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Background
Circular RNA (circRNA) molecule identified in recent years is characterized by 
covalently closed-loop structures with neither a 5′ cap nor a 3′ poly (A) tail [1]. It is 
derived from the back-splicing of linear-transcript exons during the RNA-splicing 
processes [2, 3]. The circRNA has been gaining attention in cancer research recently 
since researchers discovered its potential role as an ‘miRNA sponge’ that suppresses 
the activities of oncogenic miRNAs such as miR-21 and miR-221 [4]. CircRNA is 
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also found to be a regulatory factor during alternative splicing of pre-mRNA [5], and 
able to translate into proteins [6]. With its varied biological functions, circRNA is 
potentially useful as a biomarker or therapeutic target in future personalized medi-
cine for human diseases [7].

Whole transcriptome sequencing by RNA sequencing (RNA-seq) technologies 
allows efficient discovery of circRNAs. It is mainly based on the detection of reads 
containing a back-splicing junction (BSJ), where the end of an exon joins to the start 
of itself or of another exon from the same gene. Several tools have been developed 
for detecting circRNAs using RNA-seq data. Comparative studies of these methods 
have been performed [8–10]. They usually have two main steps: (1) detection of cir-
cRNA candidates and (2) elimination of false positives (FPs). The first step employs 
standard mapping approaches such as STAR [11], Bowtie [12] and BWA [13] for read 
alignments. There are two main approaches to detect BSJ supporting-reads for cir-
cRNA candidates from RNA-seq data, including split-alignment-based and pseudo-
reference-based strategies [14]. The former splits a read into small fragments to map 
against a reference genome. Then the reads having fragments mapped to exons with 
opposite orientations are identified as BSJ supporting-reads [15]. The latter directly 
maps RNA-seq reads to the prebuilt BSJ pseudo sequences which are constructed 
based on an assumed genome annotation [16, 17].

However, detected BSJs are not specific to genuine circRNAs. Transcripts with 
duplication of exons caused by exon repetition, genomic tandem duplication or tech-
nical artefacts including trans-splicing, and reverse-transcriptase (RT) template-
switching (Additional file 1: Fig. S1), can also produce FP BSJs which have nothing 
to do with circRNAs [8–10, 18]. This issue will be also discussed further in the next 
section. For convenience, from now on these FP BSJs will be considered as tandem 
RNAs. To reduce FPs, in step 2, current detection methods apply various filters such 
as canonical-splicing signals, the minimum number of BSJ supporting-reads, unique 
anchor alignments, the limited distance between the two splice sites and paired-end 
read consistency [3]. Besides, some tools such as KNIFE and CIRI2 introduce statis-
tical tests in the alignment process to avoid wrong alignments [19, 16].

Despite these efforts, there are still serious challenges in circRNA detection. 
Firstly, the existing tools often have little overlap in the results [18]. Secondly, these 
methods rely on the number of BSJ supporting-reads, which is not a reliable statis-
tic for the detection of genuine circRNAs [18]. Finally, they still produce many false 
positives due to the tandem RNAs [8–10, 18].

To address these challenges, we have developed a novel tool called Circall for cir-
cRNA detection from RNA-seq data. It uses a robust statistical method based on the 
two-dimensional local false discovery rate [20]. It is computationally highly efficient 
because it employs quasi-mapping for fast and accurate RNA read alignments. We 
have applied Circall and compared it with several leading methods in the analyses of 
several datasets, including two simulated and three validated experimental datasets. 
The results from the simulation study indicate Circall’s high sensitivity and preci-
sion, while in the analyses of three experimental datasets of human cell lines, Circall 
performs well against the existing methods.
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Materials and methods
The overview of Circall for the discovery of circRNA from RNA-seq is presented in 
Fig. 1. The method includes two key steps: (1) circRNA candidate detection and (2) sta-
tistical assessment. In the first step, all input reads are mapped to the annotated tran-
scriptome to remove the reads from linear transcripts and to extract unmapped reads. 
Next, these unmapped reads are mapped to a BSJ reference database pre-built from the 
annotated transcriptome in order to find reads supporting BSJ and circRNA candidates. 
Finally, these BSJ-supporting reads are mapped to pseudo-sequences of circRNAs and 
potential tandem RNAs to exclude FP reads, and generate a list of circRNA candidates. 
These are then statistically assessed and ranked according to their two-dimensional local 
false discovery rates. Further details are presented next.

CircRNA candidate detection

This step is used to discover circRNA candidates based on their BSJs. Circall detects cir-
cRNAs using a reference-based approach. In this approach, sequences of all BSJs of all 
potential exonic circRNAs are generated from gene annotation and used as a reference 
for read alignment. Circall uses the ultra fast quasi-mapping tool RapMap [21] to per-
form the read alignment.

Building BSJ reference database

To collect the BSJ supporting-reads, we build a database containing the BSJ sequences 
of all possible exonic circRNAs from the gene annotation. Specifically, for each gene, the 
start and end positions of all exons are identified (Additional file 1: Fig. S2A). Then, a 
matrix of all combinations of the start positions and end positions is constructed (Addi-
tional file 1: Fig. S2B). Only the combinations where the end position is greater than the 
start position are kept as potential BSJs. Next, the BSJ sequences of these combinations 
are generated together to construct the BSJ reference database. We make sure that BSJ 
supporting-reads can cover BSJ junctions. For example, to allow for RNA-seq protocols 
that have reads up to 150bp long, it is necessary to join 149 bases upstream of the end 
position to 149 bases downstream of the start position to generate the BSJ sequences 
(Additional file 1: Fig. S2C). Finally, the BSJs are filtered out using the canonical-splicing 
condition. Specifically, we keep only BSJs with GT-AG, GC-AG, and AT-AC junctions, 
which cover 99.24%, 0.69%, and 0.05% of the splicing events, respectively [22].

Detecting BSJ supporting‑reads

To detect BSJ reads, the input RNA-seq paired-end reads are first mapped to the anno-
tated transcriptome to separate out the wild-type reads and extract unmapped reads. 

Fig. 1  Overview of Circall for the discovery of circRNA from RNA-seq: (i) CircRNA candidate detection to 
discover a list of circRNA candidates. This includes extraction of unmapped reads, collection of BSJ reads, 
generation of pseudo-sequences of circRNAs and potential tandem RNAs, and filtering to get the list of 
candidates; (ii) Statistical assessment to rank the candidates. The contour map is an example from the Hela 
dataset for the statistics from the permutation in the 2d local false discovery rate (2dfdr) method. The red 
dots and blue triangles indicate the depleted and non-depleted circRNAs, respectively. The circRNAs with 
fdr2d are marked by grey squares. Details are described in the main text

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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The wild-type reads are the reads which are completely mapped to linear RNAs in 
the annotated transcriptome reference. Thus, they are likely not BSJ supporting-reads 
and should be excluded in the subsequent steps. Next, all single-end reads of these 
unmapped reads are mapped to the pre-built BSJ reference database. The mates of the 
BSJ supporting-reads and the mapping information are collected. Finally, the support-
ing reads are filtered by several conditions: at most 1% mismatch in a read is allowed 
(maximum 1 mismatch per 100 bases); the reads map uniquely to a single BSJ; and the 
minimum anchor length – the shorter piece of the read that straddles the junction is 10 
bases.

Identifying FP BSJ reads from tandem RNAs

To detect BSJ supporting-reads, input reads are mapped to the BSJ reference database 
as aforementioned in the previous step. However, BSJ supporting-reads are not guar-
anteed to come from genuine circRNAs. The aim of this step is to identify likely FP BSJ 
supporting-reads from tandem RNAs. The idea is illustrated in Fig. 2: The true circRNA 
is constructed by three exons: exon 2, 3 and 4, while the tandem RNA is constructed 
by 6 exons from 1 to 6, but the region from exons 2 to 4 is duplicated. All read pairs are 
originally from the tandem RNA. For the read pairs in the upper dashed-box, one read 

Fig. 2  Identifying FP BSJ reads from tandem RNAs. Mapping location of the read mate of a BSJ-supporting 
read may help to detect FP BSJ reads. The vertical blue dash-line represents the location of BSJ in the true 
circRNA (top) and the tandem RNA (bottom). The BSJ region is surrounding the BSJ of the circRNA, defined by 
the area of ( L− a ) bases from the BSJ, where L and a are read length and anchor length respectively. All read 
pairs are originally from the tandem RNA. Upper dashed-box: BSJ read-pairs with one read mapped outside 
the circRNA putative region identified as false positives (FPs). Bottom dashed-box: read pairs from short 
fragments are completely located in the putative circRNA region, thus in this case the reads are not identified 
as FPs
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is mapped to the BSJ region, and the other read is mapped outside the circRNA region. 
This means the pair cannot come from the circRNA. In this case, the FP BSJ reads are 
detectable by computational approaches. For the paired reads in the lower dashed box, 
both reads are inside the circRNA region, so the mapping information alone cannot tell 
if the read-pair comes from a true circRNA or from a tandem RNA.

Circall identifies FP BSJs by mapping the BSJ reads to pseudo-sequences of both cir-
cRNAs and the corresponding tandem RNAs. Pseudo-sequence of a circRNA is gener-
ated by adding L− 1 last bases of circRNA sequence to the beginning of the circRNA 
sequence (Additional file 1: Fig. S3), where L is the read length of the RNA-seq data. For 
circRNA candidates with more than 2 exons, the information of the alternative splic-
ing from the linear transcripts from the annotated transcriptome is applied. Otherwise, 
the pseudo-sequences of circRNAs and tandem RNAs are collected from the sequences 
of all constituted exons. Only BSJ reads that have the corresponding read mates fully 
mapped to the putative circRNA region are kept in the list of candidate circRNAs. Some 
candidates may have BSJ supporting-reads that are both inside and outside a circRNA 
region. A recent study [23] shows that when the expression of circRNA is dominant, 20% 
to 35% of BSJs in humans arise from both circRNAs and trans-splicing RNAs. Therefore, 
we exclude candidates whose number of reads from its tandem RNAs is greater than 1/3 
of the total number of BSJ supporting-reads.

Two‑dimensional local false discovery rate method

The expression level and length of circRNA are two key features that have been used in 
various ways to reduce FPs. For instance, many methods choose a minimum of 2 BSJ 
supporting-reads as a fundamental filtering criteria [3]. Also, in evaluation of circRNAs 
from several comparative studies [8–10], the number of BSJ supporting-reads is used to 
rank circRNA candidates. A recent study [10] also supports this idea by showing that, in 
all algorithms, bona fide circRNAs have higher expression than FP circRNAs.

Length is also a natural feature of circRNAs that can be used for filtering. Some stud-
ies [16, 18, 24–26] show that a spliced circular molecule can range from smaller than 
100 to larger than 4000 nucleotides, but the most common circRNAs in human cells 
are a few hundred nucleotides long. Indeed, current methods such as Mapsplice [27], 
circRNA_finder [28] and CIRI [19, 29] indirectly utilise the length feature by setting the 
hard thresholds for the minimum and maximum distances between two circRNA splic-
ing sites.

Estimating the exact length of a circRNA transcript is not straightforward due to alter-
native splicing events [30, 31]. We assume the structure of circRNA is generally based 
on the structure of a linear transcript. Thus, if there is more than one linear transcript 
supporting the BSJ of a circRNA, the length of the circRNA is computed by the median 
length of all possible circRNAs derived from those transcripts.

Circall controls the rate of false positives by utilising the information of both the num-
ber of BSJ supporting-reads and the corresponding circRNA length in the two-dimen-
sional local false discovery rate (2dfdr) method. The methodology [20] was originally 
developed for microarray data analysis, but the concept can be applied in our current 
problem. The false discovery rate is a key statistical assessment for high-throughput data 
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analysis that takes multiplicity into account. The local false discovery rate (fdr) is defined 
as

where z is a statistic, π0 is the proportion of the statistics that originate from the null 
hypothesis, f0(z) the probability density of the statistic under the null hypothesis, and 
f(z) the probability density of the observed statistic. The fdr is interpreted as the expected 
proportion of FPs among the discoveries that have observed statistics Z ≈ z [20, 32, 33].

For circRNA detection, we consider a 2-dimensional statistic z = (z1, z2) , where z1 is 
the number of BSJ supporting-reads, and z2 the length of the corresponding circRNA. 
Computationally, both read counts and circRNA lengths are transformed into log2 scale. 
The fdr2d based on z = (z1, z2) of a circRNA candidate is defined as

where f0(z) is the 2d-density function of z from the null circRNAs, and f(z) the marginal 
density from all candidate circRNAs. The parameter π0 is the proportion of null circR-
NAs. For convenience, we set π0 = 1 , which is conservative since that is its maximum 
value.

Since the fdr2d is the proportion of null circRNAs at the observed statistic z, it meas-
ures the rate of false discoveries if we consider the circRNA candidates with observed 
z = (z1, z2) as true circRNAs. In practice we consider the depleted circRNAs as the null 
circRNAs, and the non-depleted circRNAs as the true positive circRNAs. Specifically, 
circRNAs are classified as non-depleted if their expressions in an RNase R– sample are 
less than or equal to those in the corresponding RNase R+ sample, otherwise they are 
assigned as depleted circRNAs.

Computing fdr2d requires estimates of f0(z) and f(z). The latter is readily available by 
non-parametric smoothing of z’s from the candidate circRNAs. Suppose there are n can-
didates with the corresponding z values, and let Z be the vector of n observed z values. 
To evaluate f0(z) , we generate z’s by Monte Carlo sampling from known depleted/null 
circRNAs in other independent datasets. Specifically, we take M random samples, each 
of size n, and denote these samples as Z∗

1, . . . ,Z
∗

M . These represent samples of Z under 
the null hypothesis. In all experiments, we use M = 100 samples.

Instead of estimating the densities separately, we found that the ratio estimation is 
more stable if we use the following procedure: first the ratio

then computes the fdr2d as

In order to estimate the 2d-estimation of r(z), the procedure 

(1)fdr(z) = π0
f0(z)

f (z)
,

(2)fdr2d (z1, z2) ≡ π0
f0(z1, z2)

f (z1, z2)
,

r(z) ≡
Mf0(z)

f (z)+Mf0(z)
,

(3)fdr2d (z) = π0
r(z)

M{1− r(z)}
,
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1.	 Considers all the statistics from Z∗

1, . . . ,Z
∗

M as ‘successes’ and the observed statistics 
from Z as ‘failures.’ So, we assign ’successes’ to the data generated from the depleted/
null circRNA, denoted by the vectors Z∗’s, and the ‘failures’ refer to the observed Z . 
Thus r(z) is the proportion of successes as a function of z.

2.	 Performs a non-parametric smoothing of the success-failure proportion as a func-
tion of z.

Further details of this procedure can be found in the Supplementary document.
In the actual implementation, the depleted circRNAs from two of three experimen-

tal RNase R-datasets (Hela, Hs68 and Hek293) are used for computing the fdr2d of the 
remaining dataset (see the Datasets section). For example, the fdr2d values computed for 
the Hela RNase R-dataset are estimated from the null data collected from the two other 
RNase R– datasets. Similarly for the Hs68 and Hek293 datasets.

Circall‑simulator

Simulated circRNA data have been used in several studies [1, 9, 29]. Even though the 
simulation model is made as realistic as possible, simulated data are usually still far from 
reality. However, as the ground truth of CircRNAs is known and controlled, simulated 
data are informative for method comparisons, since in these comparisons what matters 
is the relative rather than the absolute performances.

None of the current simulation tools take the tandem RNAs into account. Thus, we 
developed Circall-simulator to simulate RNA-seq data of circRNA, tandem RNAs and 
linear RNAs (Additional file 1: Fig. S4). The circRNAs and tandem RNAs are the main 
contributors to the proportions of the true positive and false positive in the simulated 
data, respectively. In brief, the input to the simulator includes a list of circRNAs, tan-
dem RNAs and linear RNAs, and their corresponding expression levels. Then, using the 
information from gene annotation and the sequences of genes and transcripts, it builds 
pseudo-sequences of the circRNAs and tandem RNAs (Additional file 1: Fig. S5). Finally, 
Circall-simulator generates RNA-seq reads for these input transcripts using the RNA 
simulator Polyester [34]. The tool is implemented as an R package and publicly available 
for use in Circall’s web page. Further details of Circall-simulator are given in the Supple-
mentary document.

Datasets

We evaluate the performance of Circall in two simulated datasets and three experimen-
tal datasets of human cell-lines including Hela [29], Hs68 [25] and Hek293 [30].

Simulated datasets

We collect the outputs of the five methods from the Hs68 dataset (see Results section) 
for simulation. Specifically, we select 6,256 non-depleted exonic circRNAs found in 
the circBase [35] detected by either methods as true circRNAs. We also assign 1,008 
circRNAs detected in the RNase R- sample but not found in the RNase R+ sample by 
either methods as tandem RNAs. We run Salmon [36] to get the expression of linear 
transcripts. Next, the expression (in Fragments Per Kilobase of transcript per Million, 
FPKM) of circRNAs and tandem RNAs are sampled from the expression distribution of 



Page 9 of 18Nguyen et al. BMC Bioinformatics          (2021) 22:495 	

the linear transcripts. To avoid outliers, the range of the distribution is limited from 0.2 
to the 99th-percentile of the observed expression distribution. Finally, we generate the 
paired-end RNA-seq reads of these transcripts using Polyester under these specific set-
tings: sequencing error rate 0.005, read length 100bp, fragment length distribution with 
mean 250 and standard deviation 25.

We further generate another simulated dataset using third-party simulators following 
the description in the recent comparative study [9]. Particularly, the same set of circR-
NAs are simulated with CIRI-simulator with read length 100bp. The linear RNAs are 
simulated by ART simulator with read length of 100bp using the input of RefSeq mRNA 
sequences downloaded from the UCSC Genome Browse [37]. The commands to run the 
tools are provided in the Supplementary document.

We combine the RNA-seq to generate three simulated datasets: (1) Mix1 includes only 
circRNA and linear transcripts, (2) Mix2 includes Mix1 and tandem RNAs, and (3) Mix3 
includes circRNA and linear RNAs generated by CIRI-simulator and ART simulator. 
Mix1 and Mix3 do not contain tandem RNAs, so Mix2 will help evaluate the circRNA 
detection methods when there are false-positive BSJ reads from tandem RNAs. Details 
of the simulated datasets are presented in Table 1.

Experimental datasets

The Hela dataset [29] includes four ribosomal-RNA depleted samples: two (SRR1636985 
and SRR1636986) are RNase R+ and the other two (SRR1637089 and SRR1637090) are 
RNase R–. Total RNA was isolated using TRIZOL, and ribosomal RNA was removed 
using a Ribominus kit to exclude a majority of most abundant ribosomal RNA molecules 
and to improve detection of less abundant transcripts. RNase R+ samples were incu-
bated at 37 °C for 1 h in 16 μl reaction with 10 U/μg RNase R. The libraries were then 
prepared using the TruSeq protocol following sequencing by Illumina HiSeq 2000 plat-
form with 101bp paired-end reads [29]. In this study, samples from the same library type 
are merged as input into circRNA detection methods.

The Hs68 dataset comprises one RNase R– sample (SRR444975) and one RNase R+ 
sample (SRR445016). RNA was isolated with the RNAeasy system. Ribosomal RNA was 
removed from total RNA using the RiboMinus kit. 14.3  μl treated with 1  μl water or 
1 μl RNase R according to its treatment. The reactions proceeded at 40 °C for 1h before 
undergoing a modified TruSeq library preparation protocol following sequencing by 
Illumina HiSeq instrument with 100 bp paired-end reads [25].

The Hek293 dataset contains SRR3479243 for RNase R– sample and SRR3479244 for 
RNase R+ sample. Total RNA was isolated using TRIZOL, ribosomal RNA was removed 
using a Ribominus kit, and RNase R+ samples were incubated at 37 °C for 1 hour with 
10 U/μg RNase R. The libraries were then prepared and sequenced by TruSeq protocol 
and Illumina HiSeq 2500 platform. This dataset has paired-end reads of length 150 bp 
[30].

The summary of the experimental datasets is presented in Table 2. For each detection 
method, the circRNAs detected from the RNase R– samples are considered as discover-
ies, while the non-depleted circRNAs found from the RNase R+ samples are considered 
as validation. For convenience, we only use the terms ‘Hela RNase R+’and ‘Hela RNase 
R–’ in the context of the separation of the library types in the Hela dataset, otherwise 
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‘Hela’ refers to the discovery ‘Hela RNase R–’ samples. We apply the similar rule to Hs68 
and Hek293 datasets.

Performance evaluation and competing tools

We compare Circall against the current leading methods, including CIRI2 [19], CIRC-
explorer [26, 31], MapSplice [27] and find_circ [15]. The first three methods are the 
top-performing methods in recent comparative studies [8, 9], whereas find_circ is a 
widely used circRNA detection tool [10].

Briefly, CIRI2 detects circRNAs based on the paired chiastic clipping (PCC) signals 
from the mapping information of the reads by BWA-MEM [38]. The algorithm utilises 
the maximum likelihood method based on multiple-seed matching to identify the BSJ 
reads, then applies systematic filtering to reduce FPs [19, 29]. CIRCexplorer parses 
the spliced alignment output of the reads mapped to the genome, using TopHat [39] 
or STAR aligners [11], for detection of the BSJ reads. Those reads are the ones that are 
split and mapped to the same chromosome but in reverse order. The canonical splice-
site condition is also taken into account. MapSplice identifies multiple types of splice 
junction events [27]. It segments reads into multiple anchors to detect canonical and 
non-canonical junctions by employing Bowtie1 aligner [12]. The tool find_circ uses 
Bowtie2 [40] for read mapping to the reference genome. It first collects unmapped 
reads and extracts 20-mers from both ends for the second alignment to find the BSJ 
reads. Then, it extends the anchors’ alignment in the third mapping. Finally, it applies 
a series of filtering steps to select reliable circRNA candidates [15].

CIRCexplorer version 1.1.10 is applied using STAR aligner as suggested in a recent 
comparative study [9]. CIRI2 version 2.0.6, MapSplice version 2.2.1, and find_circ ver-
sion 1.2 are applied with their default settings. The reference genome, transcriptome 
and genome annotation of hg19 Homo sapiens reference were downloaded from the 
Ensembl websites (version GRCh37.75). For CIRCexplorer, since it is not able to run 
with Ensembl annotation, the corresponding annotation version built from the UCSC 
data sources. The details of the command lines used to run these methods in this 
study are presented in the supplementary document.

Evaluation of circRNA dectection methods in the experimental datasets is done 
following a recent comparative study [9]. The comparison is based on the circRNAs 
discovered from the RNase R– samples. First, the expressions of circRNAs in both 
the RNase R– samples and the corresponding RNase R+ samples are normalised to 
their library size. Then CircRNAs of a RNase R– sample are classified as true posi-
tive (non-depleted) if their expressions do not fall in the corresponding RNase R+ 
sample. Finally, we rank the discovered circRNAs of each method and compare the 
true discovery curves. For Circall, we rank circRNAs by their fdr2d value. The other 
methods do not score the detected circRNAs, but most recent comparative studies 
use the circRNA expression to rank them [8–10]. We have followed the same method 
here. Furthermore, to investigate the efficiency of fdr2d, we also rank the circRNAs of 
Circall based on the expression value alone; the result is called Circall_Count. Finally, 
we also compare the number of enriched circRNAs among the top-100 candidates. 
CircRNAs that are least 5-fold enriched in the RNase R+ sample are classified as sig-
nificantly enriched.
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For the simulated data (Table 3), the methods are compared in terms of sensitivity 
(recall), precision, and F1 score. Sensitivity is the ratio between the number of the 
discovered true positives and the total number of true circRNAs. Precision is the ratio 
between the number of the discovered true positives and the total circular candidates 
discovered by the cirRNA detection methods. F1 score is defined as

F1 is a balanced metric that takes both precision and sensitivity into account, so it is 
often more appropriate for overall comparisons.

Results
Simulation study

The summary results of Circall, CIRI2, Mapsplice and CIRCexplorer for simulated data-
sets are reported in Table 3. (Despite our effort, the tool find_circ failed to run on the 
fastq data produced by Polyester.) In general, all methods achieve comparable precision. 
For the Mix1 dataset, they reach more than 99% precision. Similarly, in the Mix3 data-
set generated by CIRI-simulator, these methods still perform well with greater than 97% 
precision. For the Mix2 dataset, which contains tandem RNAs, the precision is reduced 
in all methods to 86%. The number of FPs increases substantially between the Mix1 and 
Mix2 datasets, so all methods are negatively affected by the tandem RNAs.

However, the sensitivity is much varied. For the Mix1 dataset, Circall, CIRI2 and 
CIRCexplorer are comparable top performers with more than 89% sensitivity, while 
Mapsplice has 77.05%. A similar order is found in the Mix3 dataset. Circall and CIRI2 
are still the top performing methods with more than 93% sensitivity, followed by CIRC-
explorer, find_circ, and Mapsplice with 88.63, 85.92 and 82.27% respectively. Compared 
to the Mix1 dataset, the sensitivity of the methods in the Mix2 dataset does not change 
for Circall and CIRI2, but is slightly different for Mapsplice and CIRCexplorer. F1 score 
is usually a better metric to compare overall performance. The results from Table 3 show 
that Circall and CIRI2 are the top performers with comparable F1 scores across the three 
datasets, i.e., 0.95, 0.88 and 0.96 respectively. CIRCexplorer achieves the same F1 score 
to the two methods in the Mix2 dataset but lower performances in the Mix1 and Mix3 
datasets with 0.94 and 0.92, respectively. find_circ obtained 0.93 in the Mix3 dataset and 
Mapsplice reports the lowest scores of 0.87, 0.88 and 0.90.

Figure 3A presents the true discovery curves of Circall as compared to the other meth-
ods in the Mix2 dataset. The x-axis presents the number of top circRNAs, while the 
y-axis presents the corresponding number of true discoveries. Results obtained with the 
method closest to the diagonal line has the best performance. The plots show the Circall 
outperforms the other methods in in top 100 and top 500 candidates. Similar results are 
found then extending to top 1000 and all circRNAs, Additional file 1: Fig. S6.

Experimental data analyses

In general, Circall performs well against the other methods in all three datasets. Details 
of the performance in the top 100 and 500 circRNA candidates are reported in Table 4. 

(4)F1 = 2×
Precision× Sensitivity

Precision+ Sensitivity
.
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The plots and results for all detected circRNAs are given in Additional file 1: Fig. S6 and 
Additional file 1: Table S1 of the Supplementary document.

For the Hela dataset, Circall, CIRCexplorer and CIRI2 are the top performers. 
For the top 100 candidates, Circall achieves the highest true positive rate with 85% 
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Fig. 3  Comparison of the circRNA detection tools in the Mix2 and experimental datasets at the top 100 and 
500 circRNAs: (A) the Mix2 dataset, (B) the Hela dataset, (C) the Hs68 dataset, and (D) the Hek293 dataset. 
The x-axis indicates the number of top-ranked detected circRNAs, and the y-axis the number of true positive 
circRNAs among the top circRNAs. Each curve represents a method. The solid gray line is the diagonal line, 
which represents 100% true discovery rate. For Circall, circRNAs are ranked by their fdr2d, while for Circall_
Count, and the other methods the candidates are ranked by their BSJ supporting-read counts
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non-depleted circRNAs, followed by CIRCexplorer, CIRI2, Mapsplice and find_circ 
with 74%, 73%, 66% and 61%, respectively. The curve of Circall is above the others, up 
to the top 500 candidates, though the distance to the runner-up CIRCexplorer gradu-
ally decreases, Fig. 3B. Comparing the discovery of enriched circRNAs among the top 
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Fig. 4  The computational time of circRNA detection methods. Five methods—Circall, CIRCexplorer, CIRI2, 
find_circ, and MapSplice—are compared by the total CPU time. The datasets in the x-axis are ordered by their 
library sizes (million reads), and the CPU time on the y-axis is given in log-scale

Table 1  Details of the simulated datasets

Mix1 includes circRNAs and linear RNAs, Mix2 is the extension of Mix1 with tandem RNAs, and Mix3 consists of the same set 
of circRNAs from Mix1 but generated by CIRI-simulator, and linear RNAs produced by ART simulator

Dataset Read length (bp) Library size Number of BSJ

CircRNA 100 997,486 6256

CircRNA - CIRI-simulator 100 1,072,012 6256

Tandem RNA 100 1,623,654 1008

Linear RNA 100 112,614,394 0

Linear RNA - ART simulator 100 170,541,399 0

Mix1 100 113,611,880 6256

Mix2 100 115,235,534 6256

Mix3 100 171,613,411 6256

Table 2  Details of the experimental datasets

The Hela samples are combined for the circRNA detection

Dataset Read length (bp) Library size SRA accession number

Hela RNase R– 101 80,618,760 SRR1637089, SRR1637090

Hela RNase R+ 101 36,815,458 SRR1636985, SRR1636986 ara>

Hs68 RNase R– 100 206,362,733 SRR444975

Hs68 RNase R+ 100 199,922,486 SRR445016

Hek293 RNase R– 150 31,059,167 SRR3479243

Hek293 RNase R+ 150 42,307,449 SRR3479244
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100 candidates, CIRCexplorer and Circall discover 16 and 11 respectively, while the 
other methods report less than 10 enriched circRNAs (Table 4).

For the Hs68 dataset, the true discovery curve of Circall is close to the diagonal 
line and remains separated from CIRCexplorer and Mapsclice for up to the top 500 

Table 3  Results of Circall, CIRI2, Mapsplice, CIRCexplorer and find_circ in the simulated datasets

The values with bold text in the F1 column indicate the top-performing methods in the dataset

Dataset Method # 
detected 
circRNA

#False positive #true circRNA Sensitivity (%) Precision (%) F1

Mix1 Circall 5644 10 5634 90.06 99.82 0.95
CIRI2 5661 15 5646 90.25 99.74 0.95
Mapsplice 4822 2 4820 77.05 99.96 0.87

CIRCexplorer 5631 25 5606 89.61 99.56 0.94

Mix2 Circall 6503 869 5634 90.06 86.64 0.88
CIRI2 6531 885 5646 90.25 86.45 0.88
Mapsplice 5603 782 4821 77.06 86.04 0.81

CIRCexplorer 6522 917 5605 89.59 85.94 0.88

Mix3 Circall 5940 79 5861 93.69 98.67 0.96
CIRI2 6062 163 5912 94.29 97.31 0.96
Mapsplice 5148 1 5130 82.27 99.98 0.90

CIRCexplorer 5414 39 5372 85.92 99.28 0.92

find circ 5729 184 5545 88.63 96.79 0.93

Table 4  Results of Circall, Circall_Count, CIRI2, Mapsplice, CIRCexplorer and find_circ in the 
experimental datasets

Column “Non-dep” indicates the number of non-depleted circRNAs and column “Percent” shows the percentage of the non-
depleted circRNAs in the top circRNAs. The values with bold text indicate the top-performing methods in the dataset

Dataset Method Enrichment in 
top 100

Top 100 Top 500

Non-dep Percent (%) Non-dep Percent (%)

Hela Circall 11 85 85.0 387 77.4
Circall_Count 6 76 76.0 373 74.6

CIRI2 7 73 73.0 375 75.0

find_circ 4 61 61.0 317 63.4

Mapsplice 1 66 66.0 337 67.4

CIRCexplorer 16 74 74.0 383 76.6

Hs68 Circall 78 91 91.0 445 89.0
Circall_Count 61 77 77.0 395 79.0

CIRI2 55 70 70.0 384 76.8

find_circ 52 66 66.0 365 73.0

Mapsplice 62 79 79.0 398 79.6

CIRCexplorer 62 82 82.00 412 82.4

Hek293 Circall 59 97 97.0 473 94.6
Circall_Count 31 89 89.0 453 90.6

CIRI2 34 89 89.0 447 89.4

find_circ 25 81 81.0 407 81.4

Mapsplice ara> 26 90 90.0 437 87.4

CIRCexplorer 36 88 88.0 430 86.0
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candidates; see Fig. 3C. From Table 4, for the top 100 candidates, Circall has the high-
est true positive rate with 91 non-depleted circRNAs, followed by CIRCexplorer, 
Mapsplice, CIRI2 and find_circ with 82, 79, 70 and 66, respectively. Unlike the results 
from the Hela dataset, in this dataset, CIRI2 is generally worse than Mapsplice. For 
discovering enriched circRNAs, there is a larger gap between Circall, with 78 enriched 
circRNAs, and Mapslice and CIRCexplorer, with 62 candidates.

All methods achieve good performance in the Hek293 dataset; see Table  4. For the 
top 500 candidates, Circall achieves around a 95% true discovery rate, and its curve is 
consistently above the other methods; see Fig. 3D. Circall detects the highest number 
of enriched RNAs with 54 circRNAs among the top 100 candidates, significantly higher 
than CIRCexplorer (36) or find_circ (25).

To investigate the efficiency of the fdr2d procedure, we compare the performances 
of Circall with Circall_Count, which is based on the circRNAs detected by Circall but 
using only expression value for ranking. The results in Fig. 3 and Table 4 show that Cir-
call_Count always has lower performances compared to the results of Circall across all 
datasets, but it is generally comparable with other top performing methods.

Computational time

We measure the total CPU time of all methods for individual datasets, which are 
reported in Fig. 4 and Additional file 1: Table S2. The time is calculated from the time 
the methods start running until results are produced. It covers all the steps of a circRNA 
detection tool including read alignment, filtering, etc. All runs are implemented in the 
Rackham cluster from the Uppsala Multidisciplinary Center for Advanced Computa-
tional Science (UPPMAX - https://​www.​uppmax.​uu.​se/) using the computer nodes with 
Intel Xeon E5 2630 v4 at 2.20 GHz/core under CentOS 7. All tools are run in parallel 
with 8 cores, each core has 16 GB memory; the reported time is in core-hours.

Figure 4 shows that, as expected, the timing of most methods is linear in library size. 
Circall is generally faster than the other methods. CIRCexplorer and CIRI2 are compa-
rable depending on the datasets and overall better than find_circ, while the most time-
consuming method is Mapsplice. For the smallest dataset, Hek293 RNase R–, Circall (2.9 
h) is ∼ 2 times faster than CIRCexplorer (5.2 h) and CIRI2 (7.1 h), and more than one 
order of magnitude faster than find_circ (35.1 h) and MapSplice (106.8 h). For the large 
dataset (199M reads), Hs68 RNase R+, Circall requires 12.0 h, while CIRI2, find_circ, 
CIRCexplorer and MapSplice require 41.4, 82.1, 111.1 and 1960.5 h, respectively. The 
details of the time consumption are provided in Additional file 1: Table S2.

Discussion and conclusion
We have developed a novel method, Circall, for fast and accurate detection of circR-
NAs. We compare the performances of Circall versus current leading methods including 
CIRI2, CIRCexplorer, MapSplice and find_circ using both simulated and experimental 
datasets. The results show that Circall achieves high sensitivity and precision in simu-
lation studies, and performs well against existing circRNA detection methods in the 
analyses of experimental datasets. Computationally, as it is based on an ultra-fast quasi-
mapping algorithm, Circall is substantially faster than other methods, particularly for 
large datasets.

https://www.uppmax.uu.se/
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The main advantage of Circall is the scoring system using fdr2d based on the read-
count and circRNA-length statistics. The read count is a conventional factor that has 
been used as evidence by most circRNA detection tools. It is also used to rank the 
circRNAs in most methods when exporting results. CircRNA length has also been 
a key feature in previous studies. Most circRNAs in human cells are a few hundred 
nucleotides [16, 18, 24–26]. Furthermore, circRNAs detected with short distances 
between back splice sites tended to be FPs, specifically, almost no circRNAs with 
splice site distances less than 200 bases was characterised as bona fide circles [8]. Our 
study demonstrates that combining information on the circRNA length and support-
ing reads can help to improve circRNA detection accuracy.

Most circRNA detection methods dealing with FP circRNAs based on classifying 
BSJ supporting-reads to true circRNAs or tandem RNAs. As illustrated in the lower 
dashed box Fig. 2, if the mate of a BSJ supporting-reads from a tandem RNA belongs 
to the region of the true circRNA, the mapping information alone cannot tell if the 
read-pair comes from a true circRNA or from a tandem RNA. It usually happens 
when either two reads come from a short fragment or the circRNA length is too long. 
This explains why long circRNAs are hard to predicted from RNA-seq data. The fdr2d 
cannot resolve this problem caused by the long circRNAs, but it provides a ranking 
system to prioritize circRNAs based on false discovery rate. It is worth noting that 
fdr2d does not down-prioritize the long circRNAs in terms of biological aspects, thus 
if researchers have special interests in the long circRNAs, they could treat them sepa-
rately. Circall also provides the information of circRNA length in its output. The per-
formances of fdr2d aslo depend on the previously published datasets that we expect 
they could capture a well representation of data. In this study, only two out of three 
real datasets are used to build the model for the results of the remaining dataset, thus 
the model is independent from the testing data. The results show the model work 
robustly to all datasets in this study.

Circall also has some weaknesses. First, it detects only exonic circRNAs, while neglect-
ing the potential contribution of introns. However, from previous studies [3, 18], most 
circRNAs are derived from exons, and back-splicing events occur mostly at annotated 
exon boundaries. Further study to discover non-exonic circRNAs can be considered in 
future works. Second, Circall builds the BSJ database based on the annotated reference, 
thus depends on the completion of the annotation. This cannot be avoided for any refer-
ence-based approach methods, but we expect the annotation reference would continue 
to be improved in the future. The rapid development of long-read sequencing technol-
ogies is expected to significantly improve the gene annotation [41]. The advancement 
of the technology recently helped to detect more complex structures of circRNAs [42]. 
Finally, Circall currently works for paired-end RNA-seq data only, so single-end RNA-
seq data generated from old RNA-seq protocols are not allowed. However, paired-end 
RNA-seq for total RNAs is now more prevalent in analyses of circRNAs, so this is not a 
serious limitation.
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