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Abstract 

Background:  Protein-RNA interactions play key roles in many processes regulating 
gene expression. To understand the underlying binding preference, ultraviolet cross-
linking and immunoprecipitation (CLIP)-based methods have been used to identify 
the binding sites for hundreds of RNA-binding proteins (RBPs) in vivo. Using these 
large-scale experimental data to infer RNA binding preference and predict missing 
binding sites has become a great challenge. Some existing deep-learning models have 
demonstrated high prediction accuracy for individual RBPs. However, it remains dif-
ficult to avoid significant bias due to the experimental protocol. The DeepRiPe method 
was recently developed to solve this problem via introducing multi-task or multi-label 
learning into this field. However, this method has not reached an ideal level of predic-
tion power due to the weak neural network architecture.

Results:  Compared to the DeepRiPe approach, our Multi-resBind method demon-
strated substantial improvements using the same large-scale PAR-CLIP dataset with 
respect to an increase in the area under the receiver operating characteristic curve 
and average precision. We conducted extensive experiments to evaluate the impact 
of various types of input data on the final prediction accuracy. The same approach was 
used to evaluate the effect of loss functions. Finally, a modified integrated gradient was 
employed to generate attribution maps. The patterns disentangled from relative contri-
butions according to context offer biological insights into the underlying mechanism 
of protein-RNA interactions.

Conclusions:  Here, we propose Multi-resBind as a new multi-label deep-learning 
approach to infer protein-RNA binding preferences and predict novel interactions. The 
results clearly demonstrate that Multi-resBind is a promising tool to predict unknown 
binding sites in vivo and gain biology insights into why the neural network makes a 
given prediction.
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Background
RNA-binding proteins (RBPs) regulate gene expression through specific protein-RNA 
interactions that play key roles in various post-transcriptional gene regulation processes 
[1, 2]. RBPs interact with RNAs and regulate their functions via one or several RNA-
binding domains (RBDs). The canonical functional domains include the RNA recogni-
tion motif [3], K homology [3], C3H1 zinc finger [4], and Piwi/Argonaute/Zwille domain 
[5]. The RNA specificity is considered to be largely determined by the sequence of a 
given RBP or RBD, as well as the structural context [6].

RNAcompete is a microarray-based high-throughput method for in vitro RBP bind-
ing preference determination [7], in which purified epitope-tagged RBPs of interest are 
used to screen RNA sequences of 38–41 nucleotides from a designed RNA pool. In the 
pool, sampling without replacement occurs at least 16 times among all possible combi-
nations of 9-mers. The bound RNAs are then identified through hybridization with DNA 
strands, resulting in the relative affinity of a specific RBP against more than 240,000 
short RNAs. RNAcompete-2013, a benchmark dataset for RBP prediction, expanded the 
number of RBPs to 244 across many RBP families [8]. The combined ultraviolet cross-
linking and immunoprecipitation with sequencing (CLIP-seq) method was developed 
to measure genome-wide protein-RNA interactions in different cellular environments 
[9–12]. CLIP-seq and its variants usually provide a large number of target sites through 
reads mapping. However, owing to the high level of noise or non-specific background, it 
is often difficult to find specific binding motifs using these data. In particular, RNase T1 
enzyme-inducing sequence bias is a common limitation in many CLIP-seq experiments 
[13].

Although these advanced experimental methods (RNAcompete and CLIP-seq) have 
made it possible to use computational approaches to predict protein-RNA interactions, 
they require sifting through huge amounts of potential binding sites. The prediction 
problem can be defined as determining the binding preference of a given RBP from a 
large number of short or long RNA sequences. Initially, the binding specificity of a given 
RBP is defined as a motif discovery problem using only the sequence information. Tradi-
tional prediction methods include a position weight matrix (PWM) and hidden Markov 
models such as MEME [14] and MatrixREDUCE [15]. MEMERIS [16] was the first com-
putational tool developed to predict binding sites by integrating RNA accessibility infor-
mation. Moreover, RNAcontext [17] and RCK [18] were developed to extend the RNA 
structural profile from simply paired or unpaired to five structural annotations as fol-
lows: paired, hairpin, inner, multi, and external (i.e., PHIME). GraphProt [19] utilizes a 
graph kernel to extract binding preferences based on structure information, which was 
successfully applied to in vivo CLIP-seq datasets.

As the first application of deep learning for the prediction of protein-nucleic acid 
interactions, DeepBind [20] surpassed the state-of-the-art model (PWM/k-mer) across 
a wide collection of datasets both in vitro using protein binding microarrays and in vivo 
using chromatin immunoprecipitation-sequencing data. Two convolutional neural net-
work (CNN)-based methods, cDeepBind [21] and DLPRB [22], were also developed, 
which integrate RNA structure annotations (PHIME) into the model, and exhibited sub-
stantial improvement over both DeepBind and RCK. Subsequently, ThermoNet [23] was 
proposed, which integrates a k-mer embedding CNN model to RNA sequences with an 
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ensemble of secondary structures, and exceeded the prediction accuracy of cDeepBind 
and DLPRB. By adapting the residual network (ResNet) [24] to protein-RNA interac-
tion prediction, which is very successful in Computer Vision, ResidualBind [25] achieved 
state-of-the-art performance in RNAcompete 2013. Another ResNet-based method, 
PrismNet [26], accurately extracts sequence/structure binding preferences of in  vivo 
protein-RNA interactions through the use of novel structural annotation of icSHAPE 
reactivity scores [27]. Similarly, RPI-Net [28] and GraphProt2 [29] utilize graph neural 
networks via encoding input sequences as graphs to predict protein-RNA interactions in 
CLIP-seq datasets. Compared with GraphProt and CNN-based methods, both RPI-Net 
and GraphProt2 offer substantial improvements for a wide variety of individual CLIP-
seq datasets. Despite these improvements, all of these models learn from an individual 
RBP dataset, and thus commonly suffer from experimental bias (GC-bias in RNAcom-
pete 2013 and RNase T1 enzyme-inducing sequence bias in CLIP-seq [13]). DeepRiPe 
[30] utilizes a multi-task module to predict the binding sites of multiple RBPs simultane-
ously, thereby suppressing the sequence bias introduced by the experimental protocol. 
MultiRBP [31] applies the multi-task or multi-label learning to RNAcompete dataset 
and also obtained promising results compared to training a single model per RBP. How-
ever, the prediction accuracy of DeepRiPe is limited due to the shallow neural network 
architecture. DeepRiPe also cannot determine the sequence motif and the binding pat-
tern of other features simultaneously owing to the use of independent convolution ker-
nels in multimodal learning.

To solve these limitations of current binding prediction methods, we developed Multi-
resBind, a multi-label deep-learning approach for protein-RNA binding prediction. We 
evaluated the performance of Multi-resBind in terms of the area under the receiver 
operating characteristic curve (AUROC) and average precision (AP) relative to those 
of DeepRiPe using the same large-scale PAR-CLIP datasets. Extensive studies were fur-
ther conducted on a series of various types of input data and their combinations. We 
also explored the problem of imbalanced data across classification classes in multi-label 
learning, which is common when dealing with biological data. Finally, we used modified 
integrated gradients (IG) [32] to generate a series of attribution maps to evaluate the 
performance of Multi-resBind through visual inspection.

Methods
Input dataset

The input dataset was a collection of preprocessed PAR-CLIP data for 59 RBPs in the 
HEK293 cell line as in a previous study [30]. Preprocessing of raw data was performed 
using the same pipeline in [33], including PARalyzer [34] for peak calling. During reads 
mapping, an older version of the reference human genome (GRCh37/hg19) was selected 
for annotation. The dataset was split into three categories: low, medium, and high with 
peaks of <15,000, >15,000 but <100,000, and >100,000, respectively. In each category, 
70% of the data consisting of RNA sequences and region types were used for training 
the model, and 20% and 10% of the data were treated as validation and test datasets, 
respectively.

In the original datasets downloaded from the Ohler Laboratory website, there are 
150-nucleotide RNA sequences with 250-nucleotide region type annotations. To 
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equalize the lengths of the input of region types and RNA sequences, we reduced the 
region types from 250 to 150 bases at the same position. RNA sequences with one 
nucleotide (A, U, G, or C) and region types with one annotation (3′ UTR, 5′ UTR, 
CDS, or intron) in each position were converted to a one-hot format, respectively. 
RNA sequences with a length of 150 bases in the whole dataset were converted into 
the fasta format and then employed as the input to calculate two types of structural 
profiles. Structural profiles with paired-unpaired annotations were calculated using a 
modified script of RNAplfold [35], whereas profiles with a stem (S), hairpin (H), bulge 
(B), internal (I), multibranch (M), or exterior (E) loop were calculated using CapR 
[36]. Readily available data were concatenated along the features axis in the same 
position, resulting in a 150 × d two-dimensional matrix to feed the first convolutional 
layer.

For the input data of eCLIP experiments, we firstly downloaded the processed bed files 
from ENCODE Project (https://​www.​encod​eproj​ect.​org). The reliable peaks were filtered 
using a strict cutoff value (fold change > 3 and p-value < 0.001) and merged between two 
replicates for each RBP. RBPs with less than 1000 reported peaks were removed from 
the datasets. The eCLIP datasets were then divided into five categories for each cell line: 
low, medium 1, medium 2, high 1 and high 2 with peaks of >1000 but <2000, >2000 but 
<4000, >4000 but <7000, >7000 but <10,000 and >10,000, respectively. The bin sizes for 
spliting the genome were extended to 100bp from 50bp to account for the eCLIP peaks 
resolutions. Other steps were utilized the same approach as PAR-CLIP datasets.

Neural network architecture

We designed Multi-resBind as a multi-label classifier taking sequence data with inherent 
features (nucleotides, region types, and structure profiles) as input to give k prediction 
probabilities (range from 0 to 1) of the corresponding category for RBPs of interest as 
the output. Compared with DeepRiPe, we used the ResNet block to increase the number 
of convolutional layers of the neural network to enable the learning of more expressive 
feature maps from the high-noise CLIP-seq dataset, and treated different types of input 
data as a feature of the time-series data to allow for the simultaneous determination of 
more complex patterns from the given context (sequence and structure or sequence and 
region) that is important for protein-RNA binding.

Multi-resBind consists of four parts. The first part of the model is a 1D convolu-
tional layer for the sequence data in which the number of filters was set to 96 and the 
filter (kernel) size was set to 11. The second part of the model is a 3× residual block. 
Each residual block consists of three layers, including convolution 1D, batch normali-
zation, and activation (ReLU). The dropout probability in each residual block was set 
to 0.1, 0.2, and 0.5, respectively. At the end of this part, a skipped connection was 
added to integrate the output of the 3× residual block and 1D convolutional layer. 
The third part of the model is the AveragePooling1D layer with pool size of 10 and 
strides of 10 using the valid padding option and the fully connected layer (256 hidden 
nodes). The fourth part of the model is k independent nodes with a sigmoid activation 
function producing prediction probabilities of 0–1. Figure 1 shows a simplified dia-
gram of the network architecture of the Multi-resBind model.

https://www.encodeproject.org
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Training procedure

For each dataset in the three categories (low, medium, and high), we trained a unified 
model with k separated nodes by minimizing the mean value of binary cross-entropy 
(BCE) between the predicted probabilities of each node and assigned labels (0 or 1) 
across k classes per sample. The model was trained with a mini-batch (the default batch 
size was set to 128) stochastic gradient descent method called Adam [37] to update the 
weights in the neural networks. The initial learning rate was set using a default value of 
0.001 and training epochs were set to 40. At the end of each epoch, the model is saved 
when training loss reaches the minimum value for the validation set. At the beginning 
of model training, the initialization layer weights of each model are determined with a 
Glorot initializer (also known as Xavier) [38].

Evaluation scores

After the model was trained on the training and validation datasets, its performance was 
evaluated using an independent hold-out test dataset. The classification performance 
for each RBP was assessed through two indicators for binary classification evaluation: 
AUROC and AP. The AUROC is the most commonly used indicator for evaluating 
the performance of a binary classification model with balanced positive and negative 

Fig. 1  Simplified diagram of the neural network of the Multi-resBind model. The input data with a length of 
150 and width of d is first fed to a 1D convolutional layer. In this layer, the number of kernel filters, kernel size, 
and step size of the stride are set to 96, 11× d , and 1, respectively. The obtained feature maps are provided as 
input to a residual block (3 ×) with skip connection in the last block. Each block consists of three sequential 
layers: convolution 1D, batch normalization, and ReLU activation. After the residual block, the average 
pooling with 10 × 1 receptive fields (size = 10, stride = 10) and concatenate operations convert the feature 
maps to a 1D vector. The 1D vector then passes through a 3-layer fully connected network with 256 nodes 
in the hidden layer. The last fully connected layer consists of k nodes corresponding to the RBPs of interest 
independently. Finally, sigmoid is chosen as the activation function of each node in the last layer
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samples. AP is defined as the area under the precision-recall curve, which measures the 
trade-off between precision and recall at different decision thresholds. In the context 
of multi-label classification, AP is more distinctive than AUROC when there are more 
negative than positive labels per class. Therefore, the model with a higher AP score is 
considered to perform better in higher-ranked samples, where more positive samples are 
classified correctly [39].

Model interpretability

The attribution maps were generated using IG, an advanced gradient-based method [32]. 
The core concept of this method is similar to that of DeepLIFT [40], which was used to 
solve the gradient saturation problem in the interpretability of the “black box” model. 
When the input X with ith dimension features (nucleotide, region, and structure profile), 
predicted output F(X), and baseline point X′ are known, IG is defined as follows:

where ∂F(X)/∂Xi is the gradient of F along the ith dimension at X. In practice, we 
approximated the path integral by linear interpolation (with a default value of 50 steps). 
Choosing the baseline or reference point is another challenging problem, and is usu-
ally based on the specific application. According to previous studies [41, 42], we did not 
choose zero as the reference point; instead, the reference point was generated by taking 
the average of 2000 samples with the lowest predicted score for the RBP of interest.

Results
Multi‑resBind achieves state‑of‑the‑art performance using the PAR‑CLIP dataset

To compare Multi-resBind against DeepRiPe, we employed the same input data 
(sequence and region information) and weighted loss function for prediction analysis 
from the PAR-CLIP dataset. As shown in Fig.  2a, b, Multi-resBind showed significant 
improvement over DeepRiPe with respect to both the AUROC and AP scores across the 
three categories. Although some region information was lost (due to reducing the length 
from 250 to 150 nucleotides) to equalize to the length of input sequences, our method 
still outperformed DeepRiPe for each RBP, as shown in Fig.  2c, d. These results sug-
gested that using ResNet with the skipped connection to build deeper networks could 
be a more potent approach to solve prediction problems in related biological research 
fields.

To demonstrate the generality of Multi-resBind model, we further conducted compar-
ision experiments on two eCLIP datasets (cell lines of K562 and HepG2). The prepara-
tion process of the entire dataset refers to the description in the DeepRiPe’s paper or the 
method section. The performance of the models in terms of mean AUROC and AP are 
provided in Additional file 1: Table S1. In short, the results of the additional experiments 
are consistent with our results (see Fig.2 and Additional file 2: Files S1) and main conclu-
sion on DeepRiPe and Multi-resBind models.

To demonstrate the usefulness of each module, we also did the ablation experiments 
cross three PAR-CLIP datasets (low, med and high) for Resnet block and pooling layer, 

IG(X ,X ′)::=(X − X
′) ∗

∫ 1

0

∇F(α ∗ X + (1− α) ∗ X ′)dα
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and summarized the results into Additional file 1: Table S2. The data in Additional file 1: 
Table  S2 shows the addition of Resnet block has a significant improvement in perfor-
mance on two evaluation indicators of mean AUROC and mean AP. We can also see that 
there is no obvious difference between max pooling layer and average pooling layer. The 
performance of average pooling has a slight advantage over max pooling on the dataset 
(low).

Effects of different input data types and their combination

RNA structure is an important feature for RBP recognition along with the sequence. 
Many existing models, including RCK, RNAcontext, DRPLB, cDeepbind, and 

Fig. 2  Performance comparison between Multi-resBind and DeepRiPe utilizing RNA sequences and region 
types as input. Results are based on three different dataset types [low, medium (med), and high]. The low 
dataset consists of 27 RBPs with binding peaks less than 15,000, the med dataset consists of 21 RBPs with 
binding peaks greater than 15,000 and less than 100,000, and the high dataset consists of 11 RBPs with 
binding peaks greater than 100,000. In the boxplot, the y-axis represents the evaluation index (AUROC or AP 
scores) and the x-axis represents different datasets. The two methods are distinguished by color coding. The 
one-sided Wilcoxon signed-rank test was employed to calculate the p values. In the scatterplot for pairwise 
comparison, the y-axis represents the evaluation index (AUROC or AP scores) for Multi-resBind and the x-axis 
represents the evaluation index (AUROC or AP scores) for DeepRiPe of the same RBP. Different datasets are 
distinguished by color coding. a Boxplots for the performance comparison of Multi-resBind and DeepRiPe 
based on AUROC scores. b Boxplots for the performance comparison of Multi-resBind and DeepRiPe based 
on AP scores. c Scatterplot for the pairwise comparison of Multi-resBind and DeepRiPe based on AUROC 
scores. d Scatterplot for the pairwise comparison of Multi-resBind and DeepRiPe based on AP scores
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ThermoNet, have demonstrated the relevance of structural information using an in vitro 
dataset (RNAcompete). However, Koo et  al. demonstrated that RNA secondary struc-
ture profiles do not increase a model’s performance using RNAcompete [25]. Recently, 
Sun et al.’s study shown that RNA secondary structure is dependent on cellular environ-
ment. This difference is especially important in regulating dynamic protein-RNA bind-
ings across various conditions (e.g K562 and HepG2) [26]. Hence, it is also necessary to 
compare the influence of different types of input data on the prediction of RBP interac-
tions in vivo.

All calculation results are summarized in Table 1 and Additional file 1: Fig. S1. All pre-
dict results (AUROC and AP) per RBP using RNA second structure profiles (RNAplfold) 
are saved in Additional file 3: Files S2 and Additional file 4: Files S3. When we input the 
sequence, secondary structure, and region information separately, the performance of 
the model decreased sequentially (i.e., RNA sequence > region types > secondary struc-
ture). Thus, sequence information was the most important feature for prediction. When 
combining data in pairs (sequence_structure, sequence_region, and structure_region) 
as input, the combination of sequence and region showed the best performance. The 
performance of this combination also surpassed that of the model that considered all 
three components (sequence, structure, and region) as input. This result is mainly con-
sidered to reflect the relatively low prediction accuracy of RNA secondary structure 
in vivo via computational tools such as RNAfold [43]. Using different structural profiles 
(SHBIME) as the input slightly improved the predictive performance. The computational 
results using structural profiles predicted by CapR are summarized in Additional file 1: 
Table S3, Additional file 5: Files S4 and Additional file 6: Files S5.

Cost‑sensitive multi‑label learning does not contribute to RBP prediction

We encountered a problem of data imbalance in the RBP prediction task in which 
instances for different classes were not represented equally (Additional file 1: Fig. S2), 
leading to a bias toward the prediction of the more frequent classes. The difference in 
the positive label count between each class was extremely large. The experimental results 
showed that the performance (based on AP) of the trained neural network (the original 
DeepRiPe model) had a strong positive correlation with the number of positive labels in 
each class (Additional file 1: Fig. S3). Therefore, we comprehensively compared a series 
of different loss functions using a cost-sensitive strategy to improve the performance of 
predictive models. Compared with BCE, all methods tested resulted in limited improve-
ment (Additional file 1: Table S4). Comprehensive consideration of performance on the 
two indicators (AUROC and AP scores) established that BCE was still the best choice. 
All predict results (AUROC and AP) per RBP using different loss functions under the 
Multi-resBind model are saved in Additional file 7: Files S6 and Additional file 8: Files S7.

Attribution maps highlight important sequence motifs

The interpretation of predictive models has attracted increasing attention in biologi-
cal research, especially to determine whether the underlying learning mechanism of 



Page 9 of 15Zhao and Hamada ﻿BMC Bioinformatics          (2021) 22:554 	

a model is consistent with current biological knowledge. In the case of deep learn-
ing, the generation of an attribution map for a particular RBP, and evaluating its con-
sistency with sequence motifs based on k-mers and PWMs have become mainstream 
practice. Toward this end, we generated attribution maps for positive samples using 
the test data (predicted scores > 0.5 and labels = 1). Sequences and the corresponding 
regions with the three highest prediction scores were selected as input for construct-
ing the maps. Figure  3 shows the attribution maps of sequences for several target 
RBPs exhibiting high performance (AP > 0.50) using the low dataset, which were gen-
erated using an average value of 2000 samples with the lowest predicted scores as a 
reference point. Other attribution maps using the zero vector as a reference point are 
shown in Additional file 1: Fig. S4.

We further conducted a case study and compared the attribution maps to published 
known motifs. As an example, MBNL1 is a splicing factor with reported YGCU/
GCUU binding motifs, in which Y refers to C or U, and its attribution map was found 
to include repeated motifs in the mRNAs. In the attribution map, QKI was also high-
lighted owing to its reported ACU​AAY​ binding motifs. A much longer well-estab-
lished UGUAHAUA binding motif for PUM2 was also observed in the attribution 

Fig. 3  Attribution maps of several respective RBPs (MBNL1, PUM2, and QKI), utilizing the sequence 
contribution only. For each RBP, the three sequences with the highest prediction scores were used to 
calculate gradients and generate the corresponding contribution relative to the predicted probability. The 
y-axis represents the relative contribution of each base and the x-axis represents the corresponding nucleic 
acid (A, U, G, or C) in the RNA sequence. Attribution maps for model interpretation were constructed using 
the IG method, in which the reference point was generated by taking the average of 2000 samples with the 
lowest prediction score. The sequence logos corresponding to attribution maps were generated through the 
RCAS profiles of the RBP binding sites [33]. The sequence logo of PUM2 was obtained from a pulished study 
[10]
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map with a simple pattern, in which H refers to A, C, or U. The Multi-resBind model 
could even learn the subsequence of a canonical binding motif or a major part of the 
motif containing one or two mismatches at any position.

Attribution maps reveal region and structure preferences for RBP prediction

As shown in Table  1, the combination of sequence and region or structural informa-
tion significantly improved the predictive power of the Multi-resBind model compared 
to only using sequence information. The combination pattern (sequence and region or 
sequence and structure) observed on the attribution map further facilitated interpreta-
tion of protein-RNA binding.

Table 1  Performance of the Multi-resBind model with various types of input data

Evaluation experiments were performed using different input features and their combinations with a held-out test set in the 
27 RBPs low dataset. Among the features, sequence represents one-hot encoded nucleic acid bases (A, U, G, or C), structure 
represents paired or unpaired structure profiles predicted by a modified script of RNAplfold, and region represents one-hot 
encoded region type information (3′ UTR, 5′ UTR, CDS, or intron) of the corresponding sequence. The mean AUROC and 
the mean AP refer to the average AUROC and AP scores of the 27 RBPs in the low dataset. The numbers marked in bold 
represent the maximum value under the given evaluation metric

Data types Data dimensions Mean AUROC Mean AP

Sequence (150,4) 0.8809 0.3372

Structure (150,2) 0.6987 0.1189

Region (150,4) 0.6710 0.0912

Sequence and structure (150,6) 0.8843 0.3521

Sequence and region (150,8) 0.8976 0.3808
Structure and region (150,6) 0.7602 0.1602

Sequence, structure and region (150,10) 0.8957 0.3714

Fig. 4  Attribution maps for RBPs of interest (ELAVL2 and CSTF2) with sequences and regional context. Each 
subgraph (a) or (b) consists of two boxplots (top and bottom). In the upper graphs, the y-axis represents the 
relative contribution of each base and the x-axis represents the corresponding nucleic acid base (A, U, G, or C) 
in the RNA sequence. In the lower graphs, the y-axis represents the relative contribution of each base and the 
x-axis assigns one box with a different color for each category of the corresponding region type annotation 
(3′ UTR, 5′ UTR, CDS, or intron) in the RNA sequence. The attribution maps were generated through a trained 
model using sequences and region as input
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For example, ELAVL2 regulates mRNA stability and translation via binding to U-rich 
elements in the 3′ UTR of target mRNAs. In Fig. 4a, the highlighted U-rich elements in 
sequences with specific region preferences of the 3′ UTR are in agreement with previ-
ous studies [44]. CSTF2 (also known as CstF-64) interacts directly with distal sequence 
elements (GU-rich regions) [45, 46] as a member of the cleavage stimulation factor 
complex, which is involved in the 3′-end cleavage and polyadenylation of pre-mRNAs. 
Figure  4b shows that CSTF2 specifically recognizes the U/GU-rich elements located 
downstream of the AAU​AAA​ sequence required for cleavage [47]. The region prefer-
ences of the intron were also confirmed in a previous study demonstrating that almost 
half of all CstF64 binding sites are located in introns, and these intronic CstF64 binding 
sites are more strongly conserved than randomly located intronic sequences [48].

It remains unclear whether MBNL1 mainly recognizes single- or double-stranded 
RNA elements. Lambert et al. indicated that MBNL1 binding can tolerate GC pairing, 
but largely favors unpaired U bases [49]. We generated two attribution maps with the 
highest prediction scores of MBNL1 using the sequences and structure information 
(PU) as input. As shown in Fig.  5a, unpaired structures (violet) are consistently high-
lighted under the GCs in the attribution map, whereas paired structures (cyan) are con-
sistently highlighted under the U bases.

Fig. 5  Attribution maps for MBNL1 with sequence and structure profiles as the input. In the upper graphs 
of (a) and (b), the y-axis represents the relative contribution of each base and the x-axis represents the 
corresponding nucleic acid base (A, U, G, or C) in the RNA sequence. In the bottom graphs of (a) and (b), the 
y-axis represents the relative contribution of each base and the x-axis represents the corresponding structure 
annotation (paired or unpaired) in the RNA sequence. Maps in (a) were generated by taking the average of 
2000 samples with the lowest prediction score as the reference point, whereas maps in (b) were generated 
using the zero vector as the reference point
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Discussion
With development and performance evaluation of Multi-resBind, we have shown that 
careful design of a CNN-based deeper network architecture could significantly improve 
the prediction power for RBP binding sites. Other deeper backbone modules such as 
Xception [50] are available that have not yet been introduced into this research field. In 
addition, Transformer [51], ELMo [52], and BERT [53], which have shown great success 
in the field of natural language processing, also have beneficial properties for processing 
biological sequences.

The influence of different types of input data on prediction performance can be con-
sidered from the perspective of feature engineering. For processing different types of 
source data, many models adopt multimodal forms, such as DeepRiPe [30]. With Multi-
resBind, we processed sequence data more traditionally as time-series data, considering 
sequence, structure, and region type information as different features for each nucleic 
acid (time step). The experimental results further proved that this approach has some 
advantages in network architecture design and binding motif mining. For in vivo predic-
tion, a recent study showed that the structure profile predicted by calculation software 
does not contribute to improving the prediction performance of a deep-learning model, 
because the structure of mRNAs differs among cell lines. The icSHAPE data [27] is a 
very promising supplement information for RNA secondary structure or protein-RNA 
binding prediction [26].

We also investigated the impact of the loss function when dealing with data imbal-
ance on prediction performance without changing the network architecture. For models 
designed in an end-to-end manner, there is currently no practical and useful method to 
simply improve the performance of the entire model. This is also a very popular research 
topic in the general field of machine learning. However, for these new emerging tasks in 
the biological field, there is still a lack of standard databases for algorithm comparison 
and attempts for new ideas.

Finally, we generated a series of attribution maps to visually interpret the trained 
model. Interpretability remains a major challenge in biological research because bio-
logical data usually have more noise than images or text. In recent years, several meth-
ods (e.g., DeepLIFT, IG, and SmoothGrad) have achieved some degree of success in 
this regard [32, 40, 54]. However, for deeper networks, there are still some shortcom-
ings in terms of extracting and generating canonical motifs from the attribution maps 
[55]. Owing to the lack of a feasible guidebook, the basic method of judgment remains 
unquantifiable visual inspection.

Conclusions
In this study, we proposed Multi-resBind as a new model utilizing multi-label learning 
and ResNet to infer in vivo protein-RNA binding preferences. Multi-resBind achieved 
high performance with respect to two evaluation metrics (AUROC and AP) on a collec-
tion of PAR-CLIP datasets (59 RBPs in total). Attribution maps revealed that the bind-
ing preferences learned from the structure or region context are biologically relevant. 
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We hope that this model will provide a powerful tool to predict unknown binding sites 
in vivo and contribute toward gaining a better understanding of the underlying binding 
mechanisms of protein-RNA interactions.
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