
Reference‑agnostic representation
and visualization of pan‑genomes
Qihua Liang*  and Stefano Lonardi 

Background
As more and more individuals (cultivars, accessions, or strains) of a given species are
sequenced and made available, the adequacy of a single DNA sequence as the reference
genome for a species is being challenged [1]. Declaring one individual as the reference for
a species introduces a variety of representational biases in downstream analyses, includ-
ing SNP discovery, structural analysis, genome-wide association studies, etc. [1]. Instead,
the pan-genome captures the entire genetic diversity of a species by cataloging all the
structural variants of its genome [2]. According to [3–5] a pan-genome is composed of
(i) the core genome containing DNA sequences present in all individuals within the spe-
cies, (ii) the dispensable genome containing DNA sequences present in at least two (but
not all) individuals,(iii) unique (or private) genome which includes individual-specific
DNA sequences. An effective representation (and its visualization) of a pan-genome is
particularly challenging due to the complex rearrangements that can be observed when
comparing multiple genomes of the same species [2].

As a testament of this analytic complexity, the majority of the available pan-genome
analysis tools either (i) focus only on the genes, or (ii) they can only handle small
genomes (e.g., bacterial genomes) and are unable to scale to larger eukaryotic genomes,
or (iii) they require users to arbitrarily label one of the individual genomes as the

Abstract 

Background:  The pan-genome of a species is the union of the genes and non-coding
sequences present in all individuals (cultivar, accessions, or strains) within that species.

Results:  Here we introduce PGV, a reference-agnostic representation of the pan-
genome of a species based on the notion of consensus ordering. Our experimental
results demonstrate that PGV enables an intuitive, effective and interactive visualization
of a pan-genome by providing a genome browser that can elucidate complex struc-
tural genomic variations.

Conclusions:  The PGV software can be installed via conda or downloaded from
https://​github.​com/​ucrbi​oinfo/​PGV. The companion PGV browser at http://​pgv.​cs.​ucr.​
edu can be tested using example bed tracks available from the GitHub page.

Keywords:  Comparative genomics, Pan-genome, Genome analysis

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502
https://doi.org/10.1186/s12859-021-04424-w

*Correspondence:
qlian003@ucr.edu
Department of Computer
Science and Engineering,
University of California,
Riverside, CA 92521, USA

http://orcid.org/0000-0003-3467-8103
https://github.com/ucrbioinfo/PGV
http://pgv.cs.ucr.edu
http://pgv.cs.ucr.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04424-w&domain=pdf

Page 2 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502

reference. For instance, PanX first identifies orthologous gene clusters from a set of
individual genomes, then allows users to interactively explore the relationships between
genes via a web-based visualization tool [6]. Similarly, PanWeb [7] is a web-based front-
end for PGAP (Pan-Genome Analysis Pipeline) [8]. PGAP provides several types of
gene-level analysis, including gene cluster analysis, pan-genome profile analysis, varia-
tion analysis, evolution analysis and function enrichment analysis. PPanGGOLiN mod-
els a microbial pan-genome using a graph in which nodes represent gene families and
edges represent genomic neighborhood [9]. The Genome Context Viewer is a genome
browser that can identify and visualize micro-synteny regions, i.e., collinear arrangement
of homologous genes, in a pan-genome. The Genome Context Viewer allows the explo-
ration of precomputed macro-synteny blocks in pan-genomes [10]. Other tools provide
genome-wide insights by comparing whole genomes. PanSeq identifies core, accessory
and novel regions of genome-level by carrying out a pairwise alignment against one of
the individual genome which need to be considered the reference [11]. PGAP-X is an
extension of PGAP which uses whole genome sequence alignment to distinguish core,
dispensable and strain-specific genes [12]. While PGV and PGAP-X have some common
functionalities, PGAP-X does not compute or rely on the consensus ordering. Instead
PGAP-X focuses on clustering of gene orthologs. While PGAP-X was designed and
extensively tested on bacterial genomes, we were unable to run PGAP-X on large eukar-
yotic genomes like those used in this study. Table 1 summarizes the main features and
limitations for these tools.

In response to the limitations of the existing methods for pan-genome analysis, we
propose here a novel pan-genome representation called PGV. The PGV representation
is (i) reference-agnostic (i.e., there is no need to artificially declare one of the individ-
ual genome to be the reference), (ii) can handle large eukaryotic genomes, and (iii) is
very intuitive and simple to understand. The PGV representation can be visualized by
a dot-plot or using our PGV genome browser, in which each block is colored depend-
ing on whether it is core, dispensable or unique. Structural variations such as inver-
sions and translocations are highlighted, and shared core/dispensable blocks are linked
to illustrate how the different accessions relate to each other. PGV performs genome
level analyses in which genomic blocks and structural variations are not limited to gene

Table 1  Comparison of pan-genome analysis tools (MSA = multiple sequence alignment)

Gene based Genome based Reference
agnostic

Alignment
method

Largest genome
tested

References

PanX � Pairwise align-
ment using
diamond

Microbial
genomes

[6]

PGAP � � All-pairs align-
ment and
BLAST-all

Microbial
genomes

[8]

PGAP-X � � � MSA using pro-
gressiveMauve

Microbial
genomes

[12]

PPanGGOLiN � Uses gene
families

1000s of micro-
bial genomes

[9]

PanSeq � Pairwise align-
ment

Not mentioned [11]

Page 3 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502 	

regions. Traditional pan-genome tools are gene centered and often require a reference,
while PGV is gene-agnostic and reference-agnostic, thus significantly different outputs
are expected from PGV. Users are also allowed to upload annotation tracks (e.g., gene
annotations) so that relationships between genes and genome level variations can be
identified and visualized. PGV depends on progressiveMauve for the multiple sequence
alignment, which is computationally expensive. As a consequence, we expect about a
dozen eukaryotic-sized genomes or about two dozen bacterial genomes to be a practical
upper-limit to the analysis pipeline.

Implementation
PGV was implemented using Python3 and a few libraries like numpy, matplotlib,
biopython and alignment. PGV can be easily installed via Conda, which takes care
of software dependencies and versions. PGV uses matplotlib to generate the dot-
plots like those shown in Fig. 3. Alternatively PGV generates BED files, which can be
visualized by the genome browser at http://​pgv.​cs.​ucr.​edu. The genome browser was
implemented using Javascript and HTML. The current version is hosted on Google Fire-
base. The D3.js library was used for data binding. Canvas was used for genome plotting.
The Bootstrap library was used for the front-end cosmetics.

The source code for PGV and the genome browser are available at https://​github.​com/​
ucrbi​oinfo/​PGV. The github page offers sample data to test the software installation.

Methods
The input to PGV is a set of n individual genomes for the same species, or a set of
genomes from very closely-related species. To obtain the best results, input genomes
must have a similar level of assembled contiguity. First, PGV carries out a genome-wide
multiple sequence alignment using progressiveMauve [13]. Based on the output of the
multiple sequence alignment, PGV classifies each alignment block into three types. A
core genome block, or C-block, corresponds to an alignment that contains all n individu-
als. A dispensable genome block (also called accessory), or D-block, corresponds to an
alignment which contains at least two individuals and at most n− 1 . A unique genome
block (also called strain-specific), or U-block, is a block that belongs exclusively to one
individual genome. Please note that in the literature a unique block is a special type of
dispensable block, while PGV distinguishes them. Next, PGV converts each individual
genome into an ordered sequence of C, D, and U-blocks, each with its corresponding
identifier (represented by a unique integer). In the example in Additional file 1: Figure
S1(a), the alignment of the five input genomes has produced seven core blocks, four dis-
pensable blocks and nine unique blocks.

After the conversion of each genome into blocks, PGV computes the consensus order-
ing for the C-blocks, which will constitute the “back-bone” of the pan-genome. If we only
consider C-blocks, observe that each genome can be represented by a permutation σ of
the C-block identifiers {1, 2, . . . ,m} , where m is the number of C-blocks. Let σ i be the
permutation for the i-th genome, where i ∈ [1, n] . We define the consensus ordering of
the C-blocks as the ordering σ ∗ that minimizes the quantity

∑n
i=1 L(σ

i, σ ∗) where L is
the Levenshtein (edit) distance between the permutations. In the literature, the string σ ∗
is called the median string of the set σ i . The problems of finding the median for a set of

http://pgv.cs.ucr.edu
https://github.com/ucrbioinfo/PGV
https://github.com/ucrbioinfo/PGV

Page 4 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502

strings under the Levenshtein distance is known to be NP-complete [14]. Similar theo-
retical results have been derived from more complex metrics [15]. The related notion of
consensus ordering for homology blocks was proposed by [16], but their pan-genome is
captured by complex bidirectional sequence graphs instead of linear paths.

PGV uses an efficient greedy algorithm to compute an approximation of the optimal
ordering σ ∗ . While the ideal outcome is to produce a single linear (consensus) order-
ing for each chromosome, in some situations PGV can only compute a partial order-
ing of the C-blocks. For example, if the input genomes contain a region which is highly
variable, our greedy strategy is likely not to be able to extend the ordering across that
region. For this reason, PGV maintains a set of linear orderings O, which is initially
empty. PGV starts from an arbitrarily C-block Ci which is added to O as the “seed” of
a new linear ordering (or a path). Then, PGV determines the list Ci ’s neighbors in the
n input genomes and their frequency. Let C1 , C2 and C3 be the three neighbors of Ci
with the highest frequency, and let f1 , f2 and f3 be their frequency. If either C1,C2 or
C3 are already in O, they are not considered for the next step. Several cases are possible,
(i) f1 ≥ f2 > f3 , (ii) f1 > f2 = f3 , (iii) f1 = f2 = f3 . In case (i), blocks C1 and C2 become
the candidates neighbors of Ci in the consensus ordering. The consensus ordering is
extended as C1 → Ci → C2 . Then, PGV repeats the same process on C1 and C2 , first
extending to the left as much as possible, then extending to the right as much as pos-
sible. In case (ii), only block C1 is added to the ordering and the process is repeated from
C1 . In case (iii), the current consensus ordering is suspended and a new ordering starts
from another arbitrary block that has not be processed yet (i.e., not in O).

Once PGV has processed all C-blocks, it aligns each path in O to the n genome order-
ings of the C-blocks to decide its orientation and determine whether it contains mis-
joins. Each path and its reversed path are aligned to the original genome (C-block)
orderings and an alignment score is calculated. The alignment score is +1 for an aligned
block and -1 for a gap or a mismatch. The local alignment with highest score is used to
determine the correct orientation and possible mis-joins. If the alignment score of the
reversed path is higher than the score of the alignment for the forward path, the path is
reversed. After the orientation is decided, if the overall alignment score is lower than a
minimum threshold (i.e., 80% of the highest possible alignment score for that genome
length), (i) the path is removed from O, (ii) the path is broken into two or three pieces,
namely a central region with the highest alignment, a left overhang (possibly empty), and
a right overhang (possibly empty), (iii) the two/three sub-paths are added to O and pro-
cessed individually through another round of alignments. When all paths are in the cor-
rect orientations and have an overall alignments score with the input genomes of at least
80% of the maximum, PGV obtains the coordinates of each path by taking a majority
vote on their best alignment against the input genomes. PGV uses these coordinates to
order the paths, and produce the final consensus ordering (ideally composed of a single
path). A step-by-step explanation of the algorithm using the example in Additional file 1:
Figure S1 is provided in the Additional file 1.

Once the consensus ordering is computed, PGV produces a set of .bed tracks (one
for each genome, plus the consensus track) that can be visualized off-line or on-line.
These bed files can be processed by custom scripts to extract the coordinates of blocks
of different categories. In the off-line option, PGV generates a dot-plot between the

Page 5 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502 	

ordering of C-blocks in each genomes and the consensus ordering (e.g., see Fig. 3). This
option allows users to identify major structural variations in each genome compared to
the consensus ordering, and to produce figures to be shared in reports or manuscripts.
The on-line option is a genome browser which allows users to visually inspect genome
rearrangements (see Fig. 1). For the browser, users have the option to generate an alter-
native type of .bed tracks in which gaps are introduced so that C-blocks are aligned
vertically (see Fig. 2). Users can upload in the browser any subset of the .bed tracks for
individual genomes or the consensus ordering. Each genome is represented as a set of
blocks whose sizes are proportional to the underlying sequence length. Light blue blocks
are core blocks with same relative ordering and orientation compared to the consensus
ordering (e.g., not reversed or translocated); dark blue blocks are core blocks that are
translocated compared to the consensus ordering; pink blocks are core blocks that are
inverted compared to the consensus ordering. Green blocks are dispensable blocks and
red blocks are unique blocks. Tracks can be reordered by clicking on the track names
and dragging them with the mouse. The usual navigation tools are available (zoom in/
out, pan left/right, select a chromosome, search for a block). Clicking on a block high-
lights the identifier of that block, namely U for unique, D for dispensable and C for core,
followed by a unique ID. Clicking on a D or C-block generates a link that connects cor-
responding blocks in other genomes (if they are within the current zoom window). The
browser also allows users to upload GFF3 containing gene annotations, which are shown
as grey blocks.

Results
Human

PGV was used on four Homo sapiens genome assemblies, namely GCA​_000001405.28,
GCA​_003634875.1, GCA​_002180035.3, and GCA​_001292825.2. The multiple sequence

Fig. 1  A screenshot of the PGV Genome Browser on four cowpea accessions; the first track represents the
consensus ordering; IT97K, CB5-2 and Suvita2 and Sanzi are cowpea genomes; light blue blocks are core
blocks with same relative ordering and orientation compared to the the consensus ordering; dark blue blocks
are core blocks that are translocated when compared to the consensus ordering; pink blocks are core blocks
that are inverted compared to the consensus ordering; green blocks are dispensable blocks; red blocks are
unique blocks

Page 6 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502

alignment via progressiveMauve took about four days on a single-core (unfortunately
progressiveMauve’s multi-core mode has been disabled by its authors); PGV took
about seven minutes to find the consensus ordering. PGV identified 3548 core blocks

Fig. 2  A screenshot of the PGV Genome Browser on cowpea accessions using aligned bed tracks; the first
track represents the consensus ordering; IT97K, CB5-2 and Suvita2 and Sanzi are cowpea genomes; light blue
blocks are core blocks with same relative ordering and orientation compared to the the consensus ordering;
dark blue blocks are core blocks that are translocated compared to the consensus ordering; pink blocks are
core blocks that are inverted compared to the consensus ordering; green blocks are dispensable blocks; red
blocks are unique blocks

Fig. 3  Human, arabidopsis, rice, and cowpea pan-genome analysis using PGV. The x-axis represents the
coordinates of the consensus ordering of core blocks computed by PGV. Genomes coordinates for the core
blocks are used on the y-axis (staggered to avoid overlapping lines)

Page 7 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502 	

(comprising 94.8% of the human genome), 2390 dispensable blocks and 11,807 unique
blocks. Upon inspection of the initial PGV’s dot plot we determined that ten chromo-
somes in GCA​_003634875.1 were inverted. Figure 3a shows the dot-plot after reorient-
ing those chromosomes. The four assemblies show a very high degree of consistency for
the core blocks, with very few translocations indicated by the isolated dots.

Arabidopsis

PGV was run on seven Arabidopsis thaliana assemblies, namely An-1 (Antwerpen,
Belgium), Cvi-0 (Cape Verde Islands), Kyo (Kyoto, Japan), Sha (Shahdara, Tadjikistan),
C24 (Coimbra, Portugal), Eri-1 (Eringsboda, Sweden), and Ler (Gorzów Wielkopolski,
Poland) [17]. ProgressiveMauve took about six hours to compute the multiple sequence
alignment (on a single-core) while PGV took about two minutes to compute the con-
sensus. PGV identified 459 core blocks (comprising 97.43% of Arabidopsis genome),
3079 dispensable blocks and 8743 unique blocks. The higher fraction of the genome in
core blocks compared to other species indicated that the seven genomes are very closely
related. Figure 3b shows high consistency between the seven accessions and the consen-
sus ordering. Observe that there is a large inversion on chromosome 3 in the Sha acces-
sion, which was also previously identified in [17].

Rice

PGV was used on four Oryza sativa assemblies, namely Japonica (accession GCA​_
001433935.1), Japonic HEG4 (accession GCA​_000817615.1), Indica (accession GCA​_
002151415.1), and Aus cultivar (accession GCA​_001952365.3). ProgressiveMauve took
about seven hours to obtain the multiple sequence alignment (on a single-core); PGV
took about three minutes for the consensus analysis. PGV identified 2632 core blocks
(comprising 90.11% of genome), 2531 dispensable blocks and 12,396 unique blocks. Fig-
ure 3c shows a significant amount of translocations (shown as single dots), and a (cen-
tromeric) inversion on chromosome 6 in Indica (orange anti-diagonal in the plot) which
was previously reported [18].

To show the effect of introducing a more divergent genome, we repeated the experi-
ment above by adding Indian wild rice accession GCA​_000576065.1 to the set. Pro-
gressiveMauve took about nine hours to compute the multiple sequence alignment of
these five rice assemblies while PGV took about three minutes to compute the consen-
sus. PGV identified 5279 core blocks (comprising 55.66% of genome), 5729 dispensable
blocks and 28,934 unique blocks. Observe that the introduction of the wild rice (1) dou-
bled the number of all types of blocks, which indicates an increased fragmentation of the
genome and (2) reduced by 35% the cumulative size of core blocks. The dot-plot analysis
in Additional file 1: Figure S2 illustrates a large amount of variations in the Indian wild
rice (shown as isolated green dots). Also observe in Additional file 1: Figure S2 that the
consensus ordering paths are much more fragmented than in Fig. 3c.

Cowpea

PGV was run on eight Vigna unguiculata genome assemblies namely IT97K [19], CB5-2,
Suvita2, Sanzi, UCR779, ZN016, TZ30 and G98 (available from Phytozome CowpeaPan).
Only chromosome level scaffolds were used in this experiment because unplaced contigs

Page 8 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502

could introduce spurious structural variations. ProgressiveMauve took about two days
to compute the multiple sequence alignment (on a single-core) while PGV took about
eight minutes to build the consensus ordering. PGV detected 2863 core blocks (compris-
ing 77.41% of the cowpea genome), 11,856 dispensable blocks and 42,484 unique blocks.
Figure 3d shows several inversions (anti-diagonals): (i) two large inversions at the begin-
ning of chromosome 1 and 2 in G98 (further analysis revealed that these two inversions
were mis-assemblies), (ii) one inversion near the center of chromosome 3 of IT97K,
which was previously reported by [19], (iii) an inversion shared by Suvita2, ZN016 and
TZ30, previously unreported.

Discussion
While the PGV representation can theoretically capture an arbitrarily large number of
genomes, in practice the dependency from progressiveMauve limits our tool to handle
up to a dozen or so of eukaryotic-sized genomes. If a more scalable/efficient multiple
genome alignment tool will become available, a few changes in the preprocessing step
in PGV could take advantage of it and PGV can be scaled to pan-genome with an large
number of genomes.

Conclusions
We introduced a representation of the pan-genome based on the novel notion of consen-
sus ordering, which is reference-agnostic. Experimental results on several species dem-
onstrate the utility of our representation. The PGV representation is reference-agnostic
where it does not require one of the individual genome to be the reference. PGV can
handle large eukaryotic genomes and potentially large number of genomes, and is very
intuitive and simple to understand.

Availability and requirements

Project name PGV
Project home page https://​github.​com/​ucrbi​oinfo/​PGV
Operating systems MacOS, Windows, Linux
Programming language Python, JavaScript
Other requirements PGV can be installed with Conda, which takes care of all software
dependencies
License MIT
Any restrictions to use by non-academics None

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04424-w.

Additional file 1. Supplementary Material includes a step-by-step description of PGV’s Consensus Algorithm over a
detailed example.

Acknowledgements
The authors thank the anonymous reviewers for their constructive comments.

https://github.com/ucrbioinfo/PGV
https://doi.org/10.1186/s12859-021-04424-w

Page 9 of 9Liang and Lonardi ﻿BMC Bioinformatics (2021) 22:502 	

Authors’ contributions
QL and SL designed the PGV algorithm. QL wrote the software and collected the experimental results. All authors read
and approved the final manuscript.

Funding
This work was supported, in part, by the US National Science Foundation IOS-1543963 and IIS-1814359.

Availability of data and materials
The PGV software is available at https://​github.​com/​ucrbi​oinfo/​PGV. The browser can be accessed at http://​pgv.​cs.​ucr.​
edu. Example BED files that can be used to test the browser can be found at the GitHub page (in the directory sample/
ouputBED/). The genomes used to test PGV were downloaded from NCBI GenBank and Phytozome. Accessions for
human dataset are: GCA000001405.28, GCA003634875.1, GCA002180035.3, and GCA001292825.2; accessions for rice
dataset are: GCA001433935.1, GCA000817615.1, GCA002151415.1, GCA001952365.3.

Declarations

Competing interests
SL is an Associate Editor of BMC Bioinformatics. The authors declare that they have no other competing interests.

Received: 28 October 2020 Accepted: 4 October 2021

References
	1.	 Ballouz S, et al. Is it time to change the reference genome? Genome Biol. 2019;20(1):159. https://​doi.​org/​10.​1186/​

s13059-​019-​1774-4.
	2.	 Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Brief

Bioinform. 2018;19(1):118–35.
	3.	 Tettelin H, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the

microbial “pan-genome’’. Proc Natl Acad Sci USA. 2005;102(39):13950–5.
	4.	 Medini D, et al. The microbial pan-genome. Curr Opin Genet Dev. 2005;15(6):589–94.
	5.	 Guimarães LC, et al. Inside the pan-genome—methods and software overview. Curr Genom. 2015;16(4):245–52.
	6.	 Ding W, et al. panX: pan-genome analysis and exploration. Nucleic Acids Res. 2018;46(1):5.
	7.	 Pantoja Y, et al. PanWeb: a web interface for pan-genomic analysis. PLoS ONE. 2017;12(5):0178154.
	8.	 Zhao Y, et al. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012;28(3):416–8.
	9.	 Gautreau G, et al. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput Biol.

2020;16(3):1–27. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10077​32.
	10.	 Cleary A, Farmer A. Genome Context Viewer: visual exploration of multiple annotated genomes using microsynteny.

Bioinformatics. 2017;34(9):1562–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btx757
	11.	 Laing C, et al. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and acces-

sory genomic regions. BMC Bioinform. 2010;11:461.
	12.	 Zhao Y, et al. PGAP-X: extension on pan-genome analysis pipeline. BMC Genom. 2018;19(Suppl 1):36.
	13.	 Darling AE, et al. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS

ONE. 2010;5(6):1–17. https://​doi.​org/​10.​1371/​journ​al.​pone.​00111​47.
	14.	 Hayashida M, et al. Finding median and center strings for a probability distribution on a set of strings. In: Biomedical

engineering systems and technologies; 2017. pp. 108–21.
	15.	 Tannier E, et al. Multichromosomal median and halving problems under different genomic distances. BMC Bioin-

form. 2009;10(1):120. https://​doi.​org/​10.​1186/​1471-​2105-​10-​120.
	16.	 Nguyen N, et al. Building a pan-genome reference for a population. J Comput Biol. 2015;22(5):387–401. https://​doi.​

org/​10.​1089/​cmb.​2014.​0146.
	17.	 Jiao W-B, Schneeberger K. Chromosome-level assemblies of multiple arabidopsis genomes reveal hotspots of rear-

rangements with altered evolutionary dynamics. Nat Commun. 2020;11(1):1–10.
	18.	 Du H, et al. Sequencing and de novo assembly of a near complete Indica rice genome. Nat Commun. 2017;8:15324.
	19.	 Lonardi S et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019;98(5):767–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/ucrbioinfo/PGV
http://pgv.cs.ucr.edu
http://pgv.cs.ucr.edu
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1186/s13059-019-1774-4
https://doi.org/10.1371/journal.pcbi.1007732
https://doi.org/10.1093/bioinformatics/btx757
https://doi.org/10.1371/journal.pone.0011147
https://doi.org/10.1186/1471-2105-10-120
https://doi.org/10.1089/cmb.2014.0146
https://doi.org/10.1089/cmb.2014.0146

	Reference-agnostic representation and visualization of pan-genomes
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Methods
	Results
	Human
	Arabidopsis
	Rice
	Cowpea

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	References

