUp and O2Up. Here the
polyhedral cone was almost 25% faster compared to the flux cone. Overall, we concluded

Table 2  Bounds applied to the reactions of EColiCore2 [29]

ID Bound [mmol/gh] Description

R_GlcUp ≤ 10 Glucose uptake

R_O2Up ≤ 5 Oxygen uptake

R_ATPM ≥ 3.15 Maintenance demand

Table 3  Dimensions of the input matrices for the different scenarios of EColiCore2 [29] with
various reaction bounds (see Table 2) applied. All matrices are compressed and redundant rows are
removed. Compressions were applied through EFMlrs and redundant rows were removed using the
lrs redund function [1]

Bound(s) Geometry Rows × columns

ATPM FC, PC 107 × 82

P 106 × 81

GlcUP O2Up FC, PC 107 × 82

P 107 × 81

ATPM,GlcUp &
ATPM,O2Up

FC, PC 107 × 82

P 107 × 81

GlcUP,O2Up &
ATPM,GlcUp, O2Up

FC 109 × 83

PC 108 × 82

P 108 × 81

Page 15 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

that it is generally better to use the flux cone formulation. A comparison of the run times
and the different amounts of results found in the cone shapes versus the general polyhe-
dron is provided in the Additional file 1: Figure S2.

A not so minimal cell ...

JCVI-syn3A is a synthetic, minimal cell with a 543 kbp genome and 493 genes [31]. Its
metabolic reconstruction contains 304 metabolites, 338 reactions in total including 244
non-pseudo reactions and 155 genes. Prior to enumerating EFMs, we made the model
consistent. That is, we removed all dead-end metabolites and reactions that were unable
to carry non-zero steady-state fluxes under any circumstances. Additionally, we rede-
fined reversible reactions to be irreversible, if their fluxes never changed directions, see
Table 1. Although JCVI-syn3A [31] is a reconstruction of a minimal cell it was not pos-
sible to enumerate all EFMs in the flux cone of this model via efmtool [12] on our
computing infrastructure1.

To investigate the explosion of the number of EFMs in JCVI-syn3A [31] in more
detail, we reduced JCVI-syn3A [31] as much as possible. For this purpose, we

Fig. 6  Visualization of the ratios between multiple possible occurrences of EFVs found in a general
polyhedron P (5) and the set of unique EFVs found in the cone shapes (FC (9), PC (7)) of EColiCore2 [29] with
different reaction bounds applied (Table 2). The x-axis shows the ratio between the number of EFVs found in
the cone shapes and the number of EFVs found in the polyhedron. The y-axis shows the factor between the
run times of a flux cone FC and a general polyhedron P, respectively a polyhedral cone PC. The results of P
and PC are arranged on the y-axis according to their factor. Along the dashed vertical line at (1, 0) the results
from the polyhedral cone PC (blue) are located on the x-axis and according to their uniqueness accounted for
as 1. The results from P (red) are arranged along the x-axis according to their multiples in comparison to the
results of the cones. Each scenario was given a specific symbol as shown in the boxed legend

1  CPU model: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, sockets: 2, CPU cores: 10, total threads: 40, 825 GB RAM

Page 16 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

computed a minimal medium using the COBRApy function minimal_medium()
that supports a maximum growth rate of 0.342. In total 22 uptake reactions were not
required in this minimal medium and thus removed from the model. This model is
referred to as sm0 . Besides, we created a series of 21 models smi where each model
smi contained one additional uptake reaction (of the set of non-minimal uptakes)
compared to its predecessor model smi−1 (models are available at https://​github.​com/​

Table 4  Overview of the most important sub-models of JCVI-syn3A [31] and associated milestones

Name Reactions total Non-
essential
uptake
reactions

EFMs Milestone

sm00 253 0 768,990 Smallest sub-model

sm04 263 4 6,595,338 Sub-model used for yield analysis

sm07 272 7 52,761,066 Last calculations possible with efmtool

sm08 275 8 105,521,898 Last model with further process-able output size

sm15 296 15 12,051,382,513 Last model calculated yet

full model 316 22 unknown Includes all non-essential exchange reactions

Fig. 7  Histogram of the biomass / glucose yield for the sub-models sm0 , sm4 and sm8 of JCVI-syn3A [31]. The
x-axis shows the yield and the y-axis the count in logarithmic scale. The sub-models are plotted in different
colors on top of each other with the smallest sub-model sm0 in dark blue in the top, sub-model sm4 in gray in
the middle and the largest sub-model sm8 in light blue in the bottom layer. The factor between sm4 and sm8
is exactly 16 over the complete distribution, the factor between sm0 and sm4 is 8.6 and 138.3 between sm0
and sm8 . This shows that the bigger sub-models completely include all previous smaller sub-models and that
additional carbon sources do not lead to new metabolic pathways, but rather integrate into and reinforce
existing structures

https://github.com/BeeAnka/EFMlrs

Page 17 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

BeeAn​ka/​EFMlrs). Hence, we got 22 sub-models. The smallest ( sm0 ) of which mod-
eled growth on minimal medium, the largest ( sm21 ) misses one uptake reaction com-
pared to the original model JCVI-syn3A [31]. Afterwards we enumerated EFMs in the
flux cone (9) of these models with efmtool [12] and mplrs [1] starting with the
smallest sub-model sm0 . In this sub-model ( sm0 ) we found 768,990 EFMs and calcula-
tions took approximately 2 min (efmtool 6 threads, mplrs 48 threads). With efm-
tool we were able to enumerate EFMs in all sub-models up to sm7 . With mplrs we
completely enumerated all sub-models up to sm15 . It contained 12,051,382,513 EFMs
and enumerations took almost 5 days with 960 parallel threads on the VSC 4. Table 4
provides an overview of (selected) sub-models and associated milestones.

For all enumerated sub-models we confirmed (i) that mplrs [1] and efmtool [12]
returned an identical set of EFMs, and (ii) that the set of EFMs in the preceding models
smi−1 are completely contained in the set of EFMs in the successive model smi . The latter
is illustrated in Fig. 7, where we plotted the (discontinuous) distribution of the biomass
yield on glucose over the set of EFMs in the sub-models sm0 , sm4 , and sm8 . Comparing
the yield distributions of the individual sub-models shows that their ratios are relatively
constant. In fact, the factor between the yield distributions of sm4 and sm8 is exactly
16 over the complete distribution and although the other two factors (8.6 between sm0
and sm4 , and 138.3 between sm0 and sm8 ) have a slightly greater variance, they remain
relatively constant as well. We further observe that additional growth sources rarely nar-
row the gaps in the biomass yield distribution (see e.g. at around 0.033 or 0.067), but
rather increase the count of already existing ones. This indicates that additional carbon
sources mainly couple into the existing pathway structure, rather than contributing
some completely new functionality. Additional support for this conclusion comes from
the observation that the number of EFMs approximately doubles with every additional

106

107

108

109

1010

1011

1012

00 02 04 06 08 10 12 14 16 18 20 22
10-4

10-3

10-2

10-1

100

101

102

103

el
em

en
ta

ry
 fl

ux
 m

od
es

runtim
e w

ith 960 threads [days]

sub-models

calculated EFMs
estimated EFMs

measured runtime
estimated runtime

Fig. 8  Visualization of the scaling behavior of the sub-models of JCVI-syn3A [31]. The plot shows the
correlation between the included number of non-essential uptake reactions, the number of resulting EFMs,
and the run times. The sub-models are plotted on the x-axis and referred to by their number e.g. 00 refers to
sm00 . Y-axis 1 shows the number of calculated/predicted EFMs, y-axis 2 the required/predicted run time in
days using 960 threads on the VSC. Both axes are in logarithmic scale. Full symbols (dots and squares) refer
to measured run times and computed EFMs (sub-models sm00 to sm15 ). The corresponding equations for
the non-logarithmic representation of the calculated results are y1 = 264629e0.6678x with R2 = 0.9997 and
y2 = 3E−5e0.7508x with R2 = 0.9986 . Empty symbols refer to estimated data (sub-models sm16 to sm22 ) with
the assumption that the slopes for both curves remain the same over all sub-models. Sub-model sm00 refers
to the smallest sub-model that includes none of the 22 non-essential uptake reactions and sm22 to the full
model that includes all uptake reactions

https://github.com/BeeAnka/EFMlrs

Page 18 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

uptake reaction, see Fig. 8. We validated this trend for the first 16 of 22 sub-models. If
this tendency continues, JCVI-syn3A [31] will have more than one trillion EFMs. At the
VSC, their complete enumeration would take more than 2.5 years with 960 threads and
the compressed output file would be about 33× 106 GB in size.

However, how can it be that in a minimal genome cell this astonishing number of
EFMs can be found? To clarify this question, we made further efforts to analyze the
biggest set of EFMs still process-able ( sm8 ). In a first step, we could identify 15,360
EFMs with the highest yield of 0.0705507. By analyzing and comparing the fluxes of
these EFMs it became clear that although they are not identical, they are very simi-
lar. Each of the 15,360 EFMs differs only in two reactions from at least 5 other EFMs.
On average an EFM differs from 6.2 other EFMs in exactly 2 reactions. This means
that the set of EFMs, although still unique, at least partly consists of extremely simi-
lar EFMs. Figures 9a, b show examples of such similar EFMs. Each Figure displays a
certain excerpt of the metabolic network of JCVI-syn3A [31] representing two EFMs
that share 273 reaction fluxes and differ only in the remaining two. Figure 9c is a

Fig. 9  The three Figures show different visualizations of EFMs that belong to the 15,360 identified highest
yield EFMs of the sub-model sm8 of JCVI-syn3A [31]. Each EFM consists of 275 reactions in total. a and b show
excerpts of the pathways of EFM 1 and EFM 9 respectively EFM 2 where the respective EFMs only differ in
two reactions from each other. Shared reactions are in dark blue whereas individual reactions are in the same
color as the EFMs’ name, e.g. in a the reaction GLUTRS_Gln is the shared reaction, reaction GLNTRAT​ belongs
to EFM 1 and GLNTRAT2 belongs to EFM 9. c is a heat map of the top 25 highest yield EFMs, showing the
number of reactions in which the EFMs differ from each other. Since EFM 1 differs from EFM 2, respectively
EFM 9, in two reactions, consequently EFM 2 and EFM 9 differ in 4 reactions, indicated in the heat map by the
number as well as a darker shade of blue. The darker the shade of blue, the greater the similarity between 2
EFMs

Page 19 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

heat map of the top 25 highest yield EFMs, visualizing the differences between them.
The EFMs from Fig. 9a, b are included in this map as well. The heat map shows that
EFM 1 differs from EFM 2, respectively EFM 9 in only two reactions, consequently
EFM 2 and 9 differ in only 4 reactions from each other. Even though only excerpts
from the overall results could be analyzed, it becomes very clear how similar these
EFMs are. Hence, it can be assumed that this pattern is present in the rest of the set
of EFMs as well. To explore these results in more detail, further sub-set analysis e.g.
by using ecmtool [34] or ProCEMs-enumeration [16], would be required. How-
ever, our analysis at least in part explains this incredible number of EFMs found in
the minimal cell model JCVI-syn3A [31].

Conclusion
efmtool [12], respectively the DDM, remains essential for complete enumeration
and analysis of EFMs in small-scale metabolic networks. Yet, it is memory intensive,
lacks scalability and its application is therefore limited. In contrast, mplrs [1] allows
for scalable, massively parallel enumeration of EFMs, which is no longer limited by
(expensive) RAM restrictions but (cheap) computing power. Given the increasing
power and availability of HPC clusters and cloud-services, mplrs opens new pos-
sibilities to overcome current limitations. To facilitate such a transformation EFMlrs
provides a Python framework to harvest these promises for an unbiased characteriza-
tion of metabolic networks. Additionally, the concept to generalize EFMs from flux
cones to flux polyhedra, already introduced by Urbanczik over a decade ago [5], is
incorporated in EFMlrs as well. In the future, mplrs could probably also be used
in conjunction with other programs, such as ecmtool [34], as an alternative to the
DDM and make these tools even more efficient.
EFMlrs is the first program that gives users the ability to enumerate EFM/Vs in

metabolic models on HPC clusters via mplrs [1]. It can be used as a stand-alone
program but also seamlessly integrates in existing workflows. In particular, EFMlrs
adds (i) the possibility to calculate EFVs to efmtool and COBRApy and (ii) opens
the doors to HPC systems for EFM/V analysis via mplrs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04417-9.

Additional file 1: More detailed information on EFMlrs compression algorithms incl. detailed description, pseudo-
code snippets and comparison of different geometric formulations.

Acknowledgements
This work has been supported by the Austrian BMWD, BMK, SFG, Standortagentur Tirol, Government of Lower Austria,
and Business Agency Vienna through the Austrian FFG-COMET- Funding Program. The computational results have been
achieved in part using the Vienna Scientific Cluster 3 (VSC3) and 4 (VSC4).

Authors’ contributions
Conceptualisation: JZ Methodology and formal analysis: BAB and JZ Data acquisition and curation: B.A.B. Software imple-
mentation: BAB Visualisation: BAB Writing—original draft: BAB and JZ Writing—review and editing: BAB and JZ Funding
acquisition: JZ. Both authors read and approved the final manuscript.

Funding
Austrian Research Promotion Agency, Comet Acib

https://doi.org/10.1186/s12859-021-04417-9

Page 20 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547

Availability of data and materials
EFMlrs is an open-source program that comes together with a designated workflow. It’s implemented in Python 3,
listed in the Python Package Index, and can be easily installed via pip. The complete source code, documentation and a
tutorial are available on https://​github.​com/​BeeAn​ka/​EFMlrs.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria. 2 Austrian Centre
of Industrial Biotechnology, Vienna, Austria. 3 Department of Analytical Chemistry, University of Vienna, Vienna, Austria.

Received: 23 March 2021 Accepted: 27 September 2021

References
	1.	 Avis D, Jordan C. mplrs: a scalable parallel vertex/facet enumeration code. arXiv:​1511.​06487 [cs] (2017). arXiv:​ 1511.​

06487. Accessed 13 Feb 2020
	2.	 Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype–phenotype relationship using a phylog-

eny of in silico methods. Nat Rev Microbiol. 2012;10(4):291–305.
	3.	 Zanghellini J, Ruckerbauer DE, Hanscho M, Jungreuthmayer C. Elementary flux modes in a nutshell: properties,

calculation and applications. Biotechnol J. 2013;8(9):1009–16. https://​doi.​org/​10.​1002/​biot.​20120​0269.​00005.
	4.	 Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and

analysis of complex metabolic networks. Nat Biotechnol. 2000;18(3):326–32. https://​doi.​org/​10.​1038/​73786.
	5.	 Urbanczik R. Enumerating constrained elementary flux vectors of metabolic networks. IET Syst Biol. 2007;1(5):274–9.

https://​doi.​org/​10.​1049/​iet-​syb:​20060​073.​00020.
	6.	 Klamt S, Mahadevan R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab Eng.

2015;30:166–78. https://​doi.​org/​10.​1016/j.​ymben.​2015.​05.​006.​00004.
	7.	 Müller S, Regensburger G. Elementary vectors and conformal sums in polyhedral geometry and their relevance for

metabolic pathway analysis. Front Genet. 2016;7:90. https://​doi.​org/​10.​3389/​fgene.​2016.​00090.​00001.
	8.	 Klamt S, Regensburger G, Gerstl MP, Jungreuthmayer C, Schuster S, Mahadevan R, Zanghellini J, Müller S. From

elementary flux modes to elementary flux vectors: metabolic pathway analysis with arbitrary linear flux constraints.
PLOS Comput Biol. 2017;13:1005409. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10054​09.

	9.	 Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J. 2005;89(6):3837–45.
https://​doi.​org/​10.​1529/​bioph​ysj.​104.​055129.

	10.	 Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A. Sign conditions for injectivity of generalized
polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput
Math. 2015;16(1):69–97. https://​doi.​org/​10.​1007/​s10208-​014-​9239-3.

	11.	 Klamt S, Schuster S. Calculating as many fluxes as possible in underdetermined metabolic networks. Mol Biol Rep.
2002;29(1):243–8. https://​doi.​org/​10.​1023/A:​10203​94300​385.

	12.	 Terzer M, Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics.
2009;24(19):2229–35. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btn401.

	13.	 van Klinken JB, Willems van Dijk K. FluxModeCalculator: an efficient tool for large-scale flux mode computation:
Table 1. Bioinformatics. 2016;32(8):1265–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv742.

	14.	 Song H-S, Goldberg N, Mahajan A, Ramkrishna D. Sequential computation of elementary modes and mini-
mal cut sets in genome-scale metabolic networks using alternate integer linear programming. Bioinformatics.
2017;33:2345–53. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx171.

	15.	 Pey J, Villar JA, Tobalina L, Rezola A, García JM, Beasley JE, Planes FJ. TreeEFM: Calculating Elementary Flux Modes
using linear optimization in a tree-based algorithm. Bioinformatics. 2014;31:897–904. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btu733.

	16.	 Marashi S-A, David L, Bockmayr A. Analysis of metabolic subnetworks by flux cone projection. Algorithms Mol Biol.
2012;7(1):17. https://​doi.​org/​10.​1186/​1748-​7188-7-​17.

	17.	 Ullah E, Yosafshahi M, Hassoun S. Towards scaling elementary flux mode computation. Brief Bioinform.
2019;21:1875–85. https://​doi.​org/​10.​1093/​bib/​bbz094.

	18.	 Avis D, Fukuda K. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra.
Discrete Comput Geom. 1992;8(3):295–313. https://​doi.​org/​10.​1007/​BF022​93050.

	19.	 Fukuda K, Prodon A. Double description method revisited. In: Deza M, Euler R, Manoussakis I, editors. Combinatorics
and computer science, vol. 1120. Berlin: Springer; 1996. p. 91–111.

	20.	 Assarf B, Gawrilow E, Herr K, Joswig M, Lorenz B, Paffenholz A, Rehn T. Computing convex hulls and counting integer
points with polymake. Math Program Comput. 2017;9:1–38. https://​doi.​org/​10.​1007/​s12532-​016-​0104-z.

https://github.com/BeeAnka/EFMlrs
http://arxiv.org/abs/1511.06487
http://arxiv.org/abs/1511.06487
http://arxiv.org/abs/1511.06487
https://doi.org/10.1002/biot.201200269.00005
https://doi.org/10.1038/73786
https://doi.org/10.1049/iet-syb:20060073.00020
https://doi.org/10.1016/j.ymben.2015.05.006.00004
https://doi.org/10.3389/fgene.2016.00090.00001
https://doi.org/10.1371/journal.pcbi.1005409
https://doi.org/10.1529/biophysj.104.055129
https://doi.org/10.1007/s10208-014-9239-3
https://doi.org/10.1023/A:1020394300385
https://doi.org/10.1093/bioinformatics/btn401
https://doi.org/10.1093/bioinformatics/btv742
https://doi.org/10.1093/bioinformatics/btx171
https://doi.org/10.1093/bioinformatics/btu733
https://doi.org/10.1093/bioinformatics/btu733
https://doi.org/10.1186/1748-7188-7-17
https://doi.org/10.1093/bib/bbz094
https://doi.org/10.1007/BF02293050
https://doi.org/10.1007/s12532-016-0104-z

Page 21 of 21Buchner and Zanghellini ﻿BMC Bioinformatics (2021) 22:547 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	21.	 Avis D. Computational experience with the reverse search vertex enumeration algorithm. Optim Methods Softw.
1999;10(2):1–11.

	22.	 Gagneur J, Klamt S. Computation of elementary modes: a unifying framework and the new binary approach. BMC
Bioinformat. 2004;5:1–21. https://​doi.​org/​10.​1186/​1471-​2105-5-​175.

	23.	 Fukuda K, Maki I, Ito S. Thermoelastic Behavior in Ca2SiO4 Solid Solutions. J Am Ceram Soc. 1996;79(11):2925–8.
https://​doi.​org/​10.​1111/j.​1151-​2916.​1996.​tb087​27.x.

	24.	 Terzer M, Stelling J. Parallel extreme ray and pathway computation. In: Wyrzykowski R, Dongarra J, Karczewski K,
Wasniewski J, editors. Parallel processing and applied mathematics. Berlin: Springer; 2010. p. 300–9.

	25.	 Balinski ML. On the graph structure of convex polyhedra in \$n\$-space. Pac J Math. 1961;11(2):431–4.
	26.	 Gross JL, Yellen J, Anderson M. Graph theory and its applications. Boca Raton: Chapman and Hall; 2018.
	27.	 Avis D. User’s guide for lrs—Version 7.0 (2020). http://​cgm.​cs.​mcgill.​ca/. Accessed 25 Jan 2021.
	28.	 Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses

and pentoses. Appl Environ Microbiol. 2008;74(12):3634–43. https://​doi.​org/​10.​1128/​AEM.​02708-​07.
	29.	 Hädicke O, Klamt S. EColiCore2: a reference network model of the central metabolism of Escherichia coli and rela-

tionships to its genome-scale parent model. Sci Rep. 2017;7(1):39647. https://​doi.​org/​10.​1038/​srep3​9647.
	30.	 Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A genome-scale metabolic reconstruction of

Mycoplasma genitalium, iPS189. PLOS Comput Biol. 2009;5(2):1000285. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10002​85.
	31.	 Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Lynott MR, Hutchison CA, Smith HO, Lapek JD, Gonzalez DJ, de

Crécy-Lagard V, Haas D, Hanson AD, Labhsetwar P, Glass JI, Luthey-Schulten Z. Essential metabolism for a minimal
cell. eLife. 2019;8:36842. https://​doi.​org/​10.​7554/​eLife.​36842.

	32.	 Acib: ACIB—Austrian Centre of Industrial Biotechnology (2017).
	33.	 Team V. Vienna Scientific Cluster (2018). http://​vsc.​ac.​at.
	34.	 Clement TJ, Baalhuis EB, Teusink B, Bruggeman FJ, Planqué R, de Groot DH. Unlocking elementary conversion modes:

ecmtool unveils all capabilities of metabolic networks. Patterns. 2021;2(1):100177. https://​doi.​org/​10.​1016/j.​patter.​
2020.​100177.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-5-175
https://doi.org/10.1111/j.1151-2916.1996.tb08727.x
http://cgm.cs.mcgill.ca/
https://doi.org/10.1128/AEM.02708-07
https://doi.org/10.1038/srep39647
https://doi.org/10.1371/journal.pcbi.1000285
https://doi.org/10.7554/eLife.36842
http://vsc.ac.at
https://doi.org/10.1016/j.patter.2020.100177
https://doi.org/10.1016/j.patter.2020.100177

	EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Methods
	Mathematical representation and its geometric interpretation
	Algorithms for calculating EFMs
	Double description method
	Lexicographic reverse search

	EFMlrs
	Compressions

	Results and discussion
	Comparison of run times, memory requirements and scaling behavior of efmtool [12] and mplrs [1]
	Performance of mplrs in different geometric shapes
	A not so minimal cell ...

	Conclusion
	Acknowledgements
	References

