
Identifying piRNA targets on mRNAs in C. 
elegans using a deep multi‑head attention 
network
Tzu‑Hsien Yang1, Sheng‑Cian Shiue2, Kuan‑Yu Chen2, Yan‑Yuan Tseng3 and Wei‑Sheng Wu2* 

Abstract 

Background:  Piwi-interacting RNAs (piRNAs) are the small non-coding RNAs (ncR‑
NAs) that silence genomic transposable elements. And researchers found out that 
piRNA also regulates various endogenous transcripts. However, there is no systematic 
understanding of the piRNA binding patterns and how piRNA targets genes. While vari‑
ous prediction methods have been developed for other similar ncRNAs (e.g., miRNAs), 
piRNA holds distinctive characteristics and requires its own computational model for 
binding target prediction.

Results:  Recently, transcriptome-wide piRNA binding events in C. elegans were 
probed by PRG-1 CLASH experiments. Based on the probed piRNA-messenger RNAs 
(mRNAs) binding pairs, in this research, we devised the first deep learning architecture 
based on multi-head attention to computationally identify piRNA targeting mRNA sites. 
In the devised deep network, the given piRNA and mRNA segment sequences are first 
one-hot encoded and undergo a combined operation of convolution and squeezing-
extraction to unravel motif patterns. And we incorporate a novel multi-head attention 
sub-network to extract the hidden piRNA binding rules that can simulate the biological 
piRNA target recognition process. Finally, the true piRNA–mRNA binding pairs are iden‑
tified by a deep fully connected sub-network. Our model obtains a supreme discrimi‑
natory power of AUC = 93.3% on an independent test set and successfully extracts 
the verified binding pattern of a synthetic piRNA. These results demonstrated that the 
devised model achieves high prediction performance and suggests testable potential 
biological piRNA binding rules.

Conclusions:  In this research, we developed the first deep learning method to 
identify piRNA targeting sites on C. elegans mRNAs. And the developed deep learning 
method is demonstrated to be of high accuracy and can provide biological insights 
into piRNA–mRNA binding patterns. The piRNA binding target identification network 
can be downloaded from http://​cosbi2.​ee.​ncku.​edu.​tw/​data_​downl​oad/​piRNA_​
mRNA_​bindi​ng.
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Background
Piwi-interacting RNAs (piRNAs) are small non-coding RNA molecules found in animals 
that help protect genome integrity by silencing transposons [1]. Studies reported that 
they could silence numerous transposable elements through the interaction with the 
PIWI-clade Argonautes [2]. Since then, numerous piRNAs produced in animal genomes 
are recognized. However, most known piRNAs do not match transposon sequences, 
from nematodes to mice [3, 4]. These results suggest the existence of additional piRNA 
targets and functions in cells. For example, researchers have found that piRNAs can 
target and regulate various endogenous mRNAs in mouse sperm production and in fly 
early embryo mRNA localization [5, 6]. Hence, understanding how piRNAs bind and 
regulate the expression of their mRNA targets is an imminent issue in animal gene tran-
scriptional control.

While numerous efforts have been made to understand the binding targets of micro-
RNAs (miRNAs), which is another primary class of small RNAs in cells, there are only 
few known results on the piRNA target sites. And the understanding of miRNA-mRNA 
interactions does not reasonably apply for piRNA since piRNA has its distinguishing 
characteristics: (1) piRNAs do not show any conservation signals in their primary nor 
secondary structures [7]; (2) piRNAs bind to Piwi-clade Argonautes while miRNAs work 
with Ago-clade Argonautes [8]; (3) piRNAs have different biogenesis mechanisms that 
do not depend on Dicer [9]. Recently, the piRNA targeting rules in C. elegans was refined 
by a piRNA reporter assay [10]. The results showed that piRNAs require near-perfect 
matching within a 2–7 nt-long seed region. However, unlike miRNAs, only a few mis-
matches outside the seed region can be found in piRNA targeting mRNA sites, and the 
first base does not get involved in piRNA targeting. These newly discovered phenome-
nons confirm the need for developing independent piRNA target investigation methods. 
Nevertheless, there is still no systematic way to assess the transcriptome-wide piRNA 
targeting sites due to the current limited understanding of the piRNA–mRNA binding 
mechanisms.

In silico methods can provide a first-hand understanding of how piRNAs target and 
silence endogenous genes other than transposons in cells [11]. A computational model 
that helps infer the potential regulatory functions and the binding mechanisms can 
be utilized to transcriptome-widely screen out possible binding target sites of piRNAs 
[12–14]. However, to our knowledge, there is only one such tool that helps computation-
ally identify piRNA targets on mRNAs till now. In [15], an SVM method that relies on 
hand-crafted, position-derived, and Miwi CLIP-seq (cross-linking immunoprecipitation 
coupled with deep sequencing) derived features were developed for extracting piRNA 
targets in mouse mRNAs. Nevertheless, the manually crafted piRNA and mRNA fea-
tures restrict the generalization of the methods to other animal species. Furthermore, 
in such machine learning-based algorithms, the generation of confident experimentally 
verified negative sets highly affects the false-positive rates of the trained models. The 
existing SVM-based method was trained on a small dataset with mutant expression-
inferred negative samples instead of verified negative pairs. These properties may lead to 
high false positives and hinder the model application to other animal species.

In this research, the first deep learning framework for piRNA targeting mRNA 
site prediction was designed to overcome the aforementioned obstacles. We first 
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automatically generated the motif features for the given piRNA sequences and mRNA 
segments using the convolutional filtering and squeezing-and-excitation blocks. And a 
novel multi-head attention sub-network is incorporated into the deep learning network 
architecture to extract piRNA binding rules that can simulate the cellular piRNA bind-
ing pattern recognition. These recognized binding patterns are then fed into a fully con-
nected classification sub-network to distinguish real piRNA binding mRNA sites from 
random piRNA–mRNA pairs. To elude the false positive trap caused by unverified lower 
quality negative sets, we adopted the experimentally validated positive sets from the 
cross-linking, ligation, and sequencing of hybrids (CLASH) identified piRNA–mRNA 
binding signals and devised a novel procedure to obtain a confident validated negative 
set. Under random training/validation/test splits on the positive and the negative sets 
from the wild-type CLASH data, the devised network obtained a test AUC (area under 
the curve) of 95.7% and demonstrated good generalization from the validation stage to 
unknown test samples. We further showed that the multi-head attention incorporated 
in this network could boost the network performance to bring out 6.7% (93.3–86.6%) 
AUC improvement over the pure convolutional neural network (CNN) model on an 
independent CSR-1 depletion CLASH test set. Finally, we demonstrated the biological 
interpretability of our devised model via piRNA–mRNA pairs that were fully experi-
mentally explored. The examples indicated that our model could convey cellular mech-
anisms through the incorporated novel multi-head attention operation. The devised 
network not only provides superior piRNA–mRNA binding event prediction but also 
suggests potential biological piRNA binding mechanisms. We believe that the devised 
deep learning network can help biologists discover unknown piRNA targeting mRNA 
sites and pave the way for understanding piRNA-induced gene silencing.

Results
Overview of the deep learning piRNA binding target identification process

In this research, we designed a novel deep neural network architecture that automati-
cally generates significant motif patterns that can help identify piRNA–mRNA bind-
ing interactions. It is now known that piRNAs bear special motif preferences, such 
as perfect match seed regions [10]. Hence it is beneficial to consider piRNA and its 
targeting mRNA segments simultaneously in understanding piRNA binding mecha-
nisms. A novel mechanism based on multi-head attention techniques was incorpo-
rated into the devised network to achieve the piRNA binding preference recognition. 
The developed network takes a piRNA sequence and a potential targeting mRNA 
sequence segment as inputs and provides the results showing if the piRNA binds to 
the mRNA segment and potentially triggers transcriptional silencing. The devised 
network can be roughly divided into three sub-networks: the motif feature extraction 
sub-network, the multi-head attentive binding recognition sub-network, and the clas-
sification sub-network (see Fig. 1). Before input into the devised network, the piRNA 
and mRNA segment sequences are converted into matrices using nucleotide one-hot 
encoding. These one-hot encoded sequence matrices are then fed into the motif fea-
ture extraction sub-network to automatically extract substantial motif features from 
the sequence pattern (Fig. 1-Part I). The multi-head attention operation then aligns 
these piRNA and mRNA motif features (Fig.  1-Part II). In the multi-head attentive 
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binding recognition sub-network, the multi-head attention operation simulates the 
binding recognition process for the piRNA–mRNA pair. Finally, the attentive vec-
tor of the piRNA–mRNA pairing is forwarded into the classification sub-network for 
piRNA binding target identification (Fig. 1-Part III). The detailed information of these 
three sub-networks is described in the “The devised deep learning piRNA binding 
target identification network” subsection. And the network structure is summarized 
in Table 1.

Since the model prediction performance largely depends on the quality of the data-
set preparation step, we collected the comprehensive wild-type C. elegans CLASH 
dataset from the work of Shen et al. [16] and further designed preprocessing steps to 

Fig. 1  The overview of the devised deep multi-head attention network for identifying piRNA–mRNA binding 
events. The network can be divided into three different parts. First, the site-by-site motif features of the given 
piRNA and mRNA segment are extracted by convolution and squeezing-excitation operations. Then the 
piRNA binding rules are mimicked by the multi-head attention operation. Finally, the piRNA binding mRNA 
targets are identified using the attentive feature vectors. The pair (x, y) in the graph indicates the dimension 
of the operation output matrix
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obtain the verified piRNA–mRNA positive binding set and verified negative piRNA–
mRNA non-associated pair set. Currently, comprehensive CLASH experiments were 
only performed in C. elegans. Hence the worm species is selected to be used in this 
research. The wild-type piRNA–mRNA binding positive and negative sets can be 
downloaded from the URL indicated in the “Availability of data and materials” sec-
tion. The preprocessing steps of the verified positive and negative sets are depicted in 
the following sub-sections (see Fig. 2).

The piRNA–mRNA positive binding set

The positive set includes the real in vivo probed mRNA targets of known piRNAs. Chi-
meras sequenced from the CLASH experiments provide evidence for the interaction 
between piRNAs and their mRNA targets. First, we obtained the chimeric sequences 
with a perfect match of part of their segments to some known piRNA sequence (anno-
tated by WormBase [17] WS275.PRJNA13758) using bowtie [18]. Then the remain-
ing segment of a chimera (excluding the piRNA matching sequence) is regarded as the 
mRNA target of the matched piRNA [19]. We aligned the identified mRNA targets back 
to the C. elegans transcriptome (WormBase version WS275.PRJNA13758) using bowtie 
with default parameters. The center site of the mapped start and end transcript loca-
tions of the mRNA segment was denoted as the measured piRNA target site. Due to the 
RNase treatment in the CLASH protocols, the chimeras may suffer from RNA degrada-
tion. To recover the potential RNA degradation, 15 bps were extended upstream and 
downstream of the target site to be the final targeting mRNA segment. Since chimeras 

Table 1  The devised piRNA–mRNA binding deep learning network structure

conv represents the 1D convolution operation, SE stands for squeezing-and-excitation operation, FC is abbreviated for fully 
connected, PReLU is the Parametric Rectified Linear Unit, and capital letters are used to denote the output matrix results

Sub-Networks piRNA feature mRNA feature

I: Motif feature extraction sub-network Conv (size = 5) * 128 Conv (size = 5) * 128

Batch-normalization Batch-normalization

PReLU PReLU

SE block (P) SE block (M)

II: Multi-head attentive binding recognition 
sub-network

16-head attention layer (output: H)

Add Residual (K = H+M)

Layer-normalization

FC layer (hidden layer size = 128*4)

PReLU

FC layer (hidden layer size = 128) (L)

Add Residual (K+L)

Layer-normalization

III: Classification sub-network Flatten

FC layer (hidden layer size = 32*31)

Batch-normalization

PReLU

FC layer (hidden layer size = 8*31)

Batch-normalization

PReLU

Softmax layer
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can be formed from random RNA ligations in CLASH-seq, we restricted the identified 
real rigorous piRNA–mRNA pairs to satisfy the following criteria (see Fig. 2a): (1) The 
read counts of the candidate chimeras should be at least 7. CLASH protocols often con-
tain certain levels of background random ligated noise pairs. Hence, a minimum chi-
mera read count threshold should be set up to eliminate the background random hybrid 
chimeras [20]. As shown in the read count distribution (Fig.  3a), chimera reads with 
read-count values less than 7 form frequency spikes and thus can not be easily distin-
guished from the background random hybrids. Therefore, a minimum read count of 7 
was selected to exclude these possible random hybrids. (2) The remaining sequence of 
a chimera, excluding the piRNA matching sequence, should be at least 14 bps. Because 
hybrid ligation of short RNA fragments in CLASH protocols is limited [21], we need to 
enforce the minimum length of the remaining sequences, or the piRNA-bound mRNA 
segments, to ensure biologically meaningful pairs. From the length distribution of the 
remaining sequences (see Fig. 3b), 14 was decided since the mode value of the remain-
ing sequence lengths happens around 14. The strict selection of 14 for the remaining 
sequence threshold can both remove most nonsense short hybrid ligated pairs and retain 

Fig. 2  Steps for the positive and the negative piRNA–mRNA pairs preparation. a Rules for identifying real 
piRNA targeting mRNA sites. b Procedures to prepare the confident piRNA–mRNA non-associated pairs
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sufficient data for subsequent analysis. (3) There is no mismatch between the remaining 
sequence of a chimera with the aligned transcript segment. (4) When the binding tar-
get sequence of a specific piRNA is found multiple times among different mRNA tran-
script isoforms or within the same transcript, this piRNA–mRNA sequence pair is not 
included in the positive set to avoid adding a latent weight to this pair in the model train-
ing process. (5) The binding energy (calculated by RNAup [22]) between the piRNA and 
its targeting mRNA segment should be less than zero. By using the above five rigorous 
rules, a confident piRNA–mRNA binding positive pair set was formed. In total, 60,438 
positive piRNA–mRNA binding pairs for 9397 confident targeting mRNA segments of 
7126 known piRNAs were found using these rigorous rules.

The piRNA–mRNA negative pair set

We sought to gather the piRNA–mRNA pairs that do not form binding interactions 
in cells to build a confident negative set. For that purpose, a searching procedure was 
designed in this research to obtain a verified negative piRNA–mRNA random pair 
set (see Fig.  2b). The negative set includes the complementary pairs that are not in a 
loose piRNA–mRNA binding pair set (LBS). To obtain a strict negative dataset, LBS is 

Fig. 3  The basic sequencing information of the wild-type CLASH dataset. a The read count distribution of 
the raw chimera reads. b The distribution of the lengths of the remaining sequences, or the sequences that 
were probed to potentially hybridize with some piRNA



Page 8 of 23Yang et al. BMC Bioinformatics          (2021) 22:503 

required to be collected using loose filtering rules. First, the LBS was collected by the 
similar procedure of collecting the positive set, but with the following loose filtering 
rules: (1) the read counts of the candidate chimeras are larger than zero; (2) the remain-
ing sequence of a chimera, excluding the piRNA matching sequence, is at least 7 bps; 
(3) 1 mismatch is allowed for the alignment of the remaining sequence of a chimera 
and the mRNA transcript. In the above three loose filtering rules, we allowed all pos-
sible observed chimera reads to be analyzed for encompassing as many potential week 
binding pairs as possible by setting the chimera read count threshold to be zero. Since 
hybrid ligation between two short RNA fragments is usually prohibited and biased in the 
CLASH protocols [21], we still took the relaxed remaining sequence length threshold of 
7 (upper bound of the first bin, see Fig. 3b) to exclude the pure sequencing signal noises. 
We also relaxed the mismatch parameters in the alignment of the remaining sequences 
and the mRNA transcripts to include more possible week binding pairs. The threshold of 
one mismatch was selected to avoid the intensive computation caused by the data explo-
sion when two mismatches were allowed in the bowtie alignment step. Although some 
non-binding piRNA–mRNA segment noise pairs may be included in LBS, the selected 
complementary pair that are not in LBS (i.e., the piRNA–mRNA negative pair) will thus 
be more strict and confident.

Based on the LBS, we obtained a negative candidate set ( NCSi ) for each of the known 
piRNA i included in the positive set using Eq. 1:

where U denotes the set of all transcripts in C. elegans and (i, x) represents the loosely 
coupled piRNA i and target mRNA x. In this second step of the procedure, the known 
piRNAs refer to the 7126 piRNAs contained in the positive set. This restriction ensures 
that both binding and non-binding information for piRNA i is included in the ground 
truth data. Third, we randomly picked a known piRNA p and sampled a sequence of 
length 31 bps from some mRNA in NCSp . And finally, the selected piRNA–mRNA ran-
dom associated pair is included in the negative set if (1) this pair is not aligned to any 
sequences of the positive set with maximum 2 mismatches and (2) the binding energy 
(calculated by RNAup [22]) between the piRNA and the randomly chosen mRNA seg-
ment should be less than zero to eliminate the trivial cases that the piRNA and mRNA 
cannot be physically paired. In total, 60,438 confident non-functional piRNA and mRNA 
segment associations were found using this negative set searching procedure.

Model hyper‑parameters and evaluation

We split the constructed positive and negative sets from the wild-type CLASH data into 
training/validation/test folds with a item ratio of 8:1:1 for 30 times. In the designed net-
work, the model hyper-parameters were selected using the average performance of the 
split validation sets among the 30 iterations. The final best-chosen hyperparameters used 
in this research are the following: (1) Optimizer: Adam; (2) learning rate: 0.001 (3) learn-
ing scheduler: reduce-on-plateau, patience 5, factor 0.1, minimum learning rate 1e−6; 
(4) batch size: 512; (5) training epoch: 60, no early stopping; (6) activation function: par-
ametric rectified linear unit; (7) dropout rate: 0.3 for dropout layers after the squeez-
ing-and-excitation (SE) block and within the multi-head attentive binding recognition 

(1)NCSi = U − {x|(i, x) ∈ LBS},
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sub-network; 0.75 for dropout layers in the classification sub-network. Models of differ-
ent structures were trained with Pytorch on NVIDIA RTX 2080 Ti GPUs.

The discriminatory power of the devised network is evaluated by calculating the per-
centage of correctly identified piRNA targeting mRNA sites and the percentage of cor-
rectly eliminated randomly associated piRNA–mRNA pairs. We can measure the model 
performance through metrics defined in the following equations [23]:

where TP represents the number of correctly identified piRNA targeting mRNAs, FP 
counts the number of random paired piRNA–mRNA sequences that were mistakenly 
recognized as piRNA target sites, TN reveals the number of random piRNA–mRNA 
pairs successfully ruled out by the method, and FN shows the number of overlooked 
piRNA target mRNA sites. The performance information can be summarized through 
the receiver operating characteristic (ROC) curve [24]. The ROC curve is a visualiza-
tion graph that plots (1 − specificity) versus sensitivity when the decision boundary is 
moved. The better the discriminatory power of the evaluated model is, the more upper-
left the resulting ROC curve is, indicating that the model can have high sensitivity even 
if the false positive rate (FPR, Eq. 5) is controlled to be low. FPR is defined as follows:

The ROC curve property can be summarized by the area-under-curve (AUC) metric. 
The higher AUC is, the better prediction performance the model can achieve.

Performance of the devised deep learning network in piRNA binding target identification

In the standard model learning theory, a prediction model is trained on a training set 
and the hyperparameters that best suit the model are selected on a different validation 
set. And in the last, the performance of the trained model is evaluated on an untouched 
test set. In this research, we applied the ten-fold random splitting techniques to the 
gathered positive and the negative wild-type CLASH-identified piRNA–mRNA pairs. 
We randomly split the positive and negative sets into ten folds for 30 times. Random-
ness is enforced and confirmed in each of 10 fold splitting to avoid biased performance 
evaluation. In Fig. 4a, the distributions of the number of occurrences of each piRNA–
mRNA pair found in the training/validation/test sets are summarized. Among the 30 
repeated random splits of positive and negative sets, on average every piRNA–mRNA 
pair were selected to be included in the training/validation/test sets for 24/3/3 times, 
reflecting the 8:1:1 random splitting. Hence the randomness of the training/validation/
test splits for the 30 runs is ensured. In each time of splitting, eight folds of the datasets 

(2)Sensitivity (recall) =
TP

TP+ FN
, Specificity =

TN

TN + FP

(3)Accuracy =
TP+ TN

TP+ FP+ FN + TN

(4)Precision =
TP

TP+ FP
, F1 = 2 ∗

precision ∗ recall
precision + recall

,

(5)1− Specificity =
FP

TN + FP
= FPR
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were used as the training set, one fold was used as the validation set, and the last fold 
was adopted as the test evaluation set. We repeated the training process for the 30 splits 
and obtained the average ROC curves for the validation sets and test sets. The learning 
curve of the devised model can be checked in Fig. 4b, and the ROC curve results can be 
found in Fig. 4c. In the learning curve, the training epochs and validation epochs both 
converge to their prediction accuracy plateaus, showing model convergence on param-
eters and hyperparameters. Further, the gap between the training and validation curves 
is substantially small, showing that the hyperparameters do not lead to over-fitting or 
under-fitting. The final average performance achievements of the devised model on the 

Fig. 4  The performance evaluation of the devised network on the wild-type CLASH dataset. The solid green/
orange/blue line represents the mean results on the training/validation/test sets in the 30 split runs. And 
the colored dashed line depicts the variation of the results in the 30 split runs. a The randomness of the 30 
ten-fold splits was ensured by the average 24/3/3 selected times of each pair to be used in the training/
validation/test sets. b Learning curves for our devised model. c The ROC curve comparison of the validation 
results and the test results of the devised model
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test sets are as follows: precision = 0.886, recall = 0.899, and F1 = 0.891. And as shown 
in Fig. 4c, the average test AUC result (AUC = 95.7%) is similar to the average valida-
tion result (AUC = 95.8%), and the average ROC curve on the validation sets closely 
track the ROC curve on the test sets. The AUC and ROC comparison indicated that the 
hyperparameters were optimally selected in the validation sets and the model perfor-
mance generalizes well to unknown piRNA–mRNA test pairs. These results prove that 
the devised model is well-trained and can distinguish true piRNA targeting mRNA sites 
from random piRNA–mRNA pairs.

The attention sub‑network improves piRNA binding target identification

In this research, the designed deep learning architecture utilizes the multi-head atten-
tion operation to assay the site-by-site motif patterns of the mRNA segments that match 
some piRNA sequence binding rule. We compared the devised method to the pure con-
volutional neural network (CNN) model. The pure CNN model was built based on the 
same network architecture but with the multi-head attention operation removed. We 
first trained both models to converge (Fig. 5a) and selected the optimal hyperparameters 
through the validation sets of the 30 random split runs. The evaluation results of both 
models were then computed and presented in a ROC curve plot (see Fig. 5b). The learn-
ing curve in Fig. 5a ensured that the training process of the pure CNN model was also 

Fig. 5  The performance comparison of the devised model and the pure CNN model on the wild-type CLASH 
ground truth split runs. a Learning curves for the pure CNN model. b The comparison between the devised 
network and the pure CNN model on the test sets in the 30 random split runs. The blue line and red line 
represent the average results of the devised network and the pure CNN model, respectively. And the colored 
dashed line describes the variation for the models in the 30 split runs
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well and fairly performed. And from the ROC curve results, the devised model that uti-
lizes multi-head attention demonstrated 6.1% (95.7–89.6%, p value = 2.87e−11∗ by the 
one-tailed rank-sum test) AUC improvement over the pure CNN model on the test runs. 
The one-tailed rank-sum test calculates the p value against the null hypothesis that the 
median AUC value of the devised model equals that of the pure CNN model on the 30 
test runs. Other performance metric comparisons between the devised method and the 
pure CNN model on the test runs split from the wild-type CLASH data can be found in 
Table 2. Overall, the designed multi-head attention operation that concurrently matches 
the site-by-site motif patterns between piRNA and mRNA sequences can significantly 
boost the power of distinguishing actual piRNA–mRNA binding sites from random 
association pairs.

The devised deep learning network can be generalized to other independent conditions

We evaluated the devised deep learning network on another independent test set of 
piRNA targeting mRNA sites. Transcriptome-wide CLASH experiments immunopre-
cipitated on C. elegans PIWI Argonaute PRG-1 were recently performed [16]. In the 
work of Shen et  al., they performed both the wild-type CLASH experiments and the 
CSR-1 depleted CLASH experiments. As described in the “Methods and Datasets” sec-
tion, we have merged the two replicates of the wild-type CLASH runs and used them 
for model training, validation, and preliminary test. We further collected the CSR-1 
depleted CLASH runs as an independent test set for model performance and generaliza-
tion evaluation. Biologists have found out that in young adult worms CSR-1 functions 
upstream of PRG-1 and piRNA targeting. The protein CSR-1 prevents piRNA binding 
and protects its mRNA targets from piRNA/PRG1 induced gene silencing [25, 26]. This 
finding implies that some of the piRNA targeting mRNA binding sites can be occupied 
by the CSR-1 protein and remains undetected in the wild-type datasets. Thus, when 
CSR-1 depletion is introduced to the cells, the number of probed unique piRNA tar-
geting mRNA sites can be found to significantly increase and some of extra unknown 
piRNA–mRNA binding sites can be observed [16]. These additional unobserved 
piRNA–mRNA binding sites serve to be a candidate independent test set for piRNA–
mRNA binding site prediction algorithms.

We merged the two CSR-1 depleted CLASH experimental replicates as an independ-
ent dataset. The same procedures for preparing the wild-type positive and negative sets 
were applied on this independent data. But the piRNA–mRNA binding pairs that were 
also observed in the wild-type ground truth datasets were removed from the positive set 
of this independent data. This extra guard guaranteed that the independent positive test 
set contains no easy case and can help assess the model performance generalization in 

Table 2  The performance summary for the devised network and the pure CNN model on the wild-
type randomly split test sets

*indicates that the devised model outperformed the pure CNN model statistically significantly ( α = 0.05) using the one-
tailed rank-sum test

Algorithm model F1 Precision Recall

The devised network 0.891* ± 0.003 0.886* ± 0.006 0.899* ± 0.006

The pure CNN model 0.816 ± 0.003 0.805 ± 0.006 0.828 ± 0.005
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an unbiased way. We further checked if any of the piRNA targeting mRNA sites in the 
CSR-1 depleted samples were accidentally included in the negative set generated from 
the wild-type CLASH runs. No binding pairs observed in CSR-1 depleted CLASH exper-
iments were included in the negative set generated from the wild-type PRG-1 CLASH 
experiments. This observation ensures that the model was not mistakenly trained on 
false-negative samples. Finally, to collect the independent test set for model evaluation, 
we randomly chose 10,000 piRNA–mRNA pairs from the CSR-1 depleted CLASH posi-
tive set as the independent positive set and picked 10,000 random piRNA–mRNA pairs 
from the CSR-1 depleted CLASH negative set as the independent negative set.

We evaluated the performance of the devised network in this independent test set to 
see if it can be generalized to identify those extra positive piRNA targeting mRNA sites 
that are usually non-observable in the original CLASH runs of wild-type cells. In this 
independent test, we assumed that the piRNA binding rules remain unchanged when 
CSR-1 is deleted [16]. The devised method obtained an AUC of 93.3% in this independ-
ent test set (F1 = 0.857, precision = 0.887, recall = 0.830. See Fig. 6a), indicating that 
our algorithm can successfully extract true piRNA binding targets from genome regions. 
And the pure CNN model attained lower performance of AUC = 86.6% in this inde-
pendent test set (F1 = 0.776, precision = 0.794, recall = 0.758). Compared with the pure 
CNN model built without the multi-head attention operation, the devised multi-head 
attentive deep network acquired 6.7% (93.3–86.6%, Fig. 6b) improvement in AUC on the 

Fig. 6  The performance comparison of the devised network and the pure CNN model on the CSR-1 
depleted CLASH piRNA–mRNA independent test set. a The precision, recall, and F1 value summary of model 
performance on the independent test set. b The ROC results on the independent piRNA–mRNA test set. The 
blue line represents the result of the devised network, and the red line shows the result of the pure CNN 
model
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independent test set. The independent test comparison results confirm that the way we 
designed the model by site-by-site probing the binding rules between piRNA and mRNA 
sequences through multi-head attention is vital for identifying genomic piRNA targeting 
mRNA binding sites.

Discussions
The multi‑head attention operation can reveal testable piRNA binding rules

In this research, we have incorporated a multi-head attention operation for piRNA–
mRNA binding motif pattern probing to boost the network performance. It is long 
blamed that deep learning provides merely a black box modeling that is hard to be 
interpreted. Yet these models have been proven to help extract novel patterns from 
the data [27]. It is worthy of further investigation of the devised model to understand 
the logic and details of the deep learning network. In the devised network, the multi-
head attention operation is designed to mimic the real piRNA binding rules that can 
be observed in C. elegans. The attention vector designed to be used in Part II of the 
model (multi-head attentive binding recognition sub-network) can be interpreted as the 
binding preference of the given piRNA for its targeting mRNA sequences. We take a 
synthetic C. elegans piRNA with sequence 5’-UGU​UUC​AUA​UGA​UCU​GGG​UAU and 
its target mRNA T10B11.2 and T26A5.2 as our examples. In the devised network, the 
synthetic piRNA and these two transcripts are identified as true piRNA binding events. 
The attention vector between the piRNA and its targeting mRNA segment of T10B11.2 
and T26A5.2 are visualized in Fig. 7a. As revealed by the attention weight matrix, high 
weight values were identified on two consensus regions: the 2nd–8th bps and the 15th–
19th bps. The higher weight values on these locations indicated extra importance on the 
piRNA binding features and mRNA motif features considered in these sites. And these 
sites positively determine the piRNA–mRNA binding events and form the latent piRNA 
binding rules. In previous researches, this binding rule for the synthetic piRNA has been 
experimentally inferred and verified [10, 16]. That is, the devised model can identify the 
real cellular piRNA binding rules and provide testable hypotheses. In contrast to positive 
piRNA–mRNA binding events, the randomly paired piRNA and the mRNA segment 
convey random mosaic signals in the attention weight matrix (see Fig. 7b). These ran-
dom mosaic signals make the classification sub-network in the devised network elimi-
nate the random pair. These examples show that our model not only provides superior 
identification performance but also extracts the hidden biological piRNA binding prefer-
ence in cells. These rules can suggest piRNA functional mechanism hypotheses for fur-
ther subsequent experiments.

The devised deep learning model outperforms simple baseline score methods

In the previous section, we have demonstrated that the multi-head attention operation 
can reveal testable piRNA binding rules in cells. We next show that straightforward 
search on only one pattern and other nucleotide statistics of mRNAs are not powerful 
enough to find all real piRNA–mRNA binding pairs. Researchers have developed a pat-
tern search tool called pirScan [11] for rule-based piRNA binding target identification in 
C. elegans. In pirScan, the two regions (seed region 2–7 nts and non-seed region 8–21 
nts) of piRNAs are used as the binding patterns to scan through the given mRNA for 
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identifying piRNA–mRNA binding events. A final piRNA targeting score is computed 
by pirScan for the piRNA–mRNA pair based on the GU and non-GU mismatches in the 
seed and non-seed regions. We compared the devised model with the results of pirScan 
to demonstrate the improvement of the devised deep learning model. We also computed 
18 primary mRNA whole-sequence statistical features proposed by previous studies as 

Fig. 7  Visualization of the binding rules mined out by the multi-head attention operation. a The attention 
weight matrix visualization for a synthetic piRNA 5’-UGU​UUC​AUA​UGA​UCU​GGG​UAU and its targeting mRNA 
T10B11.2 and T26A5.2. For cellular piRNA–mRNA binding events, some piRNA binding rule is satisfied. In this 
case, two seed regions (verified in [10]) are observed. b For randomly assigned piRNA–mRNA segment pair, 
no binding rule can be found in the attention weight matrix visualization
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the piRNA–mRNA binding classification baselines: the CG contents of the mRNA frag-
ments, the nucleotide compositions of the mRNAs, k-mer (k = 2, 3, 4) tandem repeats 
of the mRNAs (features proposed by [15]), and the piRNA–mRNA binding energy cal-
culated by RNAup [22]. These nucleotide statistics convey the basic information of the 
overall sequence composition. We utilized the ROC curve technique to compare the 
AUC value of the devised model with the results of pirScan and these 18 baseline sta-
tistical scores on the CSR-1 depleted CLASH independent test set. As shown in Fig. 8a, 
the devised multi-head attention model (AUC = 93.3%) outperforms pirScan (AUC = 
77.3%), revealing that pattern search using limited rules can obtain only a fraction of 
true piRNA–mRNA binding pairs. And the devised model also shows better perfor-
mance than the RNAup energy score (AUC = 86.7%) and achieves at least 35% better 
AUC results than the 17 basic nucleotide composition scores. Similar to parts of the fea-
ture-based model proposed by Yuan et al. [15], we further trained a multi-layer percep-
tron (MLP) model based on binding energy and these 17 nucleotide composition feature 
scores to confirm the effect of the combination of these features. The hyperparameters 
of the feature-based MLP model were selected using 5-fold cross-validation and random 
search approaches [28] on the wild-type CLASH dataset (Best model: 3 layers with 128, 
128, and 128 nodes, respectively. Dropout = 0.1. Learning rate = 0.00026). From the 
ROC curves shown in Fig. 8b, the MLP model based on these 18 features (AUC = 87.5%) 
is still 5.8% lower than the devised model (93.3%) in the AUC performance on the CSR-1 
depleted CLASH independent test set. Hence, the devised deep end-to-end attention 
model can capture more decent site-by-site binding rules and better identify piRNA–
mRNA binding pairs than these baseline features.

The attention mechanism is robust against the lengths of candidate mRNA segment 

sequences

In the protocol of CLASH experiments, the cell samples were treated with RNase to 
trim the RNA sequences that were not bound by the C. elegans PIWI Argonaute PRG-1. 
Due to RNase treatment, RNA sequences around PRG-1 might be potentially degraded, 
causing the vague identification of piRNA targeting mRNA sequence segments. Our 
devised network used the center sites of the mapped start and end transcript locations 
of a given mRNA segment as the piRNA target site. And to recover the RNA degrada-
tion, 15 bps (l = 15) were extended upstream and downstream of the center site to form 
the final binding mRNA sequences. To evaluate the impact of the extended degradation 
recovering sequence length (l), we further tested if the model performance varies with 
the recovering length. We trained the model on l = 10, 15, 20 with total mRNA sequence 
lengths of 21 bps, 31 bps (the default chosen model), and 41 bps. Then we evaluated 
the model performance of the devised deep multi-head attention architecture with 
different extended degradation recovering lengths (l = 10, 15, 20) on both the 30 split 
test sets and the CSR-1 depletion independent test set. The learning curve technique 
ensured training convergence and optimal hyperparameter selection of models for dif-
ferent mRNA sequence input lengths (see Fig. 9a). The training convergence and the gap 
between training and validation episodes were controlled by selected best hyperparam-
eters for each architecture with different l’s. On the wild-type CLASH ground truth data 
split test runs, the architecture of l = 10 (mRNA length 21 bps) showed slightly lower 
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AUC performance (AUC = 93.9%) than the other two architectures. And the perfor-
mance of model architectures with l = 15 (mRNA length 31 bps, AUC = 95.7%) and 
with l = 20 (mRNA length 41 bps, AUC = 95.8%) resembled each other (see Fig. 9b). 
Furthermore, the AUC/F1/precision/recall results on the CSR-1 depletion independent 
test set are collected in Fig. 9c. Similar performance was observed between the model 

Fig. 8  The comparison of the devised model with some baseline score methods on the CSR-1 depleted 
independent test set. a The AUC values of the devised deep learning model, the pure CNN model, RNAup, 
pirScan, and other 17 baseline composition score methods. A%/U%/C%/G% stand for the nucleotide 
composition of A/U/C/G, respectively. AUC = 50% represents the random guess performance. b The ROC 
curves of the devised model, the pure CNN model, pirScan, RNAup, and the feature-based MLP model based 
on binding energy and the 17 nucleotide score features
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architectures with l = 15 (AUC = 93.3%) and with l = 20 (AUC = 93.5%). And slightly 
performance degradation in AUC (AUC = 92.4%) was found in the model architecture 
with l = 10. The F1 comparison for different degradation length l also showed around 
1% degradation in the model architecture with l = 10 and is comparable between the 
model architectures with l = 15 and with l = 20. The slight performance deterioration 
of the mRNA length of 21 bps (l = 10) resulted from the incomplete recovery from 
the RNase treatment effect. These results conclude that the length of 31 base pairs for 
mRNA sequences can successfully overcome the RNA degradation problem resulted 
from RNase treatment and was selected to be used in our devised model. Moreover, our 
model is robust against the extended degradation recovering sequence length l as long as 
sufficient lengths of mRNA sequence segments are considered.

Conclusions
In this research, we developed the first deep learning architecture to identify piRNA 
targeting sites on C. elegans mRNAs. Besides motif extraction using convolution and 
squeezing-extraction operation, we also designed a multi-head attention sub-network 
that helps extract the piRNA binding rules to identify viable piRNA target sequences. 
Using the technique of random repeated 8:1:1 training/validation/test set splitting, we 
optimized the devised deep network via the training folds and tuned the hyperparame-
ters on the validation folds. A preliminary performance evaluation was conducted on the 
test folds. We repeated 30 runs of random training/validation/test splits and showed that 
on average the optimized novel deep network generalizes well from validation folds to 
test folds and can achieve supreme average test performance of AUC = 95.7%. Then we 
showed that the designed multi-head attention sub-network could provide an additional 
performance improvement over the pure CNN network structure. We also collected an 
independent test set from the CSR-1 depletion CLASH experiments. Our model made 

Fig. 9  The devised deep learning network is robust against different extended mRNA lengths (l). We trained 
the devised model architecture against different mRNA lengths (21/31/41 bps) on the ground truth dataset 
and tested them on the independent test set. The input of different mRNA lengths does not affect the 
performance of the devised model. a Learning curves for the model with l = 10, 15, 20 (corresponding to 
mRNA sequence length of 21 bps, 31 bps, and 41 bps). b The ROC comparison of models with different l 
on the 30 split test sets from the wild-type CLASH data. c The ROC curve and performance comparison of 
models with different l on the independent test set
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a performance accomplishment of AUC = 93.3% on this independent set and outper-
formed the pure CNN model over 6.7%. In the last, we showed that a verified binding 
rule of a synthetic piRNA can be automatically extracted by our model and fit well with 
the experimental observations. These results demonstrated that the devised model not 
only has high piRNA–mRNA identification performance but can also suggest testable 
biological piRNA binding rules for future research. The piRNA–mRNA binding identifi-
cation deep learning network will be further extended to different animal species when 
more comprehensive CLASH datasets in these species are available.

Methods and datasets
Wild‑type CLASH piRNA target site dataset

The cross-linking, ligation, and sequencing of hybrids (CLASH) technique has been 
developed and used to probe in  vivo RNA-RNA interactions [20, 29]. Through chi-
meric molecules formed between small RNA and its mRNA targets, the binding events 
between them are assayed. And by sequencing the chimeric molecules, the mRNA target 
sites of piRNAs can be identified. In a recent study, transcriptome-wide CLASH experi-
ments for measuring the interactions between piRNAs and their targeting mRNAs were 
performed on the C. elegans PIWI Argonaute PRG-1 [16]. We merged the two wild-type 
CLASH experimental replicates gathered from [16] as the ground truth CLASH data for 
training and validation of our model. By using these CLASH identified chimeras, in vivo 
piRNA–mRNA binding events can be extracted. Based on these binding events, we con-
structed a positive set that contains real rigorous piRNA–mRNA binding pairs and a 
carefully prepared negative set consisting of verified random-associated piRNA–mRNA 
pairs. A strict data preparation procedure for identifying experimentally verified random 
piRNA–mRNA association pairs was designed and followed to obtain the confident neg-
ative set. The overall steps for preparing the positive and the negative piRNA–mRNA 
pairs are summarized in Fig.  2 and elucidated in the “Overview of the deep learning 
piRNA binding identification process” section.

The devised deep learning piRNA binding target identification network

The designed deep learning network for piRNA–mRNA binding identification can be 
divided into three sub-networks: the motif feature extraction sub-network, the multi-
head attentive binding recognition sub-network, and the classification sub-network (see 
Fig. 1). And the network structure is summarized in Table 1.

Part I: motif feature extraction sub‑network

The devised deep network takes a piRNA sequence and the potential target mRNA 
sequence segment as its inputs. First, the given piRNA and mRNA segment sequences 
are transformed into one-hot encoding for the four nucleotides (A, U, G, C). The trans-
formation results in a 21 by 4 encoding vector for the given piRNA sequence and a 31 
by 4 encoding vector for the corresponding mRNA sequence segment. Each vector is 
then fed into an individual convolution operation followed by one extra squeezing-and-
excitation block (SE block, see Fig. 1-Part I). The convolution operator described in Eq. 6 
serves to extract significant sequence motifs from the two encoding vectors:
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In Eq. 6, E is the 21 by 4 feature vector for the piRNA or the 31 by 4 feature vector for the 
mRNA segment from one piRNA–mRNA pair, Cn(j) is the jth element of the output vec-
tor Cn , ⊛ represents the 1D convolution operator, Kn is the nth 1 by (2m+ 1) kernel filter 
with depth 4, r iterates through the four ribonucleotides, and q loops over the kernel 
window. SE blocks described by Eq. 7 are added to further apply layer weighting to the 
extracted patterns from the previous convolution layer [30]:

where Elen is the length of the input sequence (21 for piRNA sequences and 31 for mRNA 
sequences), s is a 1 by 128 squeezing vector, WS,1/WS,2 are the trainable weight parameter 
matrices with a reduction factor of 4, a1 is the ReLU activation function, a2 is the sigmoid 
activation function, and ◦ is the Hadamard product between two matrices. This excita-
tion operation can help the network to focus on more expressive motif patterns identi-
fied from the features of the piRNA sequence and the mRNA sequence segment. Detail 
hyperparameters of the convolution layers and the SE blocks are summarized in Table 1-
Part I. After the motif feature extraction sub-network, the given piRNA sequence and 
the mRNA sequence segment are transformed into two pattern feature matrices for the 
next stage of the multi-head attentive binding recognition sub-network. We denote the 
resulting feature matrix F as P for piRNA and as M for the mRNA sequence segment in 
the following subsections.

Part II: multi‑head attentive binding recognition sub‑network

To simultaneously consider the binding features of the given piRNA sequence and the 
motif features of the given mRNA sequence segments, we designed a multi-head atten-
tion sub-network to recognize piRNA binding rules. The attention operation was first 
proposed in natural language processing to help the neural machines focus on the rela-
tive importance of words in a sentence to every other word [31]. Following this concept, 
we designed a site-by-site multi-head attention operation for calculating the binding 
motif dominance in the given piRNA–mRNA pair. The extracted feature at site i of the 
mRNA sequence segment is attended with each of the site features of the given piRNA 
sequence as in Eq. 8:

where Ht is the tth attended result matrix, P is the extracted motif feature matrix for 
the given piRNA, M is the extracted motif feature matrix for the given mRNA sequence 
segment, d is the sequence length of piRNA (21 in this research), and WQ,t/WK ,t/WV ,t 
are the trainable multi-head dimension transformation weight parameter matrices. The 
attention operation in Eq. 8 computes the dominance importance of the binding feature 
of every site of the given piRNA sequence to site i in the mRNA sequence. Then the 

(6)Cn = E ⊛ Kn, where Cn(j) =
j+m
∑

q=j−m

4
∑

r=1

Kn(q − j+m + 1, r) ∗ E(q, r)
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dominance importance values of mRNA site i to every piRNA site motif feature are used 
as the attention weighting to sum over the piRNA motif features for estimating piRNA 
binding affinity. This operation is repeated for every site of the 31 nts in the mRNA 
sequence segment. To allow diverse motif feature consideration, we further added the 
multi-head techniques to the site-by-site attention operation. Diverse attention opera-
tions are parallelly incorporated in the network to consider different representation 
spaces of the piRNA–mRNA binding features. The designed multi-head attention opera-
tion is shown in Eq. 9:

where ⊕ is the concatenation operation that lines up the vectors, WH is the trainable 
weight parameter matrix that summarizes the attended motifs from different heads, and 
H is the final multi-head attention vector.

A residual feed-forward fully connected layer is added to facilitate the training pro-
cess. In addition to normal fully connected multi-layers, the input vector of the fully 
connected layer is forwarded to be summed up with the output of the fully connected 
layer (Eq. 10).

where H is the multi-head attention vector, a(.) represents the activation function (in 
which PReLU is used), and WR,1/WR,2 are the trainable weight parameter matrices in the 
fully connected sub-layers. Following this residual network construct, the model can 
converge more easily in the training process and thus provide extra performance boost 
[32]. Dropout and layer normalization were added after the multi-head attention layer 
and within the residual feed-forward fully connected layer to enhance the model perfor-
mance. The detailed sub-network architecture can be found in Table 1-Part II.

Part III: classification sub‑network

In the last part of the network, the attentive feature vectors of the piRNA and its poten-
tial targeting mRNA segments generated by the multi-head attention network are used 
for identifying real piRNA silencing targets. In this classification sub-network, two layers 
of fully connected neural nets (Eq. 11) are stacked to mapped the attentive features into 
a feature-separable high dimensional space wherein functional piRNA–mRNA cellular 
binding events and randomly matched pairs are distinguishable:

where p is the final probability that the piRNA binds to the given mRNA sequence seg-
ment, Rflatten is the flattened 1 by (31 * 128) vector of R, a(.) represents the activation 
function (in which PReLU is used), softmax(.) is the operation that turns a vector into a 
probability mass distribution, and WC ,1/WC ,2 are the trainable parameter matrices. Drop-
out and batch-norm layers were added to each fully connected neural layer to boost the 
model performance and generalization for unseen data. We summarized the structure of 
the binding classification sub-network in Table 1-Part III. After the binding classification 
sub-network, the binding event of the given piRNA to the mRNA segments is identified.

(9)H = (H1 ⊕H2 ⊕ . . .⊕Hk)W
T
H ,

(10)K = H +M, R = a(a(KWT
R,1)W

T
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(11)p = softmax(a(a(RflattenW
T
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T
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