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Abstract 

Background:  Glycan-related genes play a fundamental role in various processes for 
energy acquisition and homeostasis maintenance while adapting to the environment 
in which the organism exists; however, their role in the microbiome in the environment 
is unclear.

Methods:  Sequence alignment was performed between known glycan-related genes 
and complete genomes of microorganisms, and optimal parameters for identifying gly‑
can-related genes were determined based on the alignments. Using the constructed 
scheme (> 90% of identity and > 25 aa of alignment length), glycan-related genes in 
various environments were identified from 198 different metagenome data.

Results:  As a result, we identified 86.73 million glycan-related genes from the metage‑
nome data. Among the 12 environments classified in this study, the percentage of 
glycan-related genes was high in the human-associated environment, suggesting that 
these environments utilize glycan metabolism better than other environments. On the 
other hand, the relative abundances of both glycoside hydrolases and glycosyltrans‑
ferases surprisingly had a coverage of over 80% in all the environments. These glyco‑
side hydrolases and glycosyltransferases were classified into two groups of (1) general 
enzyme families identified in various environments and (2) specific enzymes found 
only in certain environments. The general enzyme families were mostly from genes 
involved in monosaccharide metabolism, and most of the specific enzymes were poly‑
saccharide degrading enzymes.

Conclusion:  These findings suggest that environmental microorganisms could 
change the composition of their glycan-related genes to adapt the processes involved 
in acquiring energy from glycans in their environments. Our functional glyco-metagen‑
omics approach has made it possible to clarify the relationship between the environ‑
ment and genes from the perspective of carbohydrates, and the existence of glycan-
related genes that exist specifically in the environment.
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Background
Genome sequencing has been carried out for the past two decades with respect to 
unicellular and multicellular microorganisms, as well as microbial communities iso-
lated from a variety of environments, including the ocean [1, 2], soil [3], animal diges-
tive tracts [4], and humans [5, 6]. Metagenomics elucidates the nature of life through 
the exploration of the genetic content of various bacteria from the reads of samples 
taken from different environments [7–11]. The issue at present is not to obtain more 
sequence data, but to infer the functions of the myriad of proteins already identified 
[12]. Although next-generation sequencing has led to an explosion of sequence data, our 
functional understanding of the data is still lacking [11, 13]. This bias is caused by the 
lack of diverse lineages and genetic compositions of the microbiome, basically due to the 
fact that genome sequences registered in databases tend to be biased toward culturable 
species.

Functional metagenomics is known as a method to search for functional genes in 
microbial communities based on the results of metagenomic sequencing and experi-
mental screenings [14, 15]. Functional metagenomics has been mostly conducted on 
intestinal bacteria, it is used to infer what kind of phenomenon in the environment by 
associating metagenome information related to disease with known metabolic informa-
tion [7, 8]. Databases that organize information on various functional genes in a broad 
range of species [16–20] have been constructed, which are more enhancing functional 
metagenomics. Such functional metagenomics have revealed that an abundance of gly-
can-related genes reside in the intestinal environment, identifying 95 of 124 (77%) car-
bohydrate hydrolase families [16, 21, 22]. Since glycan-related genes play a key role in 
energy acquisition, cell–cell interactions, molecular recognition, signaling transduction, 
etc. [23], of various organisms, it is considered to be an essential target in terms of its 
ecological significance. Information on genes involved in polysaccharides and glycans in 
individual species have drastically increased [22, 24], but functional information about 
such genes found in environments is still unknown.

Enzymes that assemble and degrade glycans have been classified into sequence-
based families by Henrissat et al. [25–30] The functional diversity or specificity of these 
enzymes is enormous and reflects the wide variety of glycan structures found in nature. 
CAZy is a database that was launched in 1991[25] which collects and organizes informa-
tion based on these data. Carbohydrate active enzymes registered in CAZy are called 
carbohydrate-active enzymes (CAZymes). The classification system in the CAZy data-
base is based on the results of biochemical experiments, and genes are classified into 
specific categories, including glycoside hydrolase (GH), polysaccharide lyase (PL), glyco-
syltransferase (GT), carbohydrate-binding module (CBM), carbohydrate esterase (CE), 
as well as several other categories of genes that act on carbohydrates (AA)[22].

The purpose of this study is to elucidate carbohydrate metabolism such as energy 
acquisition by taking advantage of functional metagenomics and observing an over-
view of CAZymes (glycan-related genes) in various environments. Using information 
of metagenome reads in various environment, we found that the environment influ-
ences the abundance and types of glycan-related genes, suggesting that their functional 
roles could be adapted to their environmental glycan characteristics. From these find-
ings, we propose a model for the use of glycan-related genes for energy acquisition of 
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microorganisms in the environments. The functional glyco-metagenomics established in 
this study can make it possible to infer the role of glycan-related genes and microorgan-
isms in the environment.

Results
Evaluation of the accuracy of the identified glycan‑related genes based on complete 

genomes

To obtain information on the distribution of glycan-related genes in the environment, 
we developed a method to identify glycan-related genes from metagenomic data that 
are comprehensively sequenced by next-generation sequencers to determine the DNA 
sequences in the environment (Fig.  1). Metagenomic sequences often consist of short 
reads of 100–200  bp, and we evaluated the conditions for identifying glycan-related 
genes based on the sequence homologies of these short reads when aligned against a 
database of known glycan-related gene sequences. First, we generated virtual shotgun 
metagenomic data by randomly fragmenting the genomic sequence of 39 completely 
sequenced genomes that differ at Genus level including 17 Gram-positive bacteria and 
22 Gram-negative bacteria (see Additional file 2: Table S1). These virtual metagenomic 
reads were aligned with 820,000 protein sequences registered in dbCAN [24] as a refer-
ence database using GhostX [31]. The alignment results were divided into positive and 
negative groups based on certain cutoff values using two variables, alignment identity 
(60–90%) and length (5–25 aa). For the evaluation of prediction accuracy, genes regis-
tered in CAZy were used as the correct set, and if a candidate gene was above a cer-
tain cutoff value in terms of alignment identity (60–90%) and length (5–25 aa), it was 
considered true, and otherwise false. The accuracy of glycan-related genes extracted in 

Fig. 1  A strategy of identification of glycan-related genes in environments
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each bacterial genome was evaluated using Precision, Recall, and FDR (Fig.  2). These 
results showed that the highest accuracy was obtained when the identity was > 90% and 
the alignment length was > 25 aa, where Precision was > 90% (Fig. 2a), Recall was < 10% 
(Fig. 2c) and FDR was < 10% (Fig. 2b). Therefore, this condition was used for the subse-
quent identification of glycan-related genes.

Glycan‑related genes identified from metagenome data

To investigate the distribution of glycan-related genes in microbial communities in vari-
ous environments, we used the above method to detect glycan-related genes in the actual 
environmental metagenome (Fig.  1). We identified 86.73 million glycan-related genes 
from 198 metagenomic data obtained from ENA [32] (see Additional file 2: Table S3). 
The ratio of the number of identified glycan-related genes to the total number of reads 
included in each metagenomic data was high in the human-related environment such as 
human intestine and oral cavity, but 0.01% or less in the remaining 19 metagenome data 
(eleven from the deep sea, two from a hot spring, five from oil contamination, and one 
from rhizosphere).

In addition, the identified glycan-related genes differed greatly in their proportions 
in the environment compared to individual metagenomes. Thus, we calculated the dis-
tribution of the coverage of glycan-related genes in each environment (Fig.  3a). As a 
result, glycan-related genes were identified more in the human-associated metagenomes 
(average 2.64%) consisting of Gut (0.8–8.0%), Oral (0.9–2.8%), tGut (1.5–8.5%) and Skin 
(0.01–2.1%) than those in other environments (average 0.27%).

Although the number and content of glycan-related genes in the environment sug-
gest that they are affected by the environment, their roles in each sample is unknown 
because glycan-related genes have a high variety of functions, from hydrolysis to trans-
fer reactions of glycosidic bonds between sugars. Therefore, the identified glycan-related 
genes were annotated with the six functional categories defined by CAZy. The functions 
of the identified glycan-related genes were classified using the sequence annotations of 
the top hits. In each metagenome data set, we calculated the ratio of the six categories 
in which all of the identified glycan-related genes were annotated (Fig.  3b, Additional 
file  2: Table  S4). We found that the proportion of the six classifications showed little 
difference among the samples. However, the ratio of GH (glycoside hydrolase) and GT 
(glycosyltransferase) in each environment was very high at 40–60%, and, surprisingly, 

(a) (b) (c)

0

0.2

0.4

0.6

0.8

1

60% 70% 80% 90%

Fa
ls

e 
D

is
co

ve
ry

 R
at

e

Identity

5aa 10aa 15aa 20aa 25aa

0.7

0.75

0.8

0.85

0.9

0.95

1

60% 70% 80% 90%

R
ec

al
l

Identity

5aa 10aa 15aa 20aa 25aa

0

0.2

0.4

0.6

0.8

1

60% 70% 80% 90%

Pr
ec

is
io
n

Identity

5aa 10aa 15aa 20aa 25aa

Fig. 2  Accuracy assessment of glycan-related gene identification using short read alignments. Accuracy 
indices used in this study are precision (a), recall (b) and false discovery rate (c)
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the combined ratio of both was constantly over 80% in all environments. There are six 
environments with the highest number of GH (Gut, tGut, Rhizosphere, Oil contamina-
tion, Skin, Soil) and six environments with the highest number of GTs (Oral, Sewage, 
Hot spring, Sea, Deep sea, Biofilm). In particular, the relative amount of GT was highest 
in Hot spring, Sea, and Biofilm. Thus, GTs are expected to be important in such aquatic 
feature and biome. From these results, it is possible that the ratio of the functions of 
glycan-related genes differs depending on the environment, and that the functions of the 
assembly of these genes also differ depending on the environment.

In this study, > 90% identity was used as a parameter to identify novel glycan-related 
genes. To examine the extent to which known glycan-related genes in the environment 
were identified, we calculated the percentage of amino acid sequences that completely 
matched the amino acid sequences in the reference database we used (Fig. 3c, Addi-
tional file  2: Table  S5). Sequences that exactly matched the sequences registered in 
dbCAN varied among the metagenomic samples. However, when compared by envi-
ronment, Gut, Skin, and Oral had a large number of exact matches, exceeding 50%, 
whereas Soil had a low number of less than 10%. This suggests that human-related 
environments, such as Gut and Skin, are often well-studied as research subjects, indi-
cating that a large number of CAZymes are registered from these environments.
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Fig. 3  Glycan-related genes identified from environmental metagenome sequences. a Ratio of 
glycan-related genes in each environment. To calculate the ratio, the number of reads mapped to 
glycan-related genes was divided by the total number of reads. b Relative abundance of enzyme classes of 
CAZy in the identified glycan-related genes. GH glycoside hydrolase, GT glycosyltransferase, CE carbohydrate 
esterase, PL polysaccharide lyase, CBM carbohydrate binding module, AA auxiliary activities. c Ratio of 
glycan-related genes perfectly matched with the sequence stored in the dbCAN database. The body of box 
plots in (a) and (c) goes from the first to third quartiles of the distribution and the center line is at the median. 
The abbreviation of the environmental names are Bio biofilm, dSea deep sea, Gut gut, Hot hot spring, Oil oil 
contaminated, Oral oral, Rhi rhizosphere, Sea sea, Swg sewage, Skin skin, Soil soil, tGut tumor gut
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Enrichment of GH and GT family in various environments

Since carbohydrates are a source of energy for many microorganisms, their glycan-
related genes may be adapted to different types and compositions of carbohydrates 
in their environment. Here, we defined Ims as the proportion of metagenomic sam-
ples in the environment in which glycan-related genes for a family have been identi-
fied (see Methods). First, for the GH families, we examined the distribution of each 
family in the environment. We performed clustering analysis in order to classify the 
distribution of GH families in each environment (Fig. 4, Additional file 2: Table S6). 
As a result, we found that there are GH families specific to an environment, and 
therefore, GH families can be classified into several groups depending on the pattern 
of GH distribution. The family of GHs commonly detected in most of the environ-
ments, those in a few environments, and those in between were designated general-
GH, specific-GH, and moderate general-GH, respectively (Fig.  4a). The general-GH 
group contained enzymes such as α-amylase found in many species. However, rare 
sugar hydrolytic enzymes such as xylanase and fucosidase were found in moderate 
general-GH, whereas polysaccharide-degrading enzymes such as glucanase and chi-
tinase were found in specific-GH. Specific and moderate general families showed high 
Ims in the rhizosphere (> 0.6 of Ims), whereas most of the others showed lower values 
in oil contamination samples (< 0.3 of Ims).

Fig. 4  Clustering of the families and distribution of the substrates in GH. a Cells in the heatmap show the Ims 
of GH families (see Methods). b Remarkable family of specific-GH in skin, rhizosphere and sea. This figure is 
an enlargement of (a). c Remarkable family of specific-GH in rhizosphere. This figure is an enlargement of (a). 
d Ratio of the number of families that avail polysaccharide and oligo-saccharide as substrates among all GH 
families. The abbreviation of the environmental names are Bio biofilm, dSea deep sea, Gut gut, Hot hot spring, 
Oil oil contaminated, Oral oral, Rhi rhizosphere, Sea sea, Swg sewage, Skin skin, Soil soil, tGut tumor gut
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As a distinctive family of specific-GH, α-mannosidase (GH47) showed high Ims (> 0.7 
of Ims) in skin, sea, and rhizosphere (Fig. 4b). This is an enzyme that trims high- (oligo-) 
mannose type N-glycans, and it is unique to eukaryotes. Therefore, it was considered to 
be a gene derived from yeast and fungi in the environment [33]. In Rhizosphere, a group 
of GHs showing high Ims, endoglucanase (GH44, GH64, GH152), chitinase (GH48), 
xylosidase (GH54), α-L-arabinofuranosidase (GH62), nigeran digestion enzyme (GH71), 
and α-Amylase (GH119) were found (Fig.  4c). These are polysaccharide-degraders, 
which are thought to originate from species living in the plant-derived polysaccharide-
rich rhizosphere [34, 35].

To investigate role of specific-GHs in each environment, based on the GH family infor-
mation in CAZy, the substrates of each family were classified into polysaccharides, oli-
gosaccharides, disaccharides and monosaccharides. The fraction of polysaccharide and 
oligosaccharide families in specific-GH was 61%, whereas that of general-GH was 44%, 
and moderate-GH was 39% (Fig. 4d, Additional file 2: Table S8). This fraction in the spe-
cific-GH group was significantly higher than in general-GH (p = 0.01, Chi-squared test) 
and moderate-GH (p = 0.03, Chi-squared test). GH is a hydrolytic enzyme, an enzyme 
that builds the metabolic system for energy acquisition mainly through the degradation 
of sugars. This suggests that these enzymes break down polysaccharides specific to each 
environment into small sugars to obtain energy.

Next, we performed clustering analysis in order to classify the distribution of GT fami-
lies in each environment (Fig. 5, Additional file 2: Table S7). Two groups of GT types that 
are specific to each environment were detected based on their pattern of GT distribu-
tion (see Additional file 2: Table S9). The family of GTs commonly detected in 11 envi-
ronments including 170 metagenomes was designated general-GT, and those in specific 
environments were designated specific-GT. A number of GTs such as trehalose phos-
phatase were found in many species in the general-GT group and specific enzymes such 
as mannosyl-transferase in the specific-GT group.

As a characteristic example of specific-GTs, there was a group of inverted Ims pattern 
between gut and oral (Fig. 5b). The species harboring families showing high Ims in Oral 
(> 0.7 of Ims), such as α-L-arabinosyltransferase (GT53), α-D-arabinofuranosyltransferase 
(GT85), α-1,2-mannosyltransferase (GT87), and β-1,2-arabinofuranosyltransferase 
(GT89), were investigated. As a result, it was found that α-L-arabinosyltransferase 
(GT53) is an enzyme widely identified in prokaryotes, while galactane α-D-
arabinofuranosyltransferase (GT85), α-1,2-mannosyltransferase (GT87), and β-1,2-
arabinofuranosyltransferase (GT89) are enzymes identified in Corynebacterium and 
Mycobacterium. These microbial species can indeed be detected in oral and the naso-
pharynx, and the present results support this fact [36–38].

Regarding the five GT families with high Ims in gut (> 0.7 of Ims), α-1,6-l-
fucosyltransferase (GT23), α-glucosyltransferase (GT44), Fuc4NAc transferase (GT56), 
α-1,3-galactosyltransferase (GT77), α-2,6-sialyltransferase (GT80), their species were 
investigated. It was found that α-glucosyltransferase (GT44) was identified in Chlamydia 
and pathogen-Escherichia, Fuc4NAc transferase (GT56) in Salmonella and Klebsiella, 
and α-2,6-sialyltransferase (GT80) in Pasteurellaceae and Citrobacter. In addition, α-1,6-
l-fucosyltransferase (GT23) has been identified in Bacteroides fragilis [39]. More than 
90% of the species in these families registered on CAZy were species known to reside 
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in the gut microbiome. It was reported that GT77 inactivated in the human intestine is 
carried by a group of microorganisms such as Streptococcus and Escherichia [40]. These 
results indicate that the CAZy families of gut and oral with reversed Ims patterns is due 
to the species in the environment.

β-glucosyltransferase (GT21) showed high Ims in rhizosphere (> 0.7 of Ims), sea (> 0.4 
of Ims), sewage (> 0.7 of Ims), and hot spring (> 0.7 of Ims), which is an enzyme involved in 
pullulan synthesis and is known to be possessed by the genus Aspergillus [41]. β-1,4-N-
acetylglucosaminyltransferase (GT17, MGAT3) has been identified in all metagenome 
samples of sea and in species such as Acetobacter and Enterobacter found in the ocean 
[42, 43].

Discussion
For functional metagenomics, it is desirable that databases used for gene annotation 
have sufficiency and little bias. In this study, strict search results showing complete 
homology suggest that many genes registered in CAZy and dbCAN were detected in 
human-related environments. Bias in the human-related environment as reference gene 
sequences used for gene function prediction could lead to missed prediction or mass 
production of hypothetical proteins. If the search is based on exact match only, this bias 
towards gene sequence data from the human-related environment is likely to have a 

Fig. 5  Clustering of the families and distribution of the substrates in GT. a Cells in the heatmap show the 
Ims of GT families (see Methods). b Remarkable family of specific-GT in oral, gut and tumor gut. This figure 
is an enlargement of (a). c Remarkable family of specific-GT in skin, rhizosphere and sea. This figure is an 
enlargement of (a). The abbreviation of the environmental names are Bio biofilm, dSea deep sea, Gut gut, Hot 
hot spring, Oil oil contaminated, Oral oral, Rhi rhizosphere, Sea sea, Swg sewage, Skin skin, Soil soil, tGut tumor 
gut
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significant impact on the search results. However, we did not take this bias into account 
in the present analysis because the search results with the method we developed in this 
study (> 90% identity, > 25 amino acids alignment) showed sufficiently high accuracy in 
searching for homology with glycan-related genes.

For example, the number of glycan-related genes identified in the soil environments 
increased in more samples using our method than in the exact match criterion. An envi-
ronment in which such new genes are often found is very likely to be a candidate envi-
ronment for new gene discovery. In addition, the number of entries in CAZy and dbCAN 
has been increasing every year, and new families of each classification for new reaction 
modes and substrates continue to be established. GH157-161 was newly established in 
2019, and GHs related to that family accounted for an average of 0.26% (0–2.6%) of the 
GHs identified in the present results. Therefore, it is highly possible that novel glycan-
related genes with different substrates and functions could be identified in the soil envi-
ronment, compared with the case of using the reference sequence database before that. 
Thus, it is highly likely that the opportunities for the discovery of novel glycan-related 
genes will increase as CAZy continues to be updated in the future.

The proportion of identified glycan-related genes between the environments showed 
a slight difference in intra-environments, but a large difference in inter-environments 
(see Additional file 1: Fig. S1). In particular, the proportion of the identified genes was 
higher in the human-associated environments, which is consistent with previous studies 
showing that the microbiome in human-associated environments harbor more genes for 
sugar-based metabolic systems (e.g., energy production) [16, 21, 22]. On the other hand, 
deep sea and oil contamination etc. detected a lower proportion of glycan-related genes, 
but in such an oligotrophic environment, there is less opportunity for sugar to be sup-
plied to the environment due to less material circulation. Therefore, it is possible that the 
lower need for glycan-related genes in these environments compared to other genes may 
have led to the adaptation to a lower proportion of glycan-related genes.

Furthermore, the pattern of distribution was divided into two groups, one with a high 
GH content and the other with a high GT content. Surprisingly, the sum of both GHs 
and GTs remained constant at 80%, despite the fact that the ratio of the identified gly-
can-related genes differed between environments. Since the state of sugars may differ 
depending on an environment, gene organization in microbial species could be adapt-
able to substances in the environment. Specific enzymes are considered to play a role 
in the adaptation to the environment. In this study, we explored glycan-related genes, 
but genes related to other substances (organic compounds such as lipids and phosphate 
groups) may also show similar trends. Oil degrading bacteria such as Pseudomonas 
and Rhodococcus exist in the oil environment and can derive their energy from petro-
leum hydrocarbons by enzymes such as alkane hydrogenase [44, 45]. This suggests that 
microbes in the Rhizosphere may derive their energy from sugars, whereas in the oil 
environment they may derive it from oil.

General glycan-related genes for both GH and GT families were widely distributed in 
various environments. When these genes were mapped to "Starch and sucrose metabo-
lism" in the KEGG PATHWAY [46–48], they accounted for 68% of the 76 EC numbers 
on that pathway (see Additional file 2: Table S10). From the mapped genes on the path-
way, a series of metabolisms were linked from Amylose and GlcNAc to Glycolysis via 
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Glucose, Xylose, Arabinose and Mannose. Therefore, general-GH and general-GT could 
play an important role in energy acquisition. In the case of the genes in the specific-GH 
and specific-GT families, no enrichment to certain pathway maps was detected. Thus it 
can be expected that these genes are most likely involved in a specific metabolic pathway 
in each environment, rather than a common pathway across environments.

Among these specific-enzymes, many were enzymes that decompose polysaccharides. 
Certain distinctive specific enzymes were found such as plant-derived polysaccharides 
[49] (chitin, cellulose, lentinan, xylan) in rhizosphere, pullulan and laminaran in sea, and 
dextran and galactomannan in gut and oral [50]. These environment-specific glycans 
could be decomposed into more general glycan components by the specific enzymes in 
each environment. This would allow them to be further decomposed by a more common 
pathway of glycan metabolism. Finally, we surmise that general-enzymes play a role in 
the acquisition of energy from these glycan components (Fig. 6). According to this uni-
versal energy acquisition model, it is possible that environmentally-specific species and 
genes may play a role in regulating sugar metabolism in the environment.

Conclusions
It is important to evaluate the environment of the sample by predicting the function 
from metagenomic reads and inferring phenomena occurring in the sample. Our 
method should play an important role in establishing functional glyco-metagenomics 
to identify glycan-related genes in the environment from metagenomic data and to 
hypothesize the role of sugars by comparing them within and between environments. 
In addition, although we performed our analysis using metagenomic data already reg-
istered in repository databases, our re-analysis was able to illustrate new perspectives 
regarding sugars in the target environment. By applying our methods, we hope to find 
new perspectives and discoveries as we can now reanalyze large amounts of historical 
metagenomic data for comparison in various environments.

Fig. 6  A universal model of the roles of general and specific glyco-enzymes in environments for general and 
specific enzymes
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Methods
Validation of identification glycan‑related genes using sequence alignment

We developed a method for identifying glycan-related genes from nucleotide sequences 
such as short read sequences obtained from NGS using sequence alignment. The micro-
bial genome of 39 genera (see Additional file 2: Table S1) belonging to multiple phyla 
was downloaded from KEGG [46–48]. Since these contained gene annotations, glycan-
related genes could be found by referencing CAZy (http://​www.​cazy.​org). If a detected 
gene was a glycan-related gene, the label “True” was added to the gene data, other-
wise, the label “False” was added. The DNA sequences were cut every 100 bases from 
the 5’ end, and three fragments were randomly selected for each gene. This process was 
performed with our ad hoc ruby scripts. The sequences of these fragments were con-
verted to amino acid sequences using the standard genetic code. Six possible amino acid 
sequences were generated from a single fragment, due to the six frames possible on the 
forward and reverse strands and starting DNA position for each codon. This was used 
as the model dataset for evaluation of our method to identify glycan-related genes from 
metagenomic sequence data. The fragment peptide sequences obtained in these pro-
cesses were generated using GhostX version 2.1 [31].

The 1.38 million amino acid sequences of proteins in FASTA format with respect to 
glycan-related genes were downloaded from the dbCAN meta server (http://​bcb.​unl.​
edu/​dbCAN2/). After deleting approximately 550,000 redundant sequences, the result-
ing database consisted of approximately 830,000 sequences, for the reference data to 
identify glycan-related genes.

The alignments were carried out between all fragment peptide sequences and amino 
acid sequences of the reference database using GhostX. It is expected that in the case of 
glycan-related genes, alignments show high identity and long alignment length. There-
fore, prediction of whether each fragment was a glycan-related gene was performed 
under the conditions of identity thresholds of 60–90% and an alignment length thresh-
old of 5–25 aa using a validation dataset where each fragment is known to be glycan-
related gene. The effectiveness of our prediction method was evaluated by computing 
the precision, recall and false discovery rates which were calculated according to follow-
ing equations:

for each genome.

Acquisition and sequence alignment of metagenomes in various environments

In total, 198 metagenomes were downloaded from the European Nucleotide Archive 
(https://​www.​ebi.​ac.​uk/​ena). Each of these include over two million reads whose lengths 
are over 100 bases. Additional file 2: Table S2 shows the accession numbers, the environ-
ments from which the genomes were taken, and the total number of sequence reads. 
These 198 metagenomes were classified into 12 environments based on the Metagen-
ome/Microbe Environmental Ontology [51]. According to the method described in 

Precision = True Positive/(True Positive + False Positive)

Recall = True Positive/
(

True Positive + FalseNegative
)

FDR = False Positive/(True Positive + False Positive)

http://www.cazy.org
http://bcb.unl.edu/dbCAN2/
http://bcb.unl.edu/dbCAN2/
https://www.ebi.ac.uk/ena
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the previous section, sequence alignment of metagenome reads was performed using 
GhostX.

Identification of glycan‑related genes and organization of gene information

For our 198 metagenomes, the populations of the reads of glycan-related genes against 
the total number of reads were calculated, and the averages and the standard deviations 
of the populations of glycan-related genes in the metagenomes were calculated for each 
of the 12 environments. The relative population of each class of CAZy against the gly-
can-related genes were also calculated.

The identification of glycan-related genes is based on > 90% of identity and > 25 aa of 
alignment length thresholds. This method was used as the optimal condition to search 
for a wide variety of glycan-related genes. However, it is not possible to distinguish 
whether the identified genes by our method are known genes or undiscovered genes. 
Of these identified glycan-related genes, genes showing 100% identity to the reference 
sequences were explored. Since these exact-matched sequences are no different from 
known gene sequences, at least with respect to their target sequence regions, they were 
considered as genes already identified and registered in the public databases. The pro-
cesses in this section to identify glycan-related genes from the GhostX results were per-
formed with our ad hoc ruby scripts.

Comparison of glycan‑related genes for each environment

According to the CAZy functional classification, the glycoside hydrolase (GH) and the 
glycosyltransferase (GT) families, were classified into 166 and 109 families, respec-
tively. The obtained reads of glycan-related genes were thus also classified by fam-
ily. We defined the index of the majority family (Ims) in an environment as the ratio of 
the number of metagenomes with the identified glycan-related genes to the number of 
metagenomes belonging to the environment. Ims indicates how major the family of the 
glycan-related genes is in a given environment. If Ims = 1, it means that all metagenomes 
in the environment have glycan-related genes in the family, whereas Ims = 0 means that 
there are no glycan-related genes in the family. This process was performed using ad hoc 
ruby scripts. In order to visualize this data across each environment and family, Euclid-
ean distances were calculated and hierarchical clustering analysis was carried out using 
the Ward’s method with the pheatmap library (https://​cran.r-​proje​ct.​org/​web/​pachk​
ages/​pheat​map/​index.​html) for R (https://​www.R-​proje​ct.​org/) was used to produce the 
heatmap figure with the default color setting for this clustering.

The families of GHs were also classified according to substrate specificities, which 
are also in the CAZy database. The families of GHs were classified into monosaccha-
rides, disaccharides, oligosaccharides, polysaccharides, peptidoglycan-related, and oth-
ers, based on the substrate information provided by the CAZy database and the more 
detailed descriptions in KEGG COMPOUND [46–48]. In order to analyze the functions 
of the genes in the general-enzyme families, the EC numbers of general-enzyme genes 
were mapped to “Starch and sucrose metabolism” in the KEGG PATHWAY maps, and 
the mapped EC numbers were counted.

https://cran.r-project.org/web/pachkages/pheatmap/index.html
https://cran.r-project.org/web/pachkages/pheatmap/index.html
https://www.R-project.org/
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