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Introduction
Arguably one of the most successful approaches in systems biotechnology and meta-
bolic engineering are constraint-based methods (CBMs). These methods reconstruct 
(genome-scale) metabolic networks from genetic information and combine it with 
steady-state analysis to predict phenotypes from genotypes [2]. The success of CBMs 
is owed to the wealth of available metabolic information. Importantly, CBMs do not 
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require any kinetic data as they focus on a steady-state description. In particular lin-
ear programming-based flux balance analysis (FBA) approaches have proven useful and 
scalable. Yet, FBA is biased as it selects the solution based on the optimal performance 
of an (selected) objective function. In fact, FBA characterizes optimal modes of opera-
tion rather than the available solution space.

In contrast, EFM analysis allows an unbiased characterization of a metabolic network, 
as it describes all feasible steady-state phenotypes in terms of elementary pathways, so-
called EFMs, without the necessity of an optimality criterion [3]. EFMs are (support) 
minimal sets of reactions that can operate at steady-state while using all irreversible 
reactions in the appropriate direction [4]. The minimality property means that no reac-
tion can be removed from the set of flux-carrying reactions without losing the ability to 
keep up a non-zero steady-state flux.

However, this definition of EFMs allows only two homogeneous inequality constraints 
- the steady-state assumption and the sign restrictions on the rates of irreversible reac-
tions. Thus, a more general definition that also allows the incorporation of other inho-
mogeneous linear constraints, such as upper and lower reaction bounds, was needed. In 
2007 Urbanczik et al. presented such a concept for the first time and expanded the defi-
nition of EFMs by introducing elementary flux vectors (EFVs) [5]. Although this concept 
initially received little attention, over the years it has been taken up again and further 
explored [6–8].

In further course we use the definition as proposed by Klamt et  al. in 2017. It is an 
equivalent but more general definition of EFMs that also includes EFVs, by specifying 
EFMs as convex-conformally non-decomposable pathways [8] in a metabolic network. 
The latter definition also allows including inhomogeneous flux bounds into the analy-
sis. Therefore, biologically, EFMs/EFVs (EFM/Vs) represent potential functional units 
in metabolic networks. In fact, every steady-state flux can be represented as a convex 
combination of its EFVs plus a conical linear combination of its EFMs [9, 10]. These 
properties make EFM analysis a powerful tool in basic biological research and metabolic 
engineering.

However, the enumeration of EFM/Vs is challenging, as the numbers of EFM/Vs grow 
combinatorially with the size of the metabolic network [11], which essentially limits the 
applicability of EFM analysis to small or medium size metabolic networks. Standard 
tools, e.g efmtool [12] or the FluxModeCalculator (FMC) [13], are difficult to parallel-
ize and suffer from exorbitant memory consumption. Alternatives, e.g. Song et al. [14], 
Pey et al. [15] or Marashi et al. [16], use optimization principles to sequentially enumer-
ate EFMs. In general, the latter are much slower than the former and only allow one to 
sample a subset of EFMs. Thus, the complete enumeration of EFM/Vs in genome-scale 
metabolic models remains intractable with current approaches [17].

Mathematically, the enumeration of EFM/Vs in metabolic networks is a vertex enu-
meration problem in convex polyhedra. There are essentially two approaches to solve this 
problem: (i) reverse search [18], and (ii) double description [19]. The former is typically 
considered unsuitable for enumerating vertices in highly-degenerate networks [20], such as 
metabolic networks. Recently, this assumption has been challenged by a multi-threading, 
parallelized version of the lrs algorithm [21]—mplrs [1]. Performance tests of this algo-
rithm indicate that it is almost embarrassingly parallel and best suited for HPC due to its 
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excellent scalability and negligible memory consumption. Here, we test the suitability of 
mplrs [1] for EFM enumeration in metabolic networks.

Methods
Mathematical representation and its geometric interpretation

In the following and without loss of generality, we assume that all variables unconstrained 
in sign are replaced by the difference of two non-negative variables. Thus, all variables are 
non-negative. In metabolic terms, this means that every reversible reaction was replaced by 
two counteracting irreversible reactions.

A convex polyhedron P is defined as the set of solutions to a system of linear inequalities

with a matrix A ∈ R
k×l and a vector b ∈ R

k . Geometrically, P can be thought of as an 
intersection of half-spaces. As we assume x ≥ 0 , (1) describes a pointed convex polyhe-
dron sitting in the non-negative orthant.

Any convex polyhedron can be represented not only as an intersection of half-spaces [as 
in (1)], but also as a (Minkowski) sum of a “bounded” polytope and an “unbounded” cone

where

and

denote polytope and cone spanned by the convex and conic combination of all extreme 
points, εi , and extreme rays, ej , of the convex polyhedron P, respectively. Here, “extreme 
ray” means that not only the point ej is extreme and part of the convex polyhedron P, but 
all points sitting on the ray {αe|α ≥ 0} are too.

In the following, it will prove useful to explicitly collect equalities, inequalities, and state 
non-negativity in corresponding matrices and vectors and write (1) as
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In general, (5) describes a convex polyhedron. We can transform this polyhedron into 
a convex polyhedral cone PC by embedding the polyhedron into a higher dimensional 
space

with

where we have introduced a new slack variable ζ , which for ζ = 1 returns (5). Thus, it is 
possible to transform every polyhedron, specially every (“bounded”) polytope, into an 
(“unbounded”) convex cone that is embedded in a higher dimensional space. By doing 
so, every vertex enumeration problem can also be understood as an extreme ray enu-
meration problem.

In metabolic pathway analysis, we encounter a special convex polyhedron, referred to 
as flux cone

Here, N ∈ R
m×n and I denote the stoichiometric matrix of the metabolic network and 

the n× n unity matrix, respectively, and r ∈ R
n denotes the vector of the flux distribu-

tion through the metabolic network. Biologically, Nr = 0 and Ir ≥ 0 encode the steady-
state condition and the irreversibilities of the reaction fluxes, respectively.

Clearly, by setting

(9) is a special case of (5). Conversely, by setting

and using the slack variables ξ ∈ R
k2
≥0 and ζ ∈ R≥0 we transform the polyhedron (5) into 

a flux cone (9).
In metabolic terms, the extreme rays of the flux cone (9) correspond to EFMs, if we 

disregard “two-cycle modes” that consist of the forward reaction and backward reaction 
of an originally reversible reaction.

Additionally, we can “read” the polyhedron (5) metabolically. For d = 0 and x = r , we 
can interpret C as a stoichiometric matrix, Ex ≥ f  as allocation and capacity constraints, 
and Ix ≥ 0 as irreversibly constraints on the reaction fluxes. Except for two-cycle modes 
(see above), the extreme points and extreme rays of this polyhedron are then the EFVs 
and EFMs of the metabolic network.

Similarly, every element of a pointed flux cone can be represented as a conical combi-
nation of its extreme rays, which correspond to EFMs (if we again disregard ”two-cycle 
modes”). Thus, we can understand any flux distribution as a superposition of elementary 
metabolic units.
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Both, EFMs and EFVs can be computed with mplrs [1] using either the formulations 
(1), (5), (7), or (9). However, efmtool [12] can only enumerate EFMs of the flux cone 
(9) making a transformation according to (6) necessary.

Algorithms for calculating EFMs

Double description method

The most commonly used method for the complete enumeration of EFMs in metabolic 
networks is the double description method (DDM).
efmtool uses the binary null-space implementation [22] of the DDM [23] to enu-

merate the “edges”, i.e. extreme rays, of a pointed flux cone. The algorithm starts from 
the kernel of the stoichiometric matrix N and iteratively converts it to binary form. For 
each reaction (i.e. in each row of the matrix) every column with a negative value at this 
reaction is replaced by all possible combinations of pairs of columns such that their 
conic sum is zero (Fig. 1). Eventually, the currently processed row of the such augmented 
matrix contains only non-negative numbers, which can be binarized. Some of the newly 
added columns may contain redundant information if they are super-sets of other col-
umns and thus can be removed. For instance, the combinations (e2, e4) and (e2, e5) in 
Fig. 1b are super-sets of the new rays e6 and e7 . The iteration stops if all reactions are 
processed and the resulting matrix contains all (binarized) EFMs in its columns.

During the iteration phase many candidate EFMs (i.e. columns in the matrix) are con-
structed that are not present in the final list of EFMs. For instance, the intermediate 
EFMs e1 to e3 in Fig. 1 are only required to construct e6 and e7 . Thus, computational time 
and resources are used on calculating EFM candidates instead of actual EFMs. This is a 
major limitation of the DDM as due to this ex-post validation procedure it needs to keep 
all intermediate results in memory. Therefore, DDM requires a huge amount of random 
access memory (RAM) which for single core as well as for parallelized implementations, 
has to be available on one single server. Although, the required memory can be stored in 
an out-of-core memory instead as well, this approach is not computationally performa-
tive and was therefore disregarded. Hence, the RAM requirements of the DDM can eas-
ily exhaust even state-of-the-art systems [19]. Additionally, the unknown complexity of 

Fig. 1  Iteration step of the DDM method visualizing the generation of a new set of extreme rays. a shows a 
cone with the rays e1 to e5 . b shows the creation of a new set of extreme rays ( e6 and e7 ) through hyperplane 
intersection and the pairwise combination of adjacent rays e.g. e5 and e1 result in the new extreme ray e6 , e4 
and e3 in e7 . Other combinations e.g e5 and e2 are super-sets of e6 and e7 and do not result in new extreme 
rays. c shows the final cone with all redundant rays removed thus it only consists of the actual EFMs e4 , e5 , e6 
and e7
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the DDM poses another obstacle since the required run time cannot be estimated from 
the input data.

Through parallelization and optimization techniques efmtool [12, 24] is one of the 
fastest implementations of the DDM. As efmtool runs on a Java virtual machine it is 
easily accessible and thus one of the most popular and commonly used implementations. 
Although FMC [13] is a more efficient implementation of the binary null-space DDM, it 
runs MATLAB and requires a paid license. Therefore, we decided to include support for 
efmtool in EFMlrs and use it as the representative of the DDM for comparisons with 
mplrs [1].

Lexicographic reverse search

mplrs [1] is an improved and parallel implementation of the reverse search algorithm 
[18]. It first finds some extreme point (thus the polyhedron needs to be pointed) and 
then systematically traces the polyhedron until no new extreme point or extreme ray 
can be found. It has been shown that this is in principle possible [25]. In fact, reverse 
search works by “inverting” the simplex algorithm for linear programming. The simplex 
algorithm first finds an extreme point (a basic feasible solution) and then moves along an 
edge of the polyhedron to an adjacent vertex, where the objective function has a greater 
value. This continues until the optimum (if it exists) is reached. With an appropriate 
pivot (i.e. a rule to pick an adjacent vertex) a unique path from any starting vertex to 
the optimum can be guaranteed. Collecting all these paths from all vertices generates 
a spanning tree [26] rooted at the optimum vertex. Reverse search starts at an extreme 
point, finds an objective function that makes this starting point optimal and maps out 
the spanning tree in depth-first order [18].

Figure 2 shows the path of the simplex algorithm for a simple tetrahedron. A polyhe-
dron is regarded as simple or non-degenerate if each vertex lies on exactly l hyper-planes 
and therefore has a unique base. For such polyhedra, lrs is very efficient as the resulting 
spanning forest has a single component such that each vertex is produced once [21]. For 
these simple polyhedra, the run time only depends on the input data [1]. Yet, the flux 
cones of metabolic models are highly degenerate which is the main reason why lrs was 
regarded as not suitable for EFM/Vs enumeration.

However, in 2017 Avis et al. presented an improved and parallel implementation of lrs 
[21]—the mplrs [1] algorithm. It uses message passing interface (MPI), a well-known 
interface for parallel computing architectures, together with an improved load balanc-
ing strategy to utilize up to 2000 cores in a cluster at once. The load balancing strategy 
divides processes into three categories: a master, a consumer and multiple workers. The 
master process handles the input data and runs in a main loop that consists of distrib-
uting sub-problems to the workers and receiving unfinished sub-problems from them. 
The master process starts by choosing an initial worker which it sends the initial sub-
problem to. This worker then sends unfinished sub-problems back to the master as soon 
as its budget is exhausted or the problem is solved. The budget defines the maximum 
number of nodes that can be visited by a worker. It is dynamically calculated by mplrs 
depending on the number of available threads and the current size of the sub-problem 
list. As soon as the initial worker sends back unfinished sub-problems, the master starts 
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distributing these sub-problems to all workers available. Each worker receives one sub-
problem and only solves this assigned task. Unsolved sub-problems are sent back to 
the master and solved ones are sent to the consumer process which collects all results 
received from the workers and builds the output stream [1].

Duplicates are avoided as only solutions with a lexicographically minimum basis are 
printed. However, uniqueness can only be guaranteed when the polyhedron is a pointed 
cone with the origin as the only vertex ε0 . For unbounded polyhedra duplicates can 
occur during facet enumeration as there are multiple vertices. To guarantee unique solu-
tions it would be necessary to keep a record of all solutions in memory in order to find 
the true minimum basis. Since this would increase memory requirements and negatively 
impact performance it was not included in the current version of mplrs. Hence, during 
EFV enumeration duplicates can occur [21].

Regarding lrs’s load balancing strategy, it becomes clear that real parallelization 
requires at least 4 processes, since two processes are always occupied by master and con-
sumer. This way of balancing the load gives three main advantages: (i) workers can solve 
their assigned sub-problems independently, (ii) the required amount of RAM is distrib-
uted equally over a cluster and (iii) it’s possible to stop and later continue calculations 
from the last calculated result at any time [1].

These properties make mplrs [1] highly scalable and an ideal algorithm for HPC. 
In the context of metabolic networks and EFM/V analysis, mplrs is a completely new 
approach and the first that can truly utilize state of the art high-performance systems. 
Thus, EFM analysis is no longer bound to a single server, does not require an incredible 
amount of RAM, but only depends on the number of available CPU cores in a shared 
memory cluster.

Fig. 2  Path of the simplex method through a simple tetrahedron calculated with lrs [21]. For better 
readability we transformed the cone from Fig. 1 into a tetrahedron and only highlighted the path of the 
simplex method. a shows the path and direction of the simplex method indicated by the red arrows. b shows 
the corresponding reverse search tree. The black arrows indicate the path of the reverse search which starts 
at the origin vertex ε0 and results in a search tree with a depth of 2
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EFMlrs
The main purpose of EFMlrs is the pre- and post-processing of metabolic models for 
enumeration of EFM/Vs on HPC clusters via mplrs [1]. In addition, EFMlrs also sup-
ports EFM enumeration via efmtool [12].
EFMlrs is an open-source program, implemented in python 3 under the GPLv3 

license, supported on Linux and macOS. Common python libraries (COBRApy, NumPy, 
SymPy and Pandas) are used for parsing sbml models, numerical computation and data 
processing. EFMlrs is part of the python package index and can therefore be easily 
installed via pip. The complete python code, further documentation as well as a tuto-
rial are available on GitHub (http://​github.​com/​BeeAn​ka/​EFMlrs). Additionally, detailed 
documentation about the structure of the code and the functions used can be accessed 
on https://​efmlrs.​readt​hedocs.​io.
EFMlrs comes together with a designated workflow that consists of three stages: 

pre-processing metabolic models including transformation and loss-free compressions 
of the stoichiometric matrix, computations of EFM/Vs in the compressed system, and 
post-processing which includes decompression of EFM/Vs. An overview of the complete 
workflow is given in Fig. 3.

The computations are intentionally not directly included in the program as mplrs 
[1] is meant to be executed on a HPC cluster or multiple servers with shared memory. 
Although efmtool [12] can be executed on a desktop machine too, due to its high 
memory requirements it is recommended to use a server. Pre- and post-processing on 
the other hand can be executed on a desktop machine and represent core elements of 
EFMlrs. Besides, this setup gives the users more flexibility as switching between com-
puting platforms is already taken into consideration, especially since computing time on 
HPC systems is often limited.

Compressions

The compression algorithms used by EFMlrs are already known in the metabolic 
modeling community, have been discussed e.g. by Gagneur et  al. [22] and have been 
implemented in e.g. efmtool [12]. Additional file 1: Table S1 compares the compres-
sion results of EFMlrs and efmtool. Since the compressions of both tools are based 
on the same algorithms, their results are very similar as well. However, for 3 out of 4 
models (Table 1) used in this paper, EFMlrs could achieve a stronger compression and 
efmtool was not able to further compress any models compressed by EFMlrs. Only 
for the EColiCore2 [29] model the compression results of both tools were equivalent. 
A compression comparison the other way round - first compressions by efmtool and 
then by EFMlrs could not be done, since efmtool does not output the compressed 
files needed for this.

We attribute the slightly different compression results to the different order and num-
ber of iteration steps found in the respective implementations of the compression algo-
rithms. However, at this moment the exact reason is unknown and subject of future 
investigations. It should be noted that the stronger compressions of EFMlrs together 
with the implementation in Python and the usage of SymPy lead to longer compression 
times compared to efmtool [12] which is implemented in Java - a statically typed and 
compiled and therefore faster programming language compared to Python. However, 

http://github.com/BeeAnka/EFMlrs
https://efmlrs.readthedocs.io
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Fig. 3  Overview of the EFMlrs workflow. It consists of three main stages: pre-processing, computation 
of EFM/Vs, and post-processing. The computations are intentionally not directly included in the program 
as mplrs [1] is meant to be executed on a HPC cluster, whereas pre- and post-processing, as well as 
computations with efmtool [12], can be done on a single machine
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since in contrast to efmtool the compressions of EFMlrs are not directly coupled 
with the following calculations and the compressions have to be done only once, the 
overall time loss is not a big factor when calculating large models. Further details on 
EFMlrs workflow, the compression algorithms used and a visual comparison between an 
uncompressed and a compressed metabolic network (see Additional file 1: Figure S1) are 
provided in the Additional file 1.

Results and discussion
In the following, the different requirements and performances of mplrs [1] and efm-
tool [12] are evaluated and compared. The main aspects of these analyses are run time 
and memory requirements, since these two factors are the main obstacles preventing 
further widespread use and application of EFM analysis. Also, the scaling behavior of the 
different parallelization techniques is examined and compared in more detail, as well as 
the performance of the two algorithms when computing models with different degrees 
of degeneracy. Furthermore, we investigated which formulation is most suitable for 
computations with mplrs and show that a “minimal” cell is maybe not so minimal at all.

All metabolic models and polytopes used in this work are summarized in Table 1. The 
wall time and the RAM requirements were obtained using the time command. Calcula-
tions were partly performed on servers provided by acib [32] and partly on the Vienna 
Scientific Cluster (VSC) [33].
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Fig. 4  Performance comparison of efmtool [12] (circles) and mplrs [1] (full squares) enumerating EFMs 
in the flux cone (9) of the three compressed metabolic models: EColiCentral [28] (a, d), EColiCore2 [29] (b, e) 
and iPS189 [30] (c, f). Top panels compare run time as function of thread number. Additionally, we checked 
mplrs’s run time behavior for the uncompressed models (triangles). Dotted lines indicate efmtool’s 
minimum wall time, and a power-law fit to mplrs’s wall time, respectively. The intersections of the dotted 
lines mark (predicted) points where mplrs is as fast as the fastest efmtool run. We validated these points 
by running mplrs with the predicted number of threads (open squares). Note, open squares were not 
used in the power-law fit. The 4 thin gray lines indicate 1 min, 1 h, 1 day and 1 week—as stated in the upper 
middle plot. Bottom panels compare maximum resident set size during EFM enumeration as function of 
thread number. For mplrs, we also plotted the maximum resident set size per thread (open squares). Two 
different clusters were used for this analysis as indicated by the different background shadings
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Comparison of run times, memory requirements and scaling behavior of efmtool [12] 

and mplrs [1]

We enumerated all EFMs in the flux cone (9) of the metabolic models EColiCentral [28], 
EColiCore2 [29], and iPS189 [30] with efmtool and mplrs. Figure 4 illustrates a run 
time comparison between both tools as function of the number of available threads. In 
single-thread mode efmtool enumerates EFMs many times faster than lrs [21]. Only 
when using several hundred threads does mplrs become as fast as efmtool, see Fig. 4.
efmtool [12] scales rather poorly with the number of threads. On average already 

with two threads, efmtool loses 12.5% of the maximally achievable parallelization 
gain. Apparently independent of the enumeration problem, efmtool works fastest with 
approximately six threads, see Fig. 4. However, with six threads efmtool utilizes only 
53.3% of the ideal parallelization gain. More than six threads obstruct each other and 
any parallelization gains are quickly lost if the number of threads is increased further. 
This may not be a problem for small models, which can be analyzed on desktop comput-
ers, but it essentially excludes the use of highly parallelized HPC infrastructures.

In contrast, mplrs [1], although rather slow when using only a few threads, is almost 
ideally parallelizable and – when run with a few hundred threads—outperforms efm-
tool [12], see Fig.  4. Lossless network compression strongly improves mplrs’s 
performance.
efmtool’s run time advantage comes at the price of enormous memory consump-

tion. Even the smallest model with ≈ 0.5 × 106 EFMs required already 10 GB, see Fig. 4. 
Shared memory demand rises further for the two larger models reaching 25 GB for the 
enumeration of ≈ 35 × 106 EFMs in EColiCore2 [29]. The large memory consumption 
essentially limits the scalability of efmtool [12] and reflects the fact that during the 
iteration phase the DDM constructs many intermediate EFMs that are not elements of 
the final polyhedron, see the red vertex in Fig. 1. However, in all cases, the maximum 
memory consumption was essentially independent of the number of available threads. 
This is a characteristic of the DDM, which requires storing all intermediate results. 
Hence, more threads do not give an advantage concerning to the amount or distribution 
of required shared memory.

This is in strong contrast to mplrs’s performance, which consumes a constant, 
machine-dependent but very small amount of memory (several ten MB) per thread. 
Thus, total memory consumption scales linearly with the number of threads and is—in 
contrast to the efmtool [12]—no longer limiting.

Next, we wanted to compare the performances of the DDM and mplrs [1] with a 
fixed number of threads in enumerating extreme rays and extreme vectors in six general 
polyhedra of various degeneracy, see Fig. 5. Since efmtool [12] is specialized on meta-
bolic models, we also included polco [12], another but more general implementation 
of the DDM, in this comparison. All of the models used are freely available for down-
load on the lrs homepage [27]. For computations with mplrs and polco, the polyhedra 
were taken as provided in the H-representation. For use with efmtool, the input matri-
ces needed to be transformed into a flux cone (9) as described in the method section. To 
ensure the fairest possible comparison no compressions—neither through EFMlrs nor 
through internal compression methods of polco or efmtool—were applied and no 
output was written.
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Figure 5 shows the results of this comparison. For highly to medium degenerate pol-
ytopes polco [12] and efmtool [12] were faster, with the exception being mit71, a 
moderately degenerate polytope. Within five days efmtool was unable to finish enu-
meration, while polco needed less than a minute and mplrs [1] less than 30 min. For 
the two simple polytopes (mit and perm10) mplrs was by far the fastest. The differ-
ence becomes most evident for the perm10 model. Here the DDM based tools needed a 
bit more than 3 h, while mplrs was able to solve it in less than a minute. Additionally, 
looking at the average amount of RAM needed for calculating one model, it shows that 
the fast performance of DDM-based methods is payed in memory. On average, polco 
needed 153.5 GB, efmtool 116.2 GB and mplrs 0.2 GB of RAM per model. Our results 
are well in line with conventional wisdom that mplrs is faster for non-degenerate mod-
els, whereas DDM-based methods, like efmtool or polco, perform better in highly 
degenerate cases [19], but require a huge amount of memory.

Performance of mplrs in different geometric shapes

mplrs [1] offers the possibility to formulate the EFM enumeration problem in different 
geometric objects, i.e. as in (5) as polyhedron P, as in (7) as polyhedral cone PC, or as 

Fig. 5  Comparison of the run times for six general polyhedra with different grades of degeneracy of mplrs 
[1] and two representatives of the DDM—efmtool and polco [12]. The y-axis shows the measured wall 
time in units suitable for the respective calculations, varying from seconds to hours. The x-axis shows the 
results of the three tools. 20 threads were used for all calculations. For calculations with polco and mplrs, 
the models were taken in the H-representation as provided on the lrs homepage. Only for use with efmtool, 
the input matrices first needed to be transformed into a flux cone (9) as described in the method section. 
To make the comparison as fair as possible no compressions–neither through EFMlrs nor through internal 
compression methods of polco or efmtool, were applied and no output files were written. The models 
are sorted in descending order according to their degree of degeneracy. From cp6 and bv7 being highly 
degenerate to perm10 a simple 9-dimensional polytope. The DDM-based tools were faster for the high to 
moderate degenerate models, while mplrs outperformed both efmtool and polco on the simple 
models. For the calculations of the mit71 polco needed 33 s and mplrs 22 min. Unfortunately calculations 
with efmtool could not be finished and were aborted after 5 days. In the plot this is indicated by a gray 
column. All in all, our results confirm the widespread assumption that the DDM is faster for degenerate 
polyhedra, whereas mplrs was faster for the simple polyhedra. This can be seen particularly well in the 
perm10 model for which mplrs required less than a minute while the DDM based methods needed a bit 
more than 3 h
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in (9) as flux cone FC. Thus, we tested if this flexibility allows us to accelerate mplrs’s 
performance.

We used EColiCore2 [29] subject to all combinations of constraints listed in Table 2 
and computed all EFM/Vs in the different geometric formulations (flux cone, (9), poly-
hedral cone (7), and general polyhedron (5)) with mplrs [1]. Prior to the calculations, 
all uptake reactions including thereby orphaned metabolites for carbon uptake were 
removed with the exception of glucose. Table 3 lists the dimensions of the input matrices 
for these different scenarios. We observe that both run time and output size of mplrs 
heavily depend on the problem formulation.

The smallest output size is achieved if the enumeration problem is formulated as a 
(flux or polyhedral) cone (see Additional file 1: Figure S2b). If, however, the problem is 
formulated as a general polyhedron still all EFM/Vs get enumerated but some are listed 
multiple times [27], which increases the output size. In our examples, every EFM/Vs gets 
enumerated 10.8 times on average. Figure  6 shows the ratios between multiple possi-
ble occurrences of EFM/Vs found in a general polyhedron and the set of unique EFM/
Vs found in the cone shapes. Typically the larger output size of the general polyhedron 
increases the run time on average by a factor of 1.5 compared to the flux cone and by 1.2 
compared to the PC. Yet, we found one case (ATPM) where the enumeration of EFM/
Vs in a general polytope took 30% of time used in the flux cone formulation although 
the output size increased by 30%. Similarly, EFM/V enumeration in a polyhedral cone 
is on average 1.6 times slower than in the corresponding flux cone. Again we found one 
counterexample—the model with bounds on the reactions GlcUp and O2Up. Here the 
polyhedral cone was almost 25% faster compared to the flux cone. Overall, we concluded 

Table 2  Bounds applied to the reactions of EColiCore2 [29]

ID Bound [mmol/gh] Description

R_GlcUp ≤ 10 Glucose uptake

R_O2Up ≤ 5 Oxygen uptake

R_ATPM ≥ 3.15 Maintenance demand

Table 3  Dimensions of the input matrices for the different scenarios of EColiCore2 [29] with 
various reaction bounds (see Table 2) applied. All matrices are compressed and redundant rows are 
removed. Compressions were applied through EFMlrs and redundant rows were removed using the 
lrs redund function [1]

Bound(s) Geometry Rows × columns

ATPM FC, PC 107 × 82

P 106 × 81

GlcUP O2Up FC, PC 107 × 82

P 107 × 81

ATPM,GlcUp &
ATPM,O2Up

FC, PC 107 × 82

P 107 × 81

GlcUP,O2Up &
ATPM,GlcUp, O2Up

FC 109 × 83

PC 108 × 82

P 108 × 81
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that it is generally better to use the flux cone formulation. A comparison of the run times 
and the different amounts of results found in the cone shapes versus the general polyhe-
dron is provided in the Additional file 1: Figure S2.

A not so minimal cell ...

JCVI-syn3A is a synthetic, minimal cell with a 543 kbp genome and 493 genes [31]. Its 
metabolic reconstruction contains 304 metabolites, 338 reactions in total including 244 
non-pseudo reactions and 155 genes. Prior to enumerating EFMs, we made the model 
consistent. That is, we removed all dead-end metabolites and reactions that were unable 
to carry non-zero steady-state fluxes under any circumstances. Additionally, we rede-
fined reversible reactions to be irreversible, if their fluxes never changed directions, see 
Table 1. Although JCVI-syn3A [31] is a reconstruction of a minimal cell it was not pos-
sible to enumerate all EFMs in the flux cone of this model via efmtool [12] on our 
computing infrastructure1.

To investigate the explosion of the number of EFMs in JCVI-syn3A [31] in more 
detail, we reduced JCVI-syn3A [31] as much as possible. For this purpose, we 

Fig. 6  Visualization of the ratios between multiple possible occurrences of EFVs found in a general 
polyhedron P (5) and the set of unique EFVs found in the cone shapes (FC (9), PC (7)) of EColiCore2 [29] with 
different reaction bounds applied (Table 2). The x-axis shows the ratio between the number of EFVs found in 
the cone shapes and the number of EFVs found in the polyhedron. The y-axis shows the factor between the 
run times of a flux cone FC and a general polyhedron P, respectively a polyhedral cone PC. The results of P 
and PC are arranged on the y-axis according to their factor. Along the dashed vertical line at (1, 0) the results 
from the polyhedral cone PC (blue) are located on the x-axis and according to their uniqueness accounted for 
as 1. The results from P (red) are arranged along the x-axis according to their multiples in comparison to the 
results of the cones. Each scenario was given a specific symbol as shown in the boxed legend

1  CPU model: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, sockets: 2, CPU cores: 10, total threads: 40, 825 GB RAM
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computed a minimal medium using the COBRApy function minimal_medium() 
that supports a maximum growth rate of 0.342. In total 22 uptake reactions were not 
required in this minimal medium and thus removed from the model. This model is 
referred to as sm0 . Besides, we created a series of 21 models smi where each model 
smi contained one additional uptake reaction (of the set of non-minimal uptakes) 
compared to its predecessor model smi−1 (models are available at https://​github.​com/​

Table 4  Overview of the most important sub-models of JCVI-syn3A [31] and associated milestones

Name Reactions total Non-
essential
uptake 
reactions

EFMs Milestone

sm00 253 0 768,990 Smallest sub-model

sm04 263 4 6,595,338 Sub-model used for yield analysis

sm07 272 7 52,761,066 Last calculations possible with efmtool

sm08 275 8 105,521,898 Last model with further process-able output size

sm15 296 15 12,051,382,513 Last model calculated yet

full model 316 22 unknown Includes all non-essential exchange reactions

Fig. 7  Histogram of the biomass / glucose yield for the sub-models sm0 , sm4 and sm8 of JCVI-syn3A [31]. The 
x-axis shows the yield and the y-axis the count in logarithmic scale. The sub-models are plotted in different 
colors on top of each other with the smallest sub-model sm0 in dark blue in the top, sub-model sm4 in gray in 
the middle and the largest sub-model sm8 in light blue in the bottom layer. The factor between sm4 and sm8 
is exactly 16 over the complete distribution, the factor between sm0 and sm4 is 8.6 and 138.3 between sm0 
and sm8 . This shows that the bigger sub-models completely include all previous smaller sub-models and that 
additional carbon sources do not lead to new metabolic pathways, but rather integrate into and reinforce 
existing structures

https://github.com/BeeAnka/EFMlrs
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BeeAn​ka/​EFMlrs). Hence, we got 22 sub-models. The smallest ( sm0 ) of which mod-
eled growth on minimal medium, the largest ( sm21 ) misses one uptake reaction com-
pared to the original model JCVI-syn3A [31]. Afterwards we enumerated EFMs in the 
flux cone (9) of these models with efmtool [12] and mplrs [1] starting with the 
smallest sub-model sm0 . In this sub-model ( sm0 ) we found 768,990 EFMs and calcula-
tions took approximately 2 min (efmtool 6 threads, mplrs 48 threads). With efm-
tool we were able to enumerate EFMs in all sub-models up to sm7 . With mplrs we 
completely enumerated all sub-models up to sm15 . It contained 12,051,382,513 EFMs 
and enumerations took almost 5 days with 960 parallel threads on the VSC 4. Table 4 
provides an overview of (selected) sub-models and associated milestones.

For all enumerated sub-models we confirmed (i) that mplrs [1] and efmtool [12] 
returned an identical set of EFMs, and (ii) that the set of EFMs in the preceding models 
smi−1 are completely contained in the set of EFMs in the successive model smi . The latter 
is illustrated in Fig. 7, where we plotted the (discontinuous) distribution of the biomass 
yield on glucose over the set of EFMs in the sub-models sm0 , sm4 , and sm8 . Comparing 
the yield distributions of the individual sub-models shows that their ratios are relatively 
constant. In fact, the factor between the yield distributions of sm4 and sm8 is exactly 
16 over the complete distribution and although the other two factors (8.6 between sm0 
and sm4 , and 138.3 between sm0 and sm8 ) have a slightly greater variance, they remain 
relatively constant as well. We further observe that additional growth sources rarely nar-
row the gaps in the biomass yield distribution (see e.g. at around 0.033 or 0.067), but 
rather increase the count of already existing ones. This indicates that additional carbon 
sources mainly couple into the existing pathway structure, rather than contributing 
some completely new functionality. Additional support for this conclusion comes from 
the observation that the number of EFMs approximately doubles with every additional 
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https://github.com/BeeAnka/EFMlrs
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uptake reaction, see Fig. 8. We validated this trend for the first 16 of 22 sub-models. If 
this tendency continues, JCVI-syn3A [31] will have more than one trillion EFMs. At the 
VSC, their complete enumeration would take more than 2.5 years with 960 threads and 
the compressed output file would be about 33× 106 GB in size.

However, how can it be that in a minimal genome cell this astonishing number of 
EFMs can be found? To clarify this question, we made further efforts to analyze the 
biggest set of EFMs still process-able ( sm8 ). In a first step, we could identify 15,360 
EFMs with the highest yield of 0.0705507. By analyzing and comparing the fluxes of 
these EFMs it became clear that although they are not identical, they are very simi-
lar. Each of the 15,360 EFMs differs only in two reactions from at least 5 other EFMs. 
On average an EFM differs from 6.2 other EFMs in exactly 2 reactions. This means 
that the set of EFMs, although still unique, at least partly consists of extremely simi-
lar EFMs. Figures 9a, b show examples of such similar EFMs. Each Figure displays a 
certain excerpt of the metabolic network of JCVI-syn3A [31] representing two EFMs 
that share 273 reaction fluxes and differ only in the remaining two. Figure  9c is a 

Fig. 9  The three Figures show different visualizations of EFMs that belong to the 15,360 identified highest 
yield EFMs of the sub-model sm8 of JCVI-syn3A [31]. Each EFM consists of 275 reactions in total. a and b show 
excerpts of the pathways of EFM 1 and EFM 9 respectively EFM 2 where the respective EFMs only differ in 
two reactions from each other. Shared reactions are in dark blue whereas individual reactions are in the same 
color as the EFMs’ name, e.g. in a the reaction GLUTRS_Gln is the shared reaction, reaction GLNTRAT​ belongs 
to EFM 1 and GLNTRAT2 belongs to EFM 9. c is a heat map of the top 25 highest yield EFMs, showing the 
number of reactions in which the EFMs differ from each other. Since EFM 1 differs from EFM 2, respectively 
EFM 9, in two reactions, consequently EFM 2 and EFM 9 differ in 4 reactions, indicated in the heat map by the 
number as well as a darker shade of blue. The darker the shade of blue, the greater the similarity between 2 
EFMs
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heat map of the top 25 highest yield EFMs, visualizing the differences between them. 
The EFMs from Fig. 9a, b are included in this map as well. The heat map shows that 
EFM 1 differs from EFM 2, respectively EFM 9 in only two reactions, consequently 
EFM 2 and 9 differ in only 4 reactions from each other. Even though only excerpts 
from the overall results could be analyzed, it becomes very clear how similar these 
EFMs are. Hence, it can be assumed that this pattern is present in the rest of the set 
of EFMs as well. To explore these results in more detail, further sub-set analysis e.g. 
by using ecmtool [34] or ProCEMs-enumeration [16], would be required. How-
ever, our analysis at least in part explains this incredible number of EFMs found in 
the minimal cell model JCVI-syn3A [31].

Conclusion
efmtool [12], respectively the DDM, remains essential for complete enumeration 
and analysis of EFMs in small-scale metabolic networks. Yet, it is memory intensive, 
lacks scalability and its application is therefore limited. In contrast, mplrs [1] allows 
for scalable, massively parallel enumeration of EFMs, which is no longer limited by 
(expensive) RAM restrictions but (cheap) computing power. Given the increasing 
power and availability of HPC clusters and cloud-services, mplrs opens new pos-
sibilities to overcome current limitations. To facilitate such a transformation EFMlrs 
provides a Python framework to harvest these promises for an unbiased characteriza-
tion of metabolic networks. Additionally, the concept to generalize EFMs from flux 
cones to flux polyhedra, already introduced by Urbanczik over a decade ago [5], is 
incorporated in EFMlrs as well. In the future, mplrs could probably also be used 
in conjunction with other programs, such as ecmtool [34], as an alternative to the 
DDM and make these tools even more efficient.
EFMlrs is the first program that gives users the ability to enumerate EFM/Vs in 

metabolic models on HPC clusters via mplrs [1]. It can be used as a stand-alone 
program but also seamlessly integrates in existing workflows. In particular, EFMlrs 
adds (i) the possibility to calculate EFVs to efmtool and COBRApy and (ii) opens 
the doors to HPC systems for EFM/V analysis via mplrs.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04417-9.

Additional file 1: More detailed information on EFMlrs compression algorithms incl. detailed description, pseudo-
code snippets and comparison of different geometric formulations.

Acknowledgements
This work has been supported by the Austrian BMWD, BMK, SFG, Standortagentur Tirol, Government of Lower Austria, 
and Business Agency Vienna through the Austrian FFG-COMET- Funding Program. The computational results have been 
achieved in part using the Vienna Scientific Cluster 3 (VSC3) and 4 (VSC4).

Authors’ contributions
Conceptualisation: JZ Methodology and formal analysis: BAB and JZ Data acquisition and curation: B.A.B. Software imple-
mentation: BAB Visualisation: BAB Writing—original draft: BAB and JZ Writing—review and editing: BAB and JZ Funding 
acquisition: JZ. Both authors read and approved the final manuscript.

Funding
Austrian Research Promotion Agency, Comet Acib

https://doi.org/10.1186/s12859-021-04417-9


Page 20 of 21Buchner and Zanghellini ﻿BMC Bioinformatics          (2021) 22:547 

Availability of data and materials
EFMlrs is an open-source program that comes together with a designated workflow. It’s implemented in Python 3, 
listed in the Python Package Index, and can be easily installed via pip. The complete source code, documentation and a 
tutorial are available on https://​github.​com/​BeeAn​ka/​EFMlrs.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria. 2 Austrian Centre 
of Industrial Biotechnology, Vienna, Austria. 3 Department of Analytical Chemistry, University of Vienna, Vienna, Austria. 

Received: 23 March 2021   Accepted: 27 September 2021

References
	1.	 Avis D, Jordan C. mplrs: a scalable parallel vertex/facet enumeration code. arXiv:​1511.​06487 [cs] (2017). arXiv:​ 1511.​

06487. Accessed 13 Feb 2020
	2.	 Lewis NE, Nagarajan H, Palsson BO. Constraining the metabolic genotype–phenotype relationship using a phylog-

eny of in silico methods. Nat Rev Microbiol. 2012;10(4):291–305.
	3.	 Zanghellini J, Ruckerbauer DE, Hanscho M, Jungreuthmayer C. Elementary flux modes in a nutshell: properties, 

calculation and applications. Biotechnol J. 2013;8(9):1009–16. https://​doi.​org/​10.​1002/​biot.​20120​0269.​00005.
	4.	 Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and 

analysis of complex metabolic networks. Nat Biotechnol. 2000;18(3):326–32. https://​doi.​org/​10.​1038/​73786.
	5.	 Urbanczik R. Enumerating constrained elementary flux vectors of metabolic networks. IET Syst Biol. 2007;1(5):274–9. 

https://​doi.​org/​10.​1049/​iet-​syb:​20060​073.​00020.
	6.	 Klamt S, Mahadevan R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab Eng. 

2015;30:166–78. https://​doi.​org/​10.​1016/j.​ymben.​2015.​05.​006.​00004.
	7.	 Müller S, Regensburger G. Elementary vectors and conformal sums in polyhedral geometry and their relevance for 

metabolic pathway analysis. Front Genet. 2016;7:90. https://​doi.​org/​10.​3389/​fgene.​2016.​00090.​00001.
	8.	 Klamt S, Regensburger G, Gerstl MP, Jungreuthmayer C, Schuster S, Mahadevan R, Zanghellini J, Müller S. From 

elementary flux modes to elementary flux vectors: metabolic pathway analysis with arbitrary linear flux constraints. 
PLOS Comput Biol. 2017;13:1005409. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10054​09.

	9.	 Wagner C, Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys J. 2005;89(6):3837–45. 
https://​doi.​org/​10.​1529/​bioph​ysj.​104.​055129.

	10.	 Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A. Sign conditions for injectivity of generalized 
polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput 
Math. 2015;16(1):69–97. https://​doi.​org/​10.​1007/​s10208-​014-​9239-3.

	11.	 Klamt S, Schuster S. Calculating as many fluxes as possible in underdetermined metabolic networks. Mol Biol Rep. 
2002;29(1):243–8. https://​doi.​org/​10.​1023/A:​10203​94300​385.

	12.	 Terzer M, Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics. 
2009;24(19):2229–35. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btn401.

	13.	 van Klinken JB, Willems van Dijk K. FluxModeCalculator: an efficient tool for large-scale flux mode computation: 
Table 1. Bioinformatics. 2016;32(8):1265–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv742.

	14.	 Song H-S, Goldberg N, Mahajan A, Ramkrishna D. Sequential computation of elementary modes and mini-
mal cut sets in genome-scale metabolic networks using alternate integer linear programming. Bioinformatics. 
2017;33:2345–53. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx171.

	15.	 Pey J, Villar JA, Tobalina L, Rezola A, García JM, Beasley JE, Planes FJ. TreeEFM: Calculating Elementary Flux Modes 
using linear optimization in a tree-based algorithm. Bioinformatics. 2014;31:897–904. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btu733.

	16.	 Marashi S-A, David L, Bockmayr A. Analysis of metabolic subnetworks by flux cone projection. Algorithms Mol Biol. 
2012;7(1):17. https://​doi.​org/​10.​1186/​1748-​7188-7-​17.

	17.	 Ullah E, Yosafshahi M, Hassoun S. Towards scaling elementary flux mode computation. Brief Bioinform. 
2019;21:1875–85. https://​doi.​org/​10.​1093/​bib/​bbz094.

	18.	 Avis D, Fukuda K. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. 
Discrete Comput Geom. 1992;8(3):295–313. https://​doi.​org/​10.​1007/​BF022​93050.

	19.	 Fukuda K, Prodon A. Double description method revisited. In: Deza M, Euler R, Manoussakis I, editors. Combinatorics 
and computer science, vol. 1120. Berlin: Springer; 1996. p. 91–111.

	20.	 Assarf B, Gawrilow E, Herr K, Joswig M, Lorenz B, Paffenholz A, Rehn T. Computing convex hulls and counting integer 
points with polymake. Math Program Comput. 2017;9:1–38. https://​doi.​org/​10.​1007/​s12532-​016-​0104-z.

https://github.com/BeeAnka/EFMlrs
http://arxiv.org/abs/1511.06487
http://arxiv.org/abs/1511.06487
http://arxiv.org/abs/1511.06487
https://doi.org/10.1002/biot.201200269.00005
https://doi.org/10.1038/73786
https://doi.org/10.1049/iet-syb:20060073.00020
https://doi.org/10.1016/j.ymben.2015.05.006.00004
https://doi.org/10.3389/fgene.2016.00090.00001
https://doi.org/10.1371/journal.pcbi.1005409
https://doi.org/10.1529/biophysj.104.055129
https://doi.org/10.1007/s10208-014-9239-3
https://doi.org/10.1023/A:1020394300385
https://doi.org/10.1093/bioinformatics/btn401
https://doi.org/10.1093/bioinformatics/btv742
https://doi.org/10.1093/bioinformatics/btx171
https://doi.org/10.1093/bioinformatics/btu733
https://doi.org/10.1093/bioinformatics/btu733
https://doi.org/10.1186/1748-7188-7-17
https://doi.org/10.1093/bib/bbz094
https://doi.org/10.1007/BF02293050
https://doi.org/10.1007/s12532-016-0104-z


Page 21 of 21Buchner and Zanghellini ﻿BMC Bioinformatics          (2021) 22:547 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	21.	 Avis D. Computational experience with the reverse search vertex enumeration algorithm. Optim Methods Softw. 
1999;10(2):1–11.

	22.	 Gagneur J, Klamt S. Computation of elementary modes: a unifying framework and the new binary approach. BMC 
Bioinformat. 2004;5:1–21. https://​doi.​org/​10.​1186/​1471-​2105-5-​175.

	23.	 Fukuda K, Maki I, Ito S. Thermoelastic Behavior in Ca2SiO4 Solid Solutions. J Am Ceram Soc. 1996;79(11):2925–8. 
https://​doi.​org/​10.​1111/j.​1151-​2916.​1996.​tb087​27.x.

	24.	 Terzer M, Stelling J. Parallel extreme ray and pathway computation. In: Wyrzykowski R, Dongarra J, Karczewski K, 
Wasniewski J, editors. Parallel processing and applied mathematics. Berlin: Springer; 2010. p. 300–9.

	25.	 Balinski ML. On the graph structure of convex polyhedra in \$n\$-space. Pac J Math. 1961;11(2):431–4.
	26.	 Gross JL, Yellen J, Anderson M. Graph theory and its applications. Boca Raton: Chapman and Hall; 2018.
	27.	 Avis D. User’s guide for lrs—Version 7.0 (2020). http://​cgm.​cs.​mcgill.​ca/. Accessed 25 Jan 2021.
	28.	 Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses 

and pentoses. Appl Environ Microbiol. 2008;74(12):3634–43. https://​doi.​org/​10.​1128/​AEM.​02708-​07.
	29.	 Hädicke O, Klamt S. EColiCore2: a reference network model of the central metabolism of Escherichia coli and rela-

tionships to its genome-scale parent model. Sci Rep. 2017;7(1):39647. https://​doi.​org/​10.​1038/​srep3​9647.
	30.	 Suthers PF, Dasika MS, Kumar VS, Denisov G, Glass JI, Maranas CD. A genome-scale metabolic reconstruction of 

Mycoplasma genitalium, iPS189. PLOS Comput Biol. 2009;5(2):1000285. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10002​85.
	31.	 Breuer M, Earnest TM, Merryman C, Wise KS, Sun L, Lynott MR, Hutchison CA, Smith HO, Lapek JD, Gonzalez DJ, de 

Crécy-Lagard V, Haas D, Hanson AD, Labhsetwar P, Glass JI, Luthey-Schulten Z. Essential metabolism for a minimal 
cell. eLife. 2019;8:36842. https://​doi.​org/​10.​7554/​eLife.​36842.

	32.	 Acib: ACIB—Austrian Centre of Industrial Biotechnology (2017).
	33.	 Team V. Vienna Scientific Cluster (2018). http://​vsc.​ac.​at.
	34.	 Clement TJ, Baalhuis EB, Teusink B, Bruggeman FJ, Planqué R, de Groot DH. Unlocking elementary conversion modes: 

ecmtool unveils all capabilities of metabolic networks. Patterns. 2021;2(1):100177. https://​doi.​org/​10.​1016/j.​patter.​
2020.​100177.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/1471-2105-5-175
https://doi.org/10.1111/j.1151-2916.1996.tb08727.x
http://cgm.cs.mcgill.ca/
https://doi.org/10.1128/AEM.02708-07
https://doi.org/10.1038/srep39647
https://doi.org/10.1371/journal.pcbi.1000285
https://doi.org/10.7554/eLife.36842
http://vsc.ac.at
https://doi.org/10.1016/j.patter.2020.100177
https://doi.org/10.1016/j.patter.2020.100177

	EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Mathematical representation and its geometric interpretation
	Algorithms for calculating EFMs
	Double description method
	Lexicographic reverse search


	EFMlrs
	Compressions

	Results and discussion
	Comparison of run times, memory requirements and scaling behavior of efmtool [12] and mplrs [1]
	Performance of mplrs in different geometric shapes
	A not so minimal cell ...

	Conclusion
	Acknowledgements
	References


