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Abstract 

Background:  Sequencing partial 16S rRNA genes is a cost effective method for quan‑
tifying the microbial composition of an environment, such as the human gut. However, 
downstream analysis relies on binning reads into microbial groups by either consider‑
ing each unique sequence as a different microbe, querying a database to get taxo‑
nomic labels from sequences, or clustering similar sequences together. However, these 
approaches do not fully capture evolutionary relationships between microbes, limiting 
the ability to identify differentially abundant groups of microbes between a diseased 
and control cohort. We present sequence-based biomarkers (SBBs), an aggregation 
method that groups and aggregates microbes using single variants and combina‑
tions of variants within their 16S sequences. We compare SBBs against other existing 
aggregation methods (OTU clustering and Microphenoor DiTaxa features) in several 
benchmarking tasks: biomarker discovery via permutation test, biomarker discovery 
via linear discriminant analysis, and phenotype prediction power. We demonstrate the 
SBBs perform on-par or better than the state-of-the-art methods in biomarker discov‑
ery and phenotype prediction.

Results:  On two independent datasets, SBBs identify differentially abundant groups of 
microbes with similar or higher statistical significance than existing methods in both a 
permutation-test-based analysis and using linear discriminant analysis effect size. . By 
grouping microbes by SBB, we can identify several differentially abundant microbial 
groups (FDR <.1) between children with autism and neurotypical controls in a set of 
115 discordant siblings. Porphyromonadaceae, Ruminococcaceae, and an unnamed 
species of Blastocystis were significantly enriched in autism, while Veillonellaceae was 
significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese 
and lean twins, we find several significantly differentially abundant microbial groups 
(FDR<.1). We observed Megasphaera andSutterellaceae highly enriched in obesity, and 
Phocaeicola significantly depleted. SBBs also perform on bar with or better than exist‑
ing aggregation methods as features in a phenotype prediction model, predicting the 
autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an 
ROC-AUC score of .84.
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Conclusions:  SBBs provide a powerful method for aggregating microbes to perform 
differential abundance analysis as well as phenotype prediction. Our source code can 
be freely downloaded from http://​github.​com/​brian​nachr​isman/​16s_​bioma​rkers.
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Background
The human gut microbiome contains as many bacterial, archael, and eukaryotic 
microbes as the number of human cells in the body [1]. These microbes perform 
metabolic functions, protect against pathogens, and engage in cross-talk with several 
human host organ systems, particularly with the immune system and the gut-brain 
axis [2–5]. With the advent of high-throughput next generation sequencing (NGS), 
researchers have turned to sequencing technologies to understand the characteristic 
microbial signatures of various human diseases.

A common goal in such studies is to identify differentially abundant microbes 
between case and control clinical cohorts. 16S rRNA sequencing promises a cost-
effective and computationally tractable way to achieve this. The 16S rRNA gene 
occurs in virtually all bacteria and archaea. It consists of highly conserved regions 
as well as 9 (V1–V9) hypervariable regions. These hypervariable regions (around 
30–300 basepairs long) have evolved fairly vertically and have not changed rRNA 
function, thus serving as good phylogenetic markers. Microbial community profiling 
by 16S sequencing (Fig. 1) involves designing primers to target conserved sequences 
around a hypervariable region of choice, amplifying the region from a mixture of 
diverse genomes, and performing short read sequencing of the amplicons. These 
exact sequencing variants (ESVs) are then preprocessed to remove noise and sequenc-
ing artifacts in order Amplicon Sequence Variants (ASV) [6]. The final output of this 
pipeline is a matrix of read counts for each ASV.

Microbial groups to be tested for differential abundance are typically aggregated 
into groups in one of three ways (1) No aggregation is performed and each unique 
ASV is tested for differential abundance, (2) using classifiers (such as RDP, Kraken, 
METAXA, and Spingo) [7–10]) ESVs or ASVs are matched to a database contain-
ing known sequences and taxonomic classifications (Phylum, Class, Order, Family, 
Genus, Species, Strain), and aggregated over a chosen taxonomic level, or (3) simi-
lar sequences are aggregated together into operational taxonomic units (OTUs) 
(Fig. 1) or sequences with a certain biomarker are aggregated together. Each of these 
approaches has shortcomings, limiting the ability to identify differentially abundant 
microbes in a case versus control dataset.
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Fig. 1  The steps of 16S sequencing (1–5) and traditional differential abundance analysis (6–7)
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Individual ASVs

Using approach (1), high quality sequencing can identify several hundred dis-
tinct ASVs in an individual. Proponents of ASVs argue that low-error rate modern 
sequencing technologies can confidently resolve ASVs down to single nucleotide level 
and that this resolution may be important in identifying disease associated microbes 
[11–13]. However, ASVs can also be specific to household, region, or even sequenc-
ing batch [14], causing a matrix of relative abundance of person-vs-ASV to be very 
sparse and any disease-associated ASVs to have a small effect size. ASV matrices of 
the ocean microbiome samples, animal gut, raw milk cheese, and the human gut had 
sparsities of 90%, 79% 97% and 81%, respectively [15, 16]. To limit the number of mul-
tiple hypotheses being tested, researchers will often throw away ASVs that have low 
prevalence (the percent of samples that contain the ASV), even though they might 
have high abundance within a single sample and thus contains valuable information 
about an individuals’ microbiome composition [17]. Furthermore, is also possible 
for bacteria with different ASVs to be have identical functions in the context of the 
microbiome. An extreme case of this is when a single genome contains several differ-
ent 16S operons [18], and can thus produces multiple different ASVs. Analyzing func-
tionally identical bacteria as individual ASVs can weaken their apparent contribution 
in explaining host phenotype.

Taxonomic category

Approach (2), relies on prokaryotic classification databases, such as the Ribosomal 
Database Project [19], GreenGenes [20], or Silva [21]. Although large-scale efforts are 
being made to expand such databases [22, 23] or develop taxonomic inference and 
imputation methods [24, 25], many databases only contain a fraction of the ASVs pre-
sent in the human microbiome [26] and many taxonomic classifications are legacy 
namings that have not been updated with modern information about phylogenetic or 
functional relationships between microbes [27–29]. Additionally, taxonomy schema 
only have discrete levels (kingdom, phylum, class, order, family, species, and some-
times strain), not taking into account the continuous nature in which prokaryotes 
have evolved.

OTU clusters and K‑mer based groupings

Approaches of type (3) group ASVs or ESVs into aggregate groups either by overall 
sequence similarities (using discrete operational taxonomic units) or by grouping 
together ASVs or ESVs which contain various subsequences. Discrete operational tax-
onomic units (OTUs) are clustered together by sequence similarities, using a variety 
of hierarchical and Bayesian clustering methods [30–32]. This approach has the ben-
efit over using individual read sequences in that clustering may get rid of artifacts in 
individual sequences caused by single nucleotide sequencing errors and batch effects. 
Clustering also does not rely on inherently incomplete databases. However, there is 
an ongoing debate regarding the best percent similarity cutoff to define OTUs (typi-
cally around 97%), and recent research suggests that the cutoff may differ depending 
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on 16S region [33], and specific environment or disease being studied [11]. Moreover, 
OTU clustering algorithms tend to be extremely sensitive to small changes in hyper-
parameters or the structure of the data, and do not generalize well across different 
studies. [34–37]

Recently, grouping 16S sequence together by the presence of subsequences has 
emerged as an alternative to OTU clustering. Developed by the same group, DiTaxa [38] 
and Micropheno [39] are alignment-free approaches that group together microbes by the 
presence of different subsequences , with Micropheno generally having slightly higher 
performance than DiTaxa for most applications [38]. In both benchmarking studies, 
Micropheno outperformed OTU-clustering and DiTaxa in biomarker discovery power 
and host phenotype and environment prediction accuracy. Micropheno and DiTaxa are 
advantageous in that they are alignment-free and reference-free methods and do not 
require the computationally expensive alignment step. However, Micropheno does rely 
on shallow sub-sampling, using only a small subset of samples to a set of marker sub-
sequences. While the authors showed that this subsampling sufficed in several different 
applications, tasks or environments with high sequencing error rates, high metagen-
omic diversity, or signals in low-abundance microbes may pose a challenge for shallow 
subsampling.

Sequence‑based biomarkers

Since 16S sequences serve as evolutionary clocks, we hypothesize that we can group 
ASVs into clades by the presence of specific sequence-based biomarkers (SBBs) within 
the 16S sequence. Rather than using variants in 16S sequences to construct phyloge-
netic trees, which can be an inexact estimation of ancestry, computationally expensive, 
and sensitive to small changes in hyperparameters [40, 41], and then grouping ASVs by 
clades, we directly group ASVs together by polymorphisms in specific loci among the 
16S region, implicitly aggregating 16S sequences from common ancestries. When it 
comes to aggregating microbes into groups, neither taxonomic categories nor OTUs or 
subsequence-based clustering are guaranteed to find the ’sweet spot’ between specificity 
and sensitivity (as shown in the toy example in Fig. 2). By testing for differential abun-
dance over all possible SBBs, we eliminate the possibility that we miss a differentially 
abundant group of microbes by not considering the appropriate aggregation level.

Genus Level

ASV Level

Affected

Unaffected

Critical evolutionary event

Disease-specific clade

Fig. 2  In this toy problem, ASVs are phylogenetically related by the given tree. Black circles correspond to 
ASVs found in the affected cohort and white circles correspond to ASVs in the control cohort. Although 
the there is a disease-specific clade enriched in the affected cohort, we would not necessarily detect this 
differential abundance using traditional analysis. On the ASV level, each ASV is only found in one individual, 
creating too sparse of a person-vs-ASV matrix to detect differential enrichment. Aggregating to the genus 
level, the affected and unaffected cohorts have similar abundance of genus 1 (blue) as well as genus 2 (red), 
and there is no genus-level differential enrichment
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In this study, we show that SBBs perform on par with or outperform OTU 
clustering,Micropheno, and DiTaxa, two other other state-of-the art taxonomy-free 
aggregation methods. We use three different benchmarking tasks: (1) differential abun-
dance using an in-house permutation-based pipeline, (2) biomarker discovery using 
LefSeq, a popular linear-determinant-analysis based method [42], and (3) phenotype 
prediction using random forest classifiers. We analyze the performance of the grouping 
strategies on two different gut microbiome datasets: a dataset of obese and lean twins 
and a dataset of children with autism and their neurotypical siblings.

Results and discussion
Multi‑loci SBBs yield high statistical power in identifying differentially abundant microbial 

groups

Using sequence-based biomarkers, we were able to identify groups of microbes differ-
entially enriched in autism as well as in obesity with high statistical power. From com-
parison between the true and simulated null distributions of differential enrichment test 
statistics, we computed fraction of significant microbial groups versus false discovery 
rate (FDR). We show this in Fig.  3 for each microbial group, aggregated by different 
aggregation methods. We note several important observations.

First, for autism and obesity, SBBs provide high discovery power in identifying differ-
entially enriched groups of microbes (Fig. 3). In using 2- and 3-loci biomarkers under a 
false discovery rate of 0.1, we find 2.5% of microbial significant in autism, and in using 
1- and 2-loci biomarkers, 3.5% of microbial groups were significant in obesity. Note that 
evaluating discovery power based on percent of aggregated groups, rather than number 
of aggregated groups, is a more appropriate comparison because multi-loci SBBs have 
many more possible microbial groupings, and will inherently have larger number of sig-
nificant microbial groups than other aggregation methods. In the autism dataset, many 
grouping methods performed similarly well, including 2-loci and 3-loci SBBS, and in the 
obesity datset, 1- and 2-loci SBBs outperformed all other aggregation methods, identify-
ing nearly twice as many significant groupings as the next best aggregation strategy.

Using LefSeq to identify biomarkers with differential abundance between case and con-
trol, we found that SBBs outperformed OTU clustering in most comparisons (Tables 1, 
2). In both datasets, 2-loci SBBs outperformed OTU clustering and micropheno in terms 

A B

Fig. 3  Biomarker discovery power for different aggregation strategies using a permutation-based test. The 
dotted line signifies a false discovery rate of .1 a FDR curves for biomarker discovery for microbial groups 
differentially enriched in autism. b FDR curves for biomarker discovery for microbial groups differentially 
enriched in obesity
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of median effect size, and in the obesity dataset, 1- 2-loci SBBs had a similarly high sig-
nificant fraction of biomarkers as the best performing method.

Finally, we note that although the autism and obesity datasets used different variable 
regions of the 16S sequence (V4 and V3), and were sequenced at different facilities using 
different sequencing pipelines, SBBs provided a powerful method for differential enrich-
ment analysis for both datasets.

Multi‑loci SBBs can be used as features for phenotype prediction models

Using a random forest classifier, we built host phenotype prediction models using the 
aggregate abundances output by different aggregation methods as features. Several stud-
ies have shown that random forests have high performance in predicting host phenotype 

Table 1  LefSe results for the autism/neurotypical dataset computed for different types of 
biomarkers. In bold are the highest performing results, and results within a standard deviation,  for 
fraction differentially abundant microbes and median effect size

Differential biomarkers in autism identified using LefSe

Biomarker type Fraction differentially abundant Median 
effect 
size

otu95 0.168 0.009

otu97 0.161 0.017

otu99 0.128 0.020

micropheno4 0.237 0.021

micropheno6 0.149 0.014

micropheno8 0.112 0.017

ditaxa 0.129 0.017

sbb1 0.158 0.018

sbb2 0.112 0.023
sbb3 0.098 0.012

Table 2  LefSe results for the lean/obesity dataset computed for different types of biomarkers.  In 
bold are the highest performing results, and results within a standard deviation, for fraction 
differentially abundant microbes and median effect size

Differential biomarkers in obesity identified using LefSe

Biomarker type Fraction differentially abundant Median 
effect 
size

otu95 0.292 0.008

otu97 0.275 0.011

otu99 0.239 0.012

micropheno4 0.222 0.013

micropheno6 0.312 0.008

micropheno8 0.331 0.008

ditaxa 0.356 0.009

sbb1 0.329 0.004

sbb2 0.323 0.013

sbb3 0.260 0.020
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from microbiome data [39, 43–45], and random forests have a high interpretabilty, ease-
of-use, and work robustly with many different types of feature sets. As shown in Fig. 4, 
SBBs perform on par with the state-of-the-art aggregation methods, with 3-loci SBBs 
outperforming all methods in the obesity dataset.

2‑loci SBBs provide good balance between computation time and microbial group 

specificity

While different hyperparameter setting for each aggregation strategy had varying 
performance, 2-SBBs performed on par with or higher than all other aggregation 
strategies on all tasks for both datasets. We hypothesize that for both the V3 region 
used in the obesity dataset, and the V4 region used in the autism dataset 2-loci muta-
tions are enough information to group microbes together in a biologically relevant 
way. However, we note that the, the size of the region, hypermutability of 16S region, 
and number of ASVs in a dataset could influence which order of SBB is appropri-
ate. Related, several analyses have shown that the choice of 16S region influences the 
taxonomic level that OTU clustering-by-similarity corresponds to [36, 46]. Addition-
ally, 2-loci SBBs. However, the pipeline for 3-loci and higher order SBBs is much more 
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Fig. 4  ROC curves and ROC-AUC scores for phenotype prediction using random forest classifiers and 
different aggregation strategy groupings as features. Both ROC and ROC-AUC confidence intervals were 
using a 80%/20% train-test split for 100 iterations. a ROC curves for prediction of the autism phenotype 
using various types of aggregation methods to extract features b ROC curves for prediction of the obesity 
phenotype using various types of aggregation methods to extract features
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computationally expensive since there are several hundred-fold more 3-loci SBBs to 
extract from sequences, and with which to compute abundance and perform a signifi-
cance testing. Given the computational cost of higher order SBBs, and the advantage 
of not having to do hyperparameter tuning, we propose that 2-loci SBBs as the stand-
ard selection for SBB feature extraction.

SBBs implicate known disease‑associated microbes in autism and obesity

Although we pruned biomarkers in complete LD, multiple biomarkers can still cor-
respond to similar sets of ASVs. For each dataset, we performed hierarchical cluster-
ing (using a hamming distance) on the binary matrix of ASV-vs-biomarkers to identify 
conserved sets of bacteria that contain many of the significant SBBs. From Fig.  5, we 
highlight several conserved groups of bacteria. We then query these sequences from a 
taxonomic database for validation.

In autism, groups consisting primarily Ruminococcaceae and Porphyromonadaceae 
families were enriched in the autism cohort, and Veillonellaceae underenriched in the 
autism cohort. This is in agreement with a previous studies [47], which found Rumino-
coccaceae enriched in children with autism and gastrointestinal disturbances, and Veil-
lonellaceae underenriched in children with autism [48]. Porphyromonadaceae has been 
linked to major depressive disorder, suggesting a role for it in the gut-brain axis [49].

Using SBBs, we found groups consisting of Megasphaera and Sutterellaceae enriched 
and groups consisting primarily of Phocaeicola and under-enriched in obesity. The 
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Fig. 5  a Hierarchical clustering of the most significant FDR<.1) biomarkers vs the ASVs that contain them 
identifies several distinct clusters of microbes differentially enriched in autism. b–e An example of differential 
enrichment of a randomly chosen biomarker from within each group: b Group 1 consists of primarily of 
Ruminococcaceae, enriched in children with autism. c Also enriched in autism, group 2 consists of many 
members of the Porphyromonadaceae family. d Group 3 consists of primarily of unclassified Blastocystis. 
e Group 4 consists of consists of primarily members from the Veillonellaceae family, and is underenriched 
in autism. f Hierarchical clustering of the most significant (FDR<.1) biomarkers vs the ASVs that contain 
them identifies several distinct clusters of microbes differentially enriched in obesity. Although the SBBs 
differentially enriched in obesity do not cluster into as discrete groups of ASVs as in the ASD study, we point 
out several possible clusters. g–I An example of differential abundance of a randomly chosen biomarker from 
within each group. g Group 1 consists of primarily Megasphaera, enriched in the obese cohort. h Group 2 
consists of primarily Phocaeicola, enriched in the obese cohort. i Group 3 consists of primarily Sutterellaceae, 
enriched in the lean cohort
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original authors of the obesity dataset [50] also found Megasphaera to be enriched, 
using taxonomic aggregation methods. Other studies have found that Sutterellaceae is 
enriched in obesity [51], and Phoecaeicola fluctuates with diet [52]. Thus, SBB groupings 
capture similar biological relationships as taxonomic aggregation or OTU clustering, 
without the burdens of relying on an external database or algorithms highly dependent 
on hyperparameters and datasets.

SBBs implicate Blastocystis, a phylogenetically challenging microbe, in autism

Despite the strong differential abundance and prevalence between children with autism 
and controls observed in our study, Blastocystis has not previously been implicated in 
autism or neurodevelopmental conditions. Although Blastocystis is a protozoan rather 
than a prokaryote, it contains an 18S rRNA that is amplified by 16S sequencing prim-
ers [53]. Consequently, Blastocystis 18S sequences are very distant from prokaryotic 
16S sequences, and may be thrown out in microbial analysis in an attempt to reduce 
non-16S contamination [54]. Furthermore, reads from Blastocystis are challenging to 
aggregate taxonomically: Blastocystis does not exist in the GreenGenes or Silva 16S 
databases (in our annotation pipeline, the most specific taxonomic annotation for such 
a sequence was the bacteria kingdom, which is not even correct; NCBI BLAST verified 
these sequences belonged to Blastocystis) so cannot be aggregated by taxonomy; like-
wise subtypes of Blastocystis are not genetically similar enough to each other to be put in 
the same group via OTU clustering with the standard similarity cutoffs ( 97% sequence 
similarity). However, using SBBs we clearly identified conserved bases in the amplified 
region of Blastocystis that allowed us to group them together concretely enough to iden-
tify a group of differentially enriched Blastocystis in autism.

Blastocystis are a physiologically intriguing microbe. Contradicting studies have iden-
tified Blastocystis as commensal microbes in the healthy human gut and as as dangerous 
pathogens [55, 56]. Interestingly, one hypothesis proposed that increased Blastocystis 
infections arising from increased travel, interaction with livestock, and sewage pollution, 
may be a primary cause for the rise in autism incidence in Europe and North America 
[57]. It should be noted that this hypothesis is purely speculative, and even from our 
results, the direction of causality is unclear. However, given the strong differential preva-
lence and abundance of Blastocystis in autism in our results, future autism microbiome 
studies should consider including Blastocystis in their analysis.

Conclusions
We have demonstrated that using sequence-based biomarkers to group together 16S 
sequences is a powerful aggregation method. Grouping microbes by SBBs involves very 
little hyperparameter tuning and does not rely on reference databases. In addition to 
identifying differentially enriched microbial groups with low false discovery rates, SBBs 
aggregate 16S sequences into biologically relevant groups that both capture the same 
differentially enriched microbes as traditional aggregation methods, but also into novel 
groups of microbes with high statistical significance and biological relevance.

While we conclude that SBBs are a powerful aggregation method, we note that 
they cannot infer causal microbiome compositions linked to either autism or obesity. 
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However, we hope that our preliminary results on differential microbial enrichment, 
especially in autism, will pave the way for future analyses on the relationship between 
the gut microbiome and complex disease.

The success of our method has several additional implications for microbiome analy-
ses. First, we have shown that 16S sequencing can yield powerful results. 16S sequencing 
is affordable and computationally easy to work with compared to whole metagenomic 
sequencing. Although 16S sequencing has been criticized for not yielding valuable 
insights, and many studies jump directly in metagenomic sequencing, we illustrate 
that preliminary analysis can and should be done on 16S sequencing before spending 
time and resources on metagenomics. Additionally, despite the growing popularity of 
shotgun metagenomics, the generation of raw 16S data continues to outpace shotgun 
metagenomics, making 16S data a valuable data type for microbiome research. Accord-
ing to Pubmed, in 2019 170 articles with associated 16S microbiome datasets were pub-
lished, compared to 54 articles with associated metagenomics datasets [58].

Additionally, a common step in many gut microbiome preprocessing pipelines is to 
discard the least prevalent ASVs. Prevalence is defined as the mean number of samples 
(persons) in which an ASV was present. However, even if an ASV has a low prevalence, 
it may still be very abundant in the samples that it is present in, meaning that it yields 
important information about gut microbiome on a sample level. Our method does not 
discard these valuable data, and is able to still gain insight from low prevalence, high 
abundance ASVs, as they get aggregated over biomarkers. Finally, the only parameters 
used in our method were the choice of MSA algorithm (for which our choice, the aligner 
from the RDP set of tools [19], yielded powerful results) and the number of variant com-
binations that went into the biomarker. This further highlights the power and robustness 
of this method. Our results using SBBs pave a new avenue for harnessing the power of 
16S sequencing to understand microbial signatures of complex human disease.

Methods
Data collection and preprocessing

Paired autism and neurotypical siblings

Stool samples were collected at home from 115 pairs of children with autism and their 
neurotypical siblings. Stool biospecimens were placed in transfer buffer and shipped at 
ambient temperature then placed in freezer upon arrival at Second Genome (Brisbane, 
CA) in all cases within 3 days of collection. DNA was extracted with the PowerMag� 
Microbiome RNA/DNA Isolation kit (Qiagen, Carlsbad, CA) and the ZR-96 DNA 
Clean-up kit (Zymo, Irvine, CA). The V4 variable region of the 16S rRNA gene sequence 
was PCR-amplified using fusion primers designed against the conserved regions and 
tailed with Illumina adapters and indexing barcodes, and sequenced using the MiSeq� 
for 250 cycles as described in (citation XYX). Raw sequence reads were processed with 
DADA2 applying default settings for filtering, learning errors, dereplication, ASV infer-
ence, and chimera removal [59].
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Obese lean twins dataset

We apply our methodology to a published dataset that sought to identify differentially 
abundant microbes in obese patients [50]. This landmark study used 16S sequencing tar-
geting the V3 region of 196 obese and 61 lean individuals. We accessed the pre-pro-
cessed fastq files via QIITA, an online database of public microbiome studies [60, 61].

Normalization

In order to test if a particular ASV or group of ASVs is enriched in a diseased cohort, we 
use the following procedure.

Normalize read count of each ASV a in person p, Ca,p to relative abundance Ra,p using 
Eq. 1:

Relative abundance is a commonly used normalization procedure in microbiome stud-
ies. Because 16S count data is compositional, normalizing by relative abundance might 
invalidate certain downstream analyses, such as measurements of alpha and beta diver-
sity, using statistical metrics that assume equal variance or errors across groups, and 
multiple hypotheses corrections that assume independence between relative abun-
dances of different microbes [62, 63]. However, our downstream conservative testing 
procedure relies on non-parametric statistics and permutation tests, and any possible 
biases or inaccuracies using normalization will be thus accounted for in the permuted 
null distribution [64].

General aggregation strategy

If aggregating ASVs into groups, for person p and group G , we sum the relative abun-
dance of each ASV belonging to group G in order to get the total relative abundance of 
each group for each person. For Micropheno-grouped biomarkers, we tested k-mers of 
length 4, 6, and 8. For DiTaxa-grouped biomarkers, we used the default settings: a cor-
pus size of 50,000 subsequences with no subsampling.

Aggregating by sequence‑based biomarker

In order to aggregate 16S sequences into groups by SBBs, we perform a multi-step algo-
rithm where we (1) perform multiple sequence alignment, (2) compute the presence of 
each SBB in each ASV, (3) remove SBBs in linkage disequilibrium, and (4) aggregate rela-
tive abundance of microbes across each SBB.

First (1), we perform multiple sequence alignment using all the sequences in a dataset. 
We chose RDP’s 16S alignment tool to perform MSA on the 16S sequences. RDP’s align-
ment tool, one of the most commonly used alignment methods, uses an infernal aligner 

(1)Ra,p =

Ca,p∑
a
Ca,p

(2)R
′

G,p =

∑

a∈G

Ra,p
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that uses covariance models to align structurally similar RNA sequences, such as the 16S 
region [65].

Next (2), we compute the presence of each sequence-based biomarker in 16S sequence. 
For single-loci variants, we use the presence of a base (A, T, C, G) at a position along 
the aligned sequence as a biomarker. If an ASV contained an A at (post-MSA) position 
1, C at position 2, and G at position 3 then it would contain the biomarkers 1A, 2C, 
and 3G. We hypothesized that it was possible single-loci biomarkers would not provide 
enough granularity (approximately a quarter of microbes should contain a given base at 
each position, and thus will get grouped together). Thus, we created biomarkers from 
combinations of single variants, with the aim of achieving smaller and more granular 
groupings of bacteria. We tried combinations of 2 and 3 variants. ASV containing A at 
position 1, C at position 2, and G at position 3 would contain the biomarkers 1A/2C, 
1A/2C, and 2C/2G (if looking at combinations of 2 loci) and 1A/2C/3G (if looking at 
combinations of 3 loci).

The output of this step is a binary na by nb matrix, BN where na is the number of ASVs 
and nb is the number of total possible biomarkers across all ASVs. BN

a,b corresponds to 
whether or not ASV a contains N-loci-combination biomarker b. We show the workflow 
of this step in Fig. 6.

It is possible for biomarkers to be in complete linkage disequilibrium (LD) with each 
other and thus contain redundant information. For example, if every 16S sequence that 
has the biomarker 1C/2A also contains the biomarker 5C/8G, then the two biomarkers 
would be in LD. In step (3), we perform LD-pruning on the set of biomarkers before per-
forming differential abundance testing.

Finally (4), we compute relative abundance of each SBB by aggregating the relative 
abundance of sequences containing the SBB, similar to how we aggregated across taxo-
nomic category.

Multiple Sequence Alignment

       ASV-biomarker matrix.

ASV1 A A A A G G T G
ASV2 A A - G G C T C
ASV3 A T - A G G - G
ASV4 A G A A G C A A 1A 1

2A 1
3A 1
4A 1
5A 0
... ...

1A 2A 3A 4A 5A
1A 1 1 1 1 0
2A 1 1 1 1 0
3A 1 1 1 1 0
4A 1 1 1 1 0
5A 0 0 0 0 0
...

1A 2A 3A 4A 5A ...
ASV1 1 1 1 1 0
ASV2 1 1 0 0 0
ASV3 1 0 0 0 0
ASV4 1 0 1 1 0

Convert to sparse matrix format.

1A/2A 1A/3A 1A/4A 1A/5A... 2A/3A … 
ASV1 1 1 1 0 1
ASV2 1 1 1 0 1
ASV3 0 0 0 0 0
ASV4 0 1 1 0 0

Compute biomarkers for each ASV.

X  [1 1 1 1 0…] =

ASV1:

Fig. 6  Extracting an ASV-biomarker matrix can be visualized as a sparse-matrix multiplication problem: 
Starting from multiple sequence alignment, we format the MSA into a one-hot-encoding representation of 
ASVs versus variants. For each ASV, we compute the presence of multi-loci biomarkers by taking the square 
product (for 2-loci biomarkers), or cube (for 3-loci biomarkers) of the ASV’s row in the ASV-variant matrix in 
order to compute a ASV-vs-biomarker sparse matrix B . We can then multiply this with person-vs-ASV relative 
abundance matrix R to compute relative abundance matrix of person-vs-biomarker R′
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Biomarker discovery

Permutation‑based false discovery rate

After aggregating across ASV (either by SBB or taxonomic ranking as described above), 
for each microbial group, we derive an FDR using a non-parametric statistical tests com-
paring the distributions of the case and control groups.

For paired data, such as in the autism-neurotypical sibling study we compute test 
statistics using the Wilcoxon rank sum test, a non-parametric test for paired data. For 
unpaired data, such as the lean and obese dataset (although the dataset contains twins, 
they are concordant for the obesity phenotype), we compute a test statistic using the 
Mann-U-Whitney test, a non-parametric test for unpaired data. Computing these test 
statistics for each microbial group is an embarrassingly parallel operation and we paral-
lelize this across multiple cores.

We used a permutation test to compute false discovery rate to determine test statistic 
cutoff for multiple hypothesis correction. Since for 2-loci and 3-loci SBBs, there can be 
over 100,000 possible microbial groups to test differential abundance for, a Bonferonni 
correction limits the capacity to detect true positives. Moreover, because an ASV can 
fall into multiple groupings using SBBs, and individual ASVs may even be correlated, a 
permutation test allows us to control the family-wise error rate with a null distribution 
that simulates the non-independence between microbial groups. Additionally, a null dis-
tribution via permutation test allows us to control for the relationship between related 
individuals in either study. We permuted each dataset as follows: for each iteration, we 
shuffled the case and control labels for the dataset. For the autism dataset, for each per-
mutation we either changed both or neither of the phenotypes for each case-control 
pair. For the obesity dataset, we kept phenotype concordance across siblings constant, 
as well as the number of case and control labels. We performed 100,000 iterations, and 
computed the FDR for differential abundance of each microbe or group, and used this to 
simulate a null distribution and subsequently control FDR.

Biomarker discovery via linear determinant analysis effect size (LefSe)

Using the sample-vs-abundance matrix of each type of aggregation strategy,we used the 
standard LefSe [42] pipeline to identify biomarkers with significantly different abun-
dances between case and control. Because LefSe is not optimized to run on hundreds of 
thousands of features, which is the order of magnitude of the SBB-2 and SBB-3 matri-
ces, we subset each feature matrix to the top 1000 features with the highest variance. 
The reduced the number of features tested for both the SBB-aggregated matrices and the 
Micropheno-aggregated and DiTaxa-aggregated matrices. We used the default param-
eters for the LefSe to build the LefSe input data and to perform linear determinant effect 
size analysis.

Phenotype prediction model

To predict phenotype from 16S features, we built random forest classifier using scikit-
learn. We used the default parameters and 100 forests. To compute confidence intervals 
for our ROC curves and AUC scores, we performed the following pipeline 100 times: 
We split each dataset into 80% training data and %20 testing data, trained the random 



Page 14 of 16Chrisman et al. BMC Bioinformatics          (2021) 22:509 

forest classifier on the training dataset and then predicted on the test dataset. From the 
output prediction probabilities we computed false and true positive rates, and the value 
for ROC-AUC value. We then used the set of 100 values to compute the medians and 
confidence intervals (1 standard deviation out) for the ROC curve and the AUC scores.
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