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Background
Patterns of multi-locus differentiation, as distributed across admixture gradients, have 
long provided a window into divergence and speciation [e.g., 1, 2]. Accordingly, they 
have been used to map loci associated with adaptation or reproductive isolation [3, 4], 
and as indicators of biotic responses to environmental change [5]. Rather than relating 
these to patterns in the landscape, contemporary approaches have instead drawn conclu-
sions based on genome-wide ancestries [6, 7]. The evolutionary processes that generate 
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‘genomic clines’ can be illuminated even when constituent taxa do not segregate geo-
graphically, but rather patchily [8], or as a hybrid mosaic [5].

Several programs are available specifically to investigate genomic clines. Of these, bgc 
[9, 10] is the most robust to false positives and uses a Bayesian approach that accounts 
for genotype uncertainty [11] and autocorrelation caused by physical linkage [12] in 
next-generation sequencing datasets. To compliment these powerful tools for analyzing 
hybridization with molecular data, we here present a comprehensive R-package, Cline-
HelpR, that promotes the genomic cline methodology. The package includes functions 
that facilitate bgc and Introgress input file generation, output parsing, and functions 
for outlier-detection and plotting. Locus-wise clinal patterns are visualized by access-
ing a suite of R-methods that interpret them as a function of the genome-wide aver-
age, genomic position along chromosomes, and in relation to spatial and environmental 
parameters.

Implementation
Workflow

The ClineHelpR R-package incorporates an introduction to available functions and can 
be installed via provided instructions located on the GitHub repository (https://​github.​
com/​btmar​tin721/​Cline​HelpR). Additionally, we also provide optional Docker [13] inte-
gration that allows users to run ClineHelpR from a Docker image with all necessary 
dependencies and scripts pre-installed in the user’s path. Users can choose to run the 
Docker container in a command-line terminal or in a Jupyter Notebook. ClineHelpR 
includes three primary pipelines, a summary of which can be visualized in Fig. 1.

The workflow for our bgc pipeline includes functions to aggregate outputs from mul-
tiple independent runs, thin MCMC samples, and plot log-likelihood and bgc param-
eter traces. From these, ClineHelpR can both identify outlier loci using any of several 
user-defined options and plot locus-wise ancestry probabilities (φ) as a function of the 
hybrid index (Fig.  2). Finally, users can examine the locus-wise relationship between 
cline center (α) and rate (β), with polygon hulls included to encapsulate 2D ‘outlier space’ 
for each parameter [14].

ClineHelpR additionally includes accessory functions that allow an examination of 
variation in clinal parameters across the genome. Although mapping loci to reference 
assemblies is outside the scope of this package, an example of a workflow using Mini-
map2 [15] is included in the documentation. If the user has access to physical SNP 
(single nucleotide polymorphism) coordinates and a closely-related chromosome-level 
assembly, ClineHelpR can integrate these data with the RIdeogram package [16] to 
yield karyotype-style ideograms annotated with heatmaps for the bgc cline parameters 
(Fig. 3).

Functions are also provided to facilitate an Introgress workflow by generating input 
data frames as well as accessories that embellish the plotting functions already present in 
Introgress. These accessory functions will visualize spatial patterns (e.g., latitude/longi-
tude) and environmental variables that are inherent to genomic clines (Fig. 4), to include 
helper functions that invoke ecological niche models (MAXENT: 17 as generated in the 
R-package ENMeval v2.0 [18, 19]).

https://github.com/btmartin721/ClineHelpR
https://github.com/btmartin721/ClineHelpR
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Input and file formats

The primary purpose of ClineHelpR is to simplify the use of software designed to esti-
mate genomic clines. To facilitate this task, ClineHelpR functions and accessory scripts 
that prepare files for input into bgc and Introgress are available in the GitHub repository 
and from an external repository https://​github.​com/​tkcha​fin/​scrip​ts, with a few variants. 
First, ClineHelpR provides native R functions, genind2bgc and genind2introgress that 
convert adegenet [20] genind objects to the custom bgc and Introgress formats. These 
scripts also automatically remove non-biallelic sites and have options to filter both per-
site and per-individual missing data at a user-specified threshold and to randomly sub-
sample SNPs. Second, because bgc can additionally consider linkage among loci as well 
as genotype uncertainty, an input script (vcf2bgc.py) that employs the pyVCF Python 
library (https://​pyvcf.​readt​hedocs.​io/) is also provided as a means to format ipyrad 
[21] and stacks [22] VCF (variant call format) files containing annotations for physical 
position and genotype read counts. Third, the external GitHub repository (see above) 
contains the phylip2bgc.pl script to convert a PHYLIP-formatted alignment contain-
ing concatenated SNPs to the custom bgc input format. It can also subset populations 
and/or individuals from a larger alignment. A similar script, phylip2introgress.pl, does 
likewise with Introgress input. Finally, an additional script in the external repository, 
nremover.pl, is provided to comprehensively filter a PHYLIP-formatted SNP file. The 
program includes the capacity to filter by matrix occupancy per-individual and per-SNP 
column, and by minor allele frequency. It can also remove non-biallelic or monomorphic 

Fig. 1  Simplified example workflow listing all available ClineHelpR functions. Yellow boxes group 
inter-dependent functions working towards producing one or two particular plots (terminal plotting steps 
depicted as flags). Connecting arrows indicate a pipeline where each step is dependent on the returned 
R objects. The green ‘Run BGC’ diamond identifies bgc as an external a priori step for the bgcPlotter and 
chromosome plot functions. The dotted lines indicate optional steps

https://github.com/tkchafin/scripts
https://pyvcf.readthedocs.io/
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SNPs, and can randomly subsample large datasets. Each of the above scripts are auto-
matically included in the user’s path if using Docker.

Running bgc and introgress

ClineHelpR also provides functionality to simplify running bgc and Introgress. We sup-
ply the run_bgc.sh script that runs bgc with the settings specified in the bgc_settings.txt 
file. Once bgc execution is complete, run_bgc.sh invokes the estpost function to unpack 
the relevant parameters from the HDF5 output file. and our R API includes the runIn-
trogress function to run Introgress. In both cases, users can adjust a multitude of param-
eters and settings to suit their needs.

Outlier detection for Bayesian genomic clines

Output (extracted from HDF5 format using bgc’s estpost function) must be named as 
prefix_stat_param_replicate, where prefix is shared across all independent bgc repli-
cates, param is an individual output parameter (e.g., LnL), and replicate is an integer. 
Note that the run_bgc.sh script handles the output file format automatically. Outputs 
from any number of replicates can then be parsed, thinned, and combined via the com-
bine_bgc_output function in ClineHelpR. The combine_bgc_output function provides 
arguments for the number of MCMC samples to be removed as burn-in, and for a sam-
pling frequency with which to thin samples. Following bgc run aggregation, the MCMC 

Fig. 2  Example workflow for parsing Bayesian genomic cline (bgc) output, visualizing MCMC traces, 
detecting outliers, and plotting results. The ‘phiPlot’ (right-side, lower right box) shows hybrid indices (x-axis) 
and probability of parental population1 alleles (y-axis), plus a histogram of hybrid indices in the admixed 
population. The ‘alphaBetaPlot’ (left-side, lower right box) shows 2D density of cline width/rate representing 
the cline center (i.e., bias in SNP ancestry; α; x-axis) and steepness of clines (ß; y-axis). Outliers are additionally 
encapsulated using polygon hulls
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samples can be visually inspected for mixing and convergence using a trace plotting 
function, plot_traces. Adjustments can then be made to thinning or burn-in parameters 
by re-running the combine_bgc_output function or, if necessary, by re-running bgc with 
altered parameters or increased MCMC length.

A primary goal of genomic cline analysis is to identify loci that possess either excess 
ancestry or exceptionally steep transitions relative to the genome-wide average. Here, 
we provide the function get_bgc_outliers that offers two outlier detection methods 
(described in Gompert and Buerkle [9, 10]). Briefly, the first queries if the credibility 
intervals for the posterior probability distribution of cline parameters α or β (i.e., cline 
center and rate, respectively) exclude the neutral expectation (i.e., α or β = 0). If this 
interval excludes zero for either parameter, a locus can be flagged as either an α-outlier, 
β-outlier, or both.

The second method considers if per-locus parameter estimates are statistically 
unlikely, given the distribution of values across all loci. This is accomplished by clas-
sifying outliers as those for which posterior median α and ß estimates are not encap-
sulated by the ( n

2
 ) and ( 1−n

2
 ) quantiles from a conditional α and ß prior distribution 

Fig. 3  Example ideogram plot using Bayesian genomic cline (bgc) outliers for Terrapene ddRAD SNPs 
(y-axis), plotted onto Trachemys scripta chromosomes (x-axis). Chromosomes are duplicated, with alternative 
heatmaps for cline center (α; left) and rate (ß; right). Larger heatmap bands correspond to SNPs located 
within known genes, whereas smaller bands were found in unknown scaffolds
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(Gaussian with a mean of zero), where n represents a user-specified threshold (e.g., 
95%, 97.5%). Users can choose whether to classify outliers using any combination of 
the above methods, but all require the zeta and gamma quantile estimates from the 
bgc output.

We additionally track whether parameter values are significantly positive or nega-
tive. This indicates either an increase (α > 0) or decrease (α < 0) in the probability of 
parental population ancestry among hybrids for a given locus, or deviation in the 
rate of transition in probabilities of locus-specific ancestries towards either very 
steep (β > 0) or wide (β < 0) shapes [9].

Fig. 4  Example plots that can be made using the Introgress pipeline in ClineHelpR. The included climatic 
variable on the X-axis corresponds to BioClim raster layer 5 (https://​world​clim.​org). The gray shading indicates 
confidence intervals for each regression line. A Genomic clines for six outlier SNPs mapped to the Terrapene 
mexicana triunguis transcriptome. Transcript IDs correspond to GenBank accession numbers and the position 
of each SNP (in base pairs) on the locus. B Hybrid index output from Introgress versus an environmental 
variable

https://worldclim.org
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Plotting and visualization

We attempted to tailor available visualizations in ClineHelpR towards common appli-
cations of Bayesian genomic clines found in the literature, and we will continue to add 
additional ones as need arises. Many applications seek to identify loci subject to various 
selective processes [23] by comparing how ancestries transition among loci with respect 
to the genome wide average. To facilitate this, the phiPlot function computes φijn, the 
probability of parental population1 ancestry for each locus (i) and individual (n) within 
each admixed population (j) (Eqn. 3 and 4; Gompert and Buerkle [9]). It then produces 
a plot of φ (per locus) on the y-axis against posterior estimates of hybrid index on the 
x-axis (sensu Gompert et al., 2012), with an adjustable color scheme that designates sta-
tistical outliers (Fig. 2).

Other applications have specifically examined relationships among cline rate and 
center parameters [14], and we also do so by implementing the alphaBetaPlot function. 
A 2-D density contour plot of α and ß parameters is produced, with values for individual 
loci optionally mapped, and with the potential to calculate and plot polygon hulls that 
encapsulate positive and negative outliers with respect to each parameter (Fig. 2).

Introgress clines X environment

ClineHelpR also provides functionality to correlate environmental variables with the 
Introgress genomic clines. The functions prepare_rasters and partition_raster_bg and 
are provided to pre-process and prepare a directory of raster files for input into the 
external package ENMeval v2.0 [19], which runs MAXENT [17]. Processed rasters can 
then be input into runENMeval and summarize_ENMeval to run ENMeval and generate 
numerous summary statistics and plots that can help users deduce the most important 
environmental variables for their dataset. The environmental variables will then be cor-
related with Introgress genomic cline outliers using clinesXenvironment.

Results and discussion
Results are depicted and the software validated using a case study examining hybridi-
zation between Woodland (Terrapene carolina carolina) and Three-toed box turtles 
(Terrapene mexicana triunguis) [3]. Here, we also demonstrate the utility of several addi-
tional functions (see Fig. 1) which expand upon the ‘core’ bgc workflow. The first of sev-
eral can be used to map parameter values of bgc clines onto a chromosomal ideogram 
via the function plot_outlier_ideogram (e.g., Fig. 3). This provides a way to ‘spatially ori-
ent’ cline parameters across the genome, in addition to the aforementioned functions for 
visualizing the relationship among parameters (e.g., Fig. 2).

Briefly, we mapped the Terrapene ddRAD sequencing alignment against the avail-
able Terrapene mexicana triunguis scaffold-level assembly (GenBank Accession: 
GCA_002925995.2). We then converted the Terrapene scaffold coordinates [3] to that 
of  full chromosomes by mapping them against the most closely related full chromo-
some-level assembly ([24]; GenBank accession: GCA_013100865.1). This was accom-
plished by employing Minimap2 [15] and PAFScaff (https://​github.​com/​slims​uite/​pafsc​
aff). The output from get_bgc_outliers and PAFScaff, plus a GFF (general feature format) 
file read/parsed via the provided functions parseGFF and join_bgc_gff, were used to plot 

https://github.com/slimsuite/pafscaff
https://github.com/slimsuite/pafscaff
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a heatmap of bgc α- and ß-values on an ideogram. Essentially, the ideogram plot (gener-
ated using the RIdeogram R-package) allows the chromosomal locations of each outlier 
to be visualized (Fig. 3). It also provides a distinction between transcriptomic SNPs fall-
ing within known genes versus loci from surrounding scaffolds. For additional details, a 
more in-depth tutorial is provided in https://​github.​com/​btmar​tin721/​Cline​HelpR/​blob/​
master/​tutor​ials/​Cline​HelpR_​tutor​ial_​bgc.​ipynb.

Other extended functions include a wrapper to simplify running Introgress (runIntro-
gress), and a function that allows genomic clines (Fig. 4A) and hybrid indices (Fig. 4B) 
from Introgress to be correlated with spatial and environmental variables. To access 
this functionality, one can run clinesXenvironment using the object returned from run-
Introgress and raster values extracted from each sample locality. Multiple rasters can 
be included (e.g., the 19 BioClim layers; https://​world​clim.​org/), and users can run the 
included ENMeval wrapper functions (runENMeval and summarize_ENMeval) to iden-
tify uninformative layers that may subsequently be excluded from clinesXenvironment. 
These latter functions access MAXENT using the ENMeval pipeline [18], whereby the 
most informative raster layers are designated with the ‘permutation importance’ statistic.

Genomic clines are useful for assessing patterns of introgression in hybrid zones. 
Unfortunately, parsing and plotting results from the available genomic cline soft-
ware require users to write their own scripts. Given that genomic clines have a variety 
of applications, to include conservation genetics, evolutionary biology, and speciation 
research, it is clearly important that they be accessible for use by researchers. Here, we 
present an R-package that automates and greatly simplifies the generation of input and 
parsing of output from available genomic cline software, as well as the production of 
publication-quality figures. We also provide extended functionality to explore the effects 
of environmental and spatial features on genomic clines.

Conclusions
Essentially, our R-functions automate bgc and Introgress input/output processing and 
provide several ways of visualizing outlier SNPs across the genome, while also distin-
guishing known genes and surrounding loci. Furthermore, the extended functionality 
permits assays of the environmental and spatial effects on genomic clines, enhancing 
their interpretation and providing greater insight into underlying processes that poten-
tially contribute to the observed patterns. ClineHelpR is intended to be user-friendly, 
and to this end employs a variety of parameters that can be adjusted to suit specific 
research needs. In this sense, we also provide Docker and Jupyter Notebook integration 
to expand the accessibility of our software and facilitate reproducible research. Hope-
fully, future iterations of genomic cline software can act to extend chromosomal and 
environmental associations, particularly as whole genome sequencing becomes less 
expensive and more common.

Abbreviations
bgc: Bayesian genomic clines; GFF: general feature format; MCMC: Markov chain Monte Carlo; SNP: single nucleotide 
polymorphism; VCF: variant call format.
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