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Abstract 

Background:  Acute myeloid leukemia (AML) is a heterogeneous cancer of the blood, 
though specific recurring cytogenetic abnormalities in AML are strongly associated 
with attaining complete response after induction chemotherapy, remission dura-
tion, and survival. Therefore recurring cytogenetic abnormalities have been used to 
segregate patients into favorable, intermediate, and adverse prognostic risk groups. 
However, it is unclear how expression of genes is associated with these prognostic risk 
groups. We postulate that expression of genes monotonically associated with these 
prognostic risk groups may yield important insights into leukemogenesis. Therefore, in 
this paper we propose penalized Bayesian ordinal response models to predict prog-
nostic risk group using gene expression data. We consider a double exponential prior, a 
spike-and-slab normal prior, a spike-and-slab double exponential prior, and a regres-
sion-based approach with variable inclusion indicators for modeling our high-dimen-
sional ordinal response, prognostic risk group, and identify genes through hypothesis 
tests using Bayes factor.

Results:  Gene expression was ascertained using Affymetrix HG-U133Plus2.0 Gene-
Chips for 97 favorable, 259 intermediate, and 97 adverse risk AML patients. When 
applying our penalized Bayesian ordinal response models, genes identified for model 
inclusion were consistent among the four different models. Additionally, the genes 
included in the models were biologically plausible, as most have been previously asso-
ciated with either AML or other types of cancer.

Conclusion:  These findings demonstrate that our proposed penalized Bayesian ordi-
nal response models are useful for performing variable selection for high-dimensional 
genomic data and have the potential to identify genes relevantly associated with an 
ordinal phenotype.

Keywords:  Penalized models, LASSO, Spike-and-slab, European LeukemiaNet, Bayes 
factor
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Background
Acute myeloid leukemia (AML) is a heterogeneous disease [1]. Cytogenetics, which is the 
study of chromosomes, is routinely performed in bone marrow and/or blood samples of 
AML patients at diagnosis. In fact, specific recurring cytogenetic abnormalities in AML 
strongly associate with attaining complete response after induction chemotherapy, remis-
sion duration, and survival and have therefore been used to segregate patients into favora-
ble, intermediate, and adverse prognostic risk groups [2, 3]. These risk groups have been 
used to guide therapeutic decisions such as post-remission therapy [4], but still represent 
only a gross examination of the underlying molecular traits of AML patients. We postulate 
that elucidating the molecular characteristics associated with these prognostic risk groups 
would aid clinicians in developing a more precise understanding of this disease and poten-
tially identify therapeutic targets. Although these prognostic risk groups are categorical, 
they are also ordered and therefore are an ordinal categorical response. We therefore seek 
to fit an ordinal response model to high-dimensional gene expression data, where the num-
ber of genes (p) is much greater than the sample size or number of patients (n).

Given the high-dimensional feature space that accompanies high-throughput gene 
expression assays, we desire an ordinal response method that performs automatic variable 
selection. While frequentist approaches to fitting penalized ordinal response models have 
been developed, problematically, these methods lack variable selection methods that are 
rooted in a hypothesis testing framework. For example, the least absolute shrinkage and 
selection operator (LASSO) approach [5] was previously extended to ordinal response 
models where the solution can be obtained through the Generalized Monotone Forward 
Stagewise Method [6] or coordinate descent [7]. The penalty parameter, � , or analogously 
the final model, is commonly selected using information criteria (e.g., BIC, AIC), cross-val-
idation, generalized cross-validation, or ideas based on Stein’s unbiased estimate of risk [5] 
and all variables having non-zero coefficients in the final model are considered important. 
However, a key disadvantage is that once � (or the final model) is selected, the parameter 
estimates β are conditional on that selected value. Additionally, penalized regression mod-
els result in point estimates for the model parameters but generally lack estimates of vari-
ability, prohibiting confidence interval construction and hypothesis testing. Therefore most 
analysts identify variables as important predictors if they have a non-zero estimate in the 
selected model.

To overcome these shortcomings, herein we present four Bayesian ordinal response mod-
eling methods that can be used to identify molecular features from high-dimensional data-
sets with an ordinal response. Model I is based directly on the Bayesian LASSO whereas 
Models II, III, and IV additionally include variable inclusion indicators. All four models per-
mit hypothesis testing through Bayes factor which provides statistical evidence of which 
coefficients are or are not zero. Such approaches are relevant for identifying meaningful 
predictors in multivariable models, that is, to guide variable selection or identify a good 
subset of predictors.

Results
Data pre‑processing

High-throughout gene expression data from the Affymetrix HGU133Plus2.0 Gene-
Chips for 525 adult patients with de novo AML were downloaded from Gene Expression 
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Omnibus (GSE14468) [8]. The Affymetrix Detection Call algorithm was used to deter-
mine whether probe sets were present, marginally present, or absent in each sample. The 
3′:5′ ratio for GAPDH and the percentage of present calls for each sample was examined 
[9]. Subsequently, samples with any quality concerns were excluded (N = 4). To obtain 
probe set expression summaries, we used the robust multiarray average method [10]. We 
restricted our penalized Bayesian ordinal response models to the 446 patients for whom 
prognostic risk group was available, which included 97 favorable risk, 259 intermedi-
ate risk, and 97 with adverse risk [11]. Patients with inv(16)/t(16;16), t(8;21), or t(15;17) 
abnormalities, regardless of any other cytogenetic abnormality, were classified as favora-
ble risk [8]. Patients with −  5/del(5q), −  7del(7q), t(6;9), t(9;22), 3q26 abnormality, or 
those complex karyotype (that is, having more than 3 abnormalities) were considered 
adverse risk, provided they lacked inv(16)/t(16;16), t(8;21), or t(15;17) abnormalities. All 
others were considered intermediate risk. We also filtered the probe sets to include only 
the most variable probe sets as determined by quantiles of probe set level standard devi-
ation estimates. Prior to model fitting, probe set expression summaries were centered 
and scaled.

Thereafter, we fit our four proposed penalized Bayesian ordinal response models for 
high-dimensional covariate spaces. The prior, π , represents the proportion of important 
genes which can either be set to a fixed constant or assigned a hyperprior. For Models 
II, III, and IV, we examined four different priors where for each gene j, πj was fixed at 
πj = 0.50 ∀ j , πj was fixed at πj = 0.05 ∀ j , πj was assigned the hyperprior πj ∼ Beta(1, 19) , 
and also to increase the variance, πj was assigned the hyperprior πj ∼ Beta(0.01, 0.19) . 
Our four models were programmed using the “rjags” package in the R programming 
environment. Using the “dclone” package we ran three chains with 5000 burn-in, 5000 
tuning steps, and thinned to keep every third step in the sampling process to reduce 
auto-correlation in our posterior samples, resulting in 9999 saved steps. Convergence 
was assessed using Gelman and Rubin’s potential scale reduction factor.

Evaluation procedure for identifying important genes

We considered two methods for identifying important variables for our proposed Bayes-
ian ordinal response models for high-dimensional data, both of which are based on 
hypothesis tests using Bayes factor. First, we wanted to determine whether βj has a non-
zero effect ∀j . Since βj is continuous, it is not possible to test βj = 0 directly. Instead, we 
tested an interval null hypothesis [12]. Suppose ǫ is a small positive value that is close to 
0. For Models I, II and III, we tested H0j : |βj| ≤ ǫ versus Haj : |βj| > ǫ . For Models II, 
III and IV, a variable inclusion indicator, γj , is included in the model. However, its incor-
poration into Model IV precludes our ability to test H0j : |βj| ≤ ǫ versus Haj : |βj| > ǫ 
directly. Therefore, for Model IV we tested H0j : |γjβj| ≤ ǫ versus Haj : |γjβj| > ǫ 
instead. Bayes factor, B10 , is defined as the ratio of posterior odds to prior odds, where 
the prior odds = P(H1)

P(H0)
 and the posterior odds = P(H1|Data)

P(H0|Data) . The derivation of prior odds 
for the four models is shown in the Additional file 1 and the posterior odds was esti-
mated empirically through MCMC posterior output [13, 14].

As previously mentioned, for Models II, III and IV a variable inclusion indicator, 
γj , is included in the model. When using the Gibbs sampler to generate sequences of 
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γj , j = 1, . . . , p the sequences converge in distribution to the posterior distribution of γ 
and provide relevant information for variable selection [15]. More specifically, when γj 
is frequently one in the posterior samples, its corresponding βj is non-zero and therefore 
xj should be included in the model. When a γj is more often zero in the posterior sam-
ples, its corresponding xj should be excluded from the model. Therefore, some have per-
formed variable selection criteria based on whether the posterior mean of γj is greater 
than 0.50 [16]. This use of the posterior probabilities of the variable inclusion indica-
tors is an application of Bayesian Model Averaging [17]. Rather than use a threshold, we 
tested the hypotheses H0j : γj = 0 versus Haj : γj = 1 and considered the corresponding 
variable to be important when H0j is rejected. We reject H0j if the Bayes factor exceeded 
a certain threshold. The prior odds is obtained through the prior specification π = t 
or π ∼ Beta(c, d) which is detailed for each model in the Additional file 1. The poste-
rior odds is estimated empirically through MCMC posterior samples. To determine an 
appropriate threshold for Bayes factor, others previously characterized B10 ∈ (3, 10) to 
represent substantial evidence in favor of the alternative, B10 ∈ (10, 100) to represent 
strong evidence in favor of the alternative, and B10 > 100 to represent decisive evidence 
in favor of the alternative [18]. In our application, we rejected H0j if B10 > 5.

Genes associated with acute myeloid leukemia prognostic risk group

When applying Bayes Factor to the models that fixed the prior at π = 0.05 and testing 
H0j : γj = 0 versus Haj : γj = 1 , Models II, III, and IV identified 8, 11, and 18 and probe 
sets respectively (Table  1). Similar results were obtained when using π ∼ Beta(1, 19) 
as the prior, which identified 9, 13, and 19 probe sets, respectively, or when using 
π ∼ Beta(0.01, 0.19) as the prior, which identified 8, 12, and 17 probe sets, respectively. 
Fewer probe sets were identified when using an uninformative prior ( π = 0.50 ), with 
only 4, 1, and 3 probe sets identified in Models II, III, and IV, respectively.

Probe sets identified when applying Bayes Factor to test 
H0j : |βj| ≤ ǫ versus Haj : |βj| > ǫ for Models II and III were always a subset of those iden-
tified when applying Bayes Factor to test H0j : γj = 0 versus Haj : γj = 1 . Likewise probe 
sets identified when applying Bayes Factor to test H0j : |γjβj| ≤ ǫ versus Haj : |γjβj| > ǫ 
for Model IV were always identified when testing H0j : γj = 0 versus Haj : γj = 1 . Fol-
lowing previous work of others in the logistic regression setting [14], for all four mod-
els we let ǫ = 0.10 . When testing H0j : |βj| ≤ ǫ versus Haj : |βj| > ǫ , Model I did not 

Table 1  Number of probe sets identified from Models II, III , and IV under four different priors for πj 
using Bayes Factor for γj and βj

Prior BF Model II Model III Model IV

πj = 0.50 γj 4 1 3

πj = 0.50 βj or βjγj 4 1 2

πj = 0.05 γj 8 11 18

πj = 0.05 βj or βjγj 4 6 20

πj ∼ Beta(1, 19) γj 9 13 19

πj ∼ Beta(1, 19) βj or βγj 4 6 20

πj ∼ Beta(0.01, 0.19) γj 8 12 17

πj ∼ Beta(0.01, 0.19) βj or βγj 4 6 18
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identify any probe sets using Bayes Factor; in fact, the largest Bayes Factor for Model 
I was 1.04608. Because Model I does not include γj , no results are available for testing 
H0j : γj = 0 versus Haj : γj = 1 . We note that when applying Bayes Factor to the βj’s, one 
needs to specify ǫ , which is an arbitrary choice with no suitable way of providing guid-
ance on selecting ǫ for case applications. This threshold is not required when applying 
Bayes Factor to test H0j : γj = 0 versus Haj : γj = 1 . Therefore, we prefer and recom-
mend the H0j : γj = 0 versus Haj : γj = 1 testing approach.

An informative prior, when πj was either fixed at 0.05 or ∼ Beta(1, 19) or 
∼ Beta(0.01, 0.19) , identified more features than an uninformative prior ( πj = 0.50) . We 
suspect this corresponds to previous research in the frequentist setting that observed 
increased power under FDR control when the proportion of truly null features is accu-
rately estimated [19]. Here the prior πj is an analogous quantity, reflecting the propor-
tion of truly differentially expressed features in the dataset. For application data, the 
proportion of truly differentially expressed features is likely small, otherwise, a high pro-
portion of differentially expressed genes would prove lethal to the organism. To deter-
mine if fixing πj versus placing a hyperprior on πj affected run time, we compared run 
times among our models and across different priors. There was not a large time differ-
ence when fixing the prior πj at 0.05 versus putting a Beta hyperprior on πj (Table 2).

We compared our results to those obtained from the BhGLM R package [20, 21]. Some-
what similar to our Model I, BhGLM includes a function bpolr that fits a Bayesian hier-
archical ordered logistic regression model using a Student-t prior on βj rather than a 
double exponential prior. When this default prior was used, no probe sets were identi-
fied by bpolr.

Overall, there was general consistency between the probe sets identified, with 23 
unique genes mappable to 26 probe sets included in our twelve fitted models (Table 3). 
Because no probe sets were identified by the BhGLM R package, there is no correspond-
ing column for BhGLM in Table 3. Ten probe sets were in common among Models II, III, 
and IV when considering probe sets identified by at least one of the four priors within 
each model. Many probe sets that were identified interrogate genes that have already 
been associated with AML, including CEBPD, PBX3, DUSP6, LILR2, HGF, FSCN1, 
TNFSF10, RUNX1T1, HOXB3, TAL1, SLC40A1, and CLEC11A. CEBPD is thought to 
be a tumor suppressor gene, given it is commonly hypermethylated in AML and thus 
results in low CEBPD expression [22]. PBX3 is co-expressed with HOXA9, specifically 
in patients with MLL-rearranged AML, and these two genes coordinate synergistically 
in leukemogenesis [23]. DUSP6 is a protein-tyrosine phosphatase (PTP) elevated in 
AML patients with FLT3 internal tandem duplication [24]. LILR2 interacts with PTPN6, 

Table 2  Run time (in hours) for each model

Model I does not include the variable selection indicators hence there was no prior for πj . The run time for Model I was 
2.1739 h

Prior Model II Model III Model IV

πj = 0.50 6.01 5.33 3.17

πj = 0.05 5.37 5.44 2.93

πj ∼ Beta(1, 19) 5.40 5.33 3.02

πj ∼ Beta(0.01, 0.19) 6.58 6.53 3.54
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another PTP which is involved in hematologic malignancies including AML [24]. Serum 
levels of HGF were higher in AML patients compared to healthy subjects, and HGF 
was prognostic for complete remission attainment, leukemia-free and overall survival 
in AML [25]. FSCN1 is upregulated in several cancers and is over-expressed in AML 
compared to healthy controls [26]. TNFSF10 is the gene that encodes TRAIL, a protein 
that induces apoptosis in tumor cells, which differed in expression levels by European 
Leukemia Net risk group in AML patients [27]. Further, lower levels of TRAIL conferred 
worse prognosis in AML patients [27]. In fact, inhibitors of histone deacetylases (HDA-
CIs) induced expression of TNFSF10 and hence TRAIL, demonstrating the important 
role of this gene in HDACI therapy in AML [28]. RUNX1T1 is involved in the RUNX1-
ETO fusion product which results from the recurrent t(8;21)(q22;q22) abnormality that 
is common in AML [29]. Hypomethylation of HOXB3 was associated with increased 
expression in intermediate risk AML patients [30] and plays an important regulatory 
role, as its over-expression inhibits FLT3-ITD in AML patients carrying that mutation 
[31]. Low TAL1 expression negatively impacts hematopoietic development and results 
in low myeloid production and decreased colony formation from CD34+ eythroid pro-
genitors [32]. Low levels of SLC40A1, the gene that encodes the iron exporter ferropor-
tin, has been associated with good prognosis in AML [33]. In fact, researchers previously 
found that SLC40A1 had lower expression levels in patients with core-binding factor 
AML, who all belong to the favorable risk group [33]. CLEC11A, formerly known LSLCL 
with homologous protein SCGF, is thought to be involved in early hematopoiesis and 
was detected in immature neutrophils in patients with chronic and acute myeloid leuke-
mia as well as other hematologic disorders [34]. Other probe sets were associated with 
genes that have been previously described as prognostic markers or implicated in other 
cancers (NKX2-3, CFD, VNN1, ST18, H1-0, SLC44A1, MSRB3, and OLIG1). Though the 
function role of ARMH1 is unclear, NCBI’s Entrez Gene states that this gene is over-
expressed in bone marrow, which may be particularly relevant in AML. Generally the 
expression of these genes is monotonically related to the ordinal response, cytogenetic 
risk group, or the expression for at least one cytogenetic risk group is well separated 
from the others (Additional file 2: Fig. S1). Two probe sets consistently identified by the 
three models, 204961_s_at and 214651_s_at, no longer map to a gene when using cur-
rent annotation, though the latter was intended to interrogate HOX9A which is involved 
in leukemogenesis [23].

Discussion
Our study differs from the initial study of this publicly available acute myeloid leukemia 
dataset in some fundamental ways. The initial study sought to identify genes associated 
with CEBPA mutation status, which tends to confer favorable risk [8]. Herein we were 
interested in identifying genes whose expression is predictive of prognostic risk group, 
a three-level ordinal response. The initial study used Affymetrix Microarray Suite 5 to 
obtain probe set expression summaries whereas we used the more commonly applied 
RMA method [10]. Further, the initial study used a frequentist method, Prediction Anal-
ysis of Microarrays [35], whereas we used Bayesian methods. We identified several genes 
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that have previously been linked to AML or cancer. Nevertheless, we did not identify any 
of the 19 probe sets which mapped to 16 unique genes in the primary paper.

The state-of-the-art in AML diagnosis has dramatically changed over the last few dec-
ades [36]. In this study, prognostic risk groups were based on cytogenetics as defined 
by the Eastern Cooperative Oncology Group/Southwest Oncology group classification 
scheme rather than the European LeukemiaNet (ELN) risk stratification system, there-
fore known prognostic mutations such as NPM1, FLT3-ITD, CEBPA, RUNX1, ASXL1, 
and TP53 were not included when defining the three ordinal classes. Since the initial 
study, the ELN risk stratification system was developed by consensus using an expert 
panel which stratified patients into four prognostic risk groups: favorable, intermediate 
I, intermediate II, and adverse risk [37]. An evaluation of this initial ELN standardiza-
tion system in a large cohort of AML patients demonstrated these categories are associ-
ated with attainment of complete remission, disease-free survival, and overall survival 
in younger (< 60) and older (≥ 60) patients [38]. Due to improved genetic testing and 
novel discoveries regarding the importance of genetic mutations, ELN was subsequently 
updated and treatment decision-making guides were outlined [39]. The new ELN risk 
stratification system includes three ordinal levels: favorable, intermediate, and adverse. 
Future research to identify molecular features associated with this new ELN risk stratifi-
cation system may further our understanding of AML biology and identify the prognos-
tic relevance of molecular features.

Our penalized Bayesian ordinal response models overcome shortcomings of frequen-
tist methods, permitting hypothesis testing through Bayes factors. Through extensive 
simulation studies, we previously demonstrated the superiority of Model IV, the regres-
sion-based approach with variable inclusion indicators, over two frequentist methods, 
ordinalgmifs and ordinalNet [40]. Others have also suggested the use of Bayesian cred-
ible intervals for variable selection [16]. Therefore, we also briefly examined the results 
when variables were identified as important based on equal-tailed (ET) credible inter-
vals and Highest Posterior Density (HPD) intervals. For Models I, II and III we identified 
the covariates as important when their corresponding 95% equal-tailed credible or HPD 
intervals for βj did not include zero. For Model IV, we identified the covariates as impor-
tant when their corresponding 95% equal-tailed credible or HPD intervals for γjβj did 
not include zero. Using 95% equal-tailed credible or HPD intervals yielded no features 
for Model I, and the 95% HPD intervals identified one feature for Model IV only when 
the prior was fixed at πj = 0.05 . Somewhat similarly, for Model III, 95% equal-tailed 
credible intervals identified one feature when the prior fixed at πj = 0.05 . However, 
when fitting Model II, 95% equal-tailed credible intervals identified four features when 
the prior fixed at πj = 0.50 , two when the prior took on a Beta(0.01, 0.19) hyperprior, but 
one feature when the prior was either fixed at πj = 0.05 or took on a Beta(1,19) hyperp-
rior. Some may postulate that a credible interval covering 0 indicates the predictor is not 
statistically reliable. However, we identified several genes associated with both AML and 
cancer when using Bayes Factor. Therefore, we suspect that credible and highest poste-
rior density intervals for this gene expression dataset cover zero due to multicollinearity, 
which results in sign flipping of the coefficient estimates when collinear variables are 
included in the model. We further note that because applying Bayes Factor when testing 
βj one needs to specify ǫ which is an arbitrary choice, we prefer and advocate using Bayes 
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Factor to test H0j : γj = 0 versus Haj : γj = 1 which does not require an arbitrary choice 
for ǫ . However, we acknowledge the selecting a threshold for Bayes Factor may be a limi-
tation, and in this paper we rejected the null hypothesis when BF > 5. This threshold can 
be adjusted based on recommendations from literature [18] or the maximum number of 
variables (e.g., genes) that researchers can validate or further explore. That is, depend-
ing upon one’s budget, time, or available samples, the threshold for Bayes Factor can be 
increased or decreased to adjust the number of variables identified for follow-up studies 
or confirmatory scientific experiments.

When assuming proportional odds, the effect of each independent variable is consist-
ent across different levels of response categories, in other words, the slopes across the 
different levels of the response categories are parallel. We used the latent variable model 
which may not be appropriate for models without proportional odds [41]. We are work-
ing to develop penalized Bayesian stereotype logit model for high-dimensional data, 
which may be better suited for modeling ordinal responses that are assessed, such as 
cytogenetic and ELN risk group.

Conclusions
Our penalized Bayesian ordinal response Models II, III, and IV combined with the use 
of Bayes Factor for testing H0j : γj = 0 versus Haj : γj = 1 can be used for modeling an 
ordinal response in the presence of a high-dimensional covariate space, such as data 
from high-throughput genomic assays. These identified relevant genes in our AML 
application data, and do not require specification of an arbitrary choice for ǫ when test-
ing nor do they require selection of a specific value for the penalty parameter � , because 
� is assigned a a diffuse hyperprior. Because there is similarity between resulting Models 
II, III, and IV but noted differences in run times, we recommend Model IV.

Methods
Prior to introducing the four penalized Bayesian ordinal response models, we briefly 
review the cumulative logit model and Bayesian approaches to the cumulative logit 
model when n > p . We then review the Bayesian LASSO for continuous and dichoto-
mous response models, then subsequently describe our four penalized Bayesian ordi-
nal response modeling methods for p > n scenarios. I is based directly on the Bayesian 
LASSO whereas Models II, III, and IV additionally include variable inclusion indicators.

Cumulative logit model

Let x = (x1, x2 . . . , xp)
′ denote a vector of observed covariates, where p is the num-

ber of predictors and each subject’s response, Y, is one of K ordinal categories. Let 
β = (β1,β2 . . . ,βp)

′ denote the vector of unknown regression parameters. Assuming 
proportional odds, the cumulative logit model has the form:

where Pr(Y ≤ k|x) is the cumulative probability of the event Y ≤ k given x.

log

[

Pr(Y ≤ k|x)
Pr(Y > k|x)

]

= αk − β ′x, k = 1, 2, . . . ,K − 1.
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Assuming the latent continuous random variable Z, where Z − β ′x fol-
lows a standard logistic distribution, the ordinal response Y = k when the latent 
variable satisfies αk−1 < Z ≤ αk , where the αk intercepts have the constraint 
−∞ = α0 < α1 < α2 < · · · < αK−1 < αK = ∞ . The cumulative probability can then be 
represented as [42]:

Bayesian ordinal regression models

Albert and Chib (1993) discussed Bayesian analyses for a binary response and generalized 
the method to a multinomial response under ordered (i.e., ordinal) and unordered cases 
[43]. For the ordinal response, an underlying latent continuous distribution was assumed 
to be Zi ∼ N (β ′xi, σ

2) for i = 1, . . . , n , and modeled as a linear combination of covariates. 
The ordinal response was represented by imposing cut-offs to the continuous response 
and modeled using a cumulative probit model. They assigned a diffuse prior for regression 
parameters β and cut-offs α . They then implemented a Gibbs sampler with initial values 
for β and α selected to be their MLEs [44, 45]. Therefore their Bayesian ordinal regression 
model pertained to data sets where the sample size is larger than the number of covariates.

Albert (2016) later used a uniform prior for α , under the constraint α2 ≤ · · · ≤ αK−1 , 
where α1 was set to zero [46]. A similar uniform prior was suggested for β . The method 
was applied to an example data set bioChemists in the pscl R package which included 
915 observations where gender, number of children aged 5 or younger, and number of arti-
cles produced by the Ph.D. mentor during the last 3 years were used to predict number of 
articles produced during last 3 years of Ph.D. The response variable was categorized to be 
ordinal with four categories, though the cut-offs for the ordinal categories were not pro-
vided. Model fitting was achieved using the MCMCoprobit function in the MCMCpack R 
package, which applies a hybrid Metropolis-Hastings and Gibbs algorithm under the probit 
link scenario.

Existing publications on proportional odds Bayesian ordinal regression models 
when number of observations exceeds the number of features, i.e. p < n , have mostly 
employed an underlying latent continuous variable Z for outcome Y  . The cut-off values 
α1,α2, . . . ,αK−1 are specified such that the ordinal outcome Y = k if αk−1 < Z ≤ αk , for 
k = 2, . . . ,K − 1 . Y = 1 is observed if Z < α1 and Y = K  if Z > αK−1 . We note that when 
proportional odds are assumed, the only parameters that designate class membership are 
the cut-off α’s.

Proposed ordinal Bayesian models for high‑dimensional data

Model I: Bayesian LASSO ordinal regression model

The seminal LASSO paper [5] briefly mentioned that the LASSO estimate can be derived 
as the Bayesian posterior mode when the regression parameters βj , j = 1, . . . , p , have inde-
pendent double-exponential (i.e., Laplace) priors,

Pr(Y ≤ k|x) = Pr(Z ≤ αk |x) = Pr
(

Z − β ′x ≤ αk − β ′x
)

=
exp

(

αk − β ′x
)

1+ exp
(

αk − β ′x
) , k = 1, 2, . . . ,K − 1.



Page 11 of 17Zhang and Archer ﻿BMC Bioinformatics          (2021) 22:539 	

where τ = 1/� is the inverse of shrinkage parameter � . Initially, the Bayesian LASSO 
was described for continuous [47–50] and subsequently dichotomous outcomes [14, 51]. 
Typically, a diffuse hyperprior for � [14, 50, 51] or �2 [47–49] is used, which avoids the 
procedure of explicitly selecting a single value for the penalty term. A common choice 
is a Gamma(a, b) prior with small values for a and b so that the prior is diffuse and 
therefore non-informative [48]. It has been reported that given a and b are small (e.g. 
a = 0.1, b = 0.1 ), the posterior distributions are not sensitive to the choices of a and b 
[49] though larger values of a and b have also been used [14, 50].

Our first model (Model I) is a Bayesian LASSO ordinal regression model. Following 
Tibshirani [5], we assign an independent double-exponential (DE) prior to each βj , 
j = 1, . . . p , and extend the model from a continuous response to an ordinal response:

Model II: spike and slab normal prior

Many Bayesian variable selection methods have been proposed in recent years. 
Mitchell and Beauchamp (1988) introduced the “spike and slab” prior for each regres-
sion coefficient βj , j = 1, . . . , p , which is a mixture of a point mass at 0 and a diffuse 
uniform distribution elsewhere [52]. Instead of using a probability mass at 0, George 
and McCulloch (1993) assigned the following prior to each βj:

where the latent variable γj takes a value of either 0 or 1 [15]. Setting σ 2
βj to a small value 

leads to a small variance for βj such that βj will frequently be close to 0 when γj = 0 . 
Alternatively, setting sj to a large value (e.g., sj > 1 ) leads to a moderate or large variance 
for βj such that βj will frequently be non-zero when γj = 1 . Letting

then πj represents the prior probability that βj is non-zero, or the prior probability that 
xj should be included in the model. Two different priors for γ were described. One lets 
each γj be independent with a Bernoulli(1,πj) distribution, where fixing πj = 0.5 is a spe-
cial case. Kohn et  al. (2001) discussed a more flexible approach by considering a beta 
hyperprior Beta(c, d) for each πj , where j = 1, . . . , p [53]. The parameters c and d can be 
chosen to match the desired value of mean and variance for the number of parameters 
that enter the model, where a smaller variance indicates a more informative hyperprior 

f
(

βj
)

=
1

2τ
exp

(

−
|βj|
τ

)

log

[

Pr(Yi ≤ k|xi)
Pr(Yi > k|xi)

]

= αk −
p

∑

j=1

βjxij , for k = 1, 2, . . . ,K − 1

βj|� ∼ DE(0, 1/�), for j = 1, . . . , p

� ∼ Gamma(a, b)

αk ∼ Normal
(

0, σ 2
αk

)

, α1 < α2 < · · · < αK−1, for k = 1, 2, . . . ,K − 1

βj|γj ∼
(

1− γj
)

N
(

0, σ 2
βj

)

+ γjN
(

0, s2j σ
2
βj

)

P
(

γj = 1
)

= 1− P
(

γj = 0
)

= πj ,
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for πj . When c = d = 1 , πj ∼ Uniform (0, 1), such that the hyperprior for πj is completely 
uninformative.

Our second model (Model II) assigns a prior to each βj similar to George and McCull-
och’s (1993) “spike and slab” normal prior [15]. We assume

where σ 2
0  and σ 2

1  are constant. We set σ 2
0  to a small value and σ 2

1  to a large value such that 
βj has a small variance when γj = 0 and βj has a moderate to large variance when γj = 1 . 
σ 2
1  should be selected such that the prior values for each βj is within a reasonable range. 

The model has the following formulation:

Model III: spike and slab LASSO prior

Yuan and Lin [54] discovered a connection between Bayesian variable selection, which 
introduces the binary vector γ , and the LASSO for a normal continuous outcome by 
assigning the following mixture prior to βj:

where τ = �

2σ 2 , δ(0) is the point mass distribution centered at zero and DE(τ ) has the 
density τexp(−τ |x|)/2 . This forces βj = 0 if γj = 0 so the model can be re-expressed 
under γ as:

where Xγ and βγ are columns of X and rows of β with corresponding γ = 1 . Unlike the 
more widely used prior P(γ ) = π |γ |(1− π)1−|γ | with a prespecified π , they proposed 
the following prior for γ:

where |γ | =
∑

γj , j = 1, . . . , p . Their proposed prior avoids highly correlated predictors 
from entering the model simultaneously. They selected the model corresponding to γ 
that maximizes P(γ |Y ).

The model selected by the LASSO algorithm was that having the highest posterior 
probability under this setting when w = π

1−π
τ
2

√
2π∗σ 2 = 1 for a normal continuous 

βj|γj ∼
(

1− γj
)

×Normal
(

0, σ 2
0

)

+ γj ×Normal
(

0, σ 2
1

)

,

log

[

Pr(Yi ≤ k|xi)
Pr(Yi > k|xi)

]

= αk −
p

∑

j=1

βjxij , for k = 1, 2, . . . ,K − 1

βj|γj ∼
(

1− γj
)

×Normal
(

0, σ 2
0

)

+ γj ×Normal
(

0, σ 2
1

)

, for j = 1, . . . , p

αk ∼ Normal
(

0, σ 2
αk

)

, α1 < α2 < · · · < αK−1, for k = 1, 2, . . . ,K − 1

γj ∼ Bernoulli
(

πj
)

, for j = 1, . . . , p

πj = t or πj ∼ Beta(c, d), for j = 1, . . . , p

βj|γj ∼
(

1− γj
)

δ(0)+ γjDE(0, τ ), j = 1, . . . , p

Y |γ ,β ∼ N
(

Xγβγ , σ
2In

)

P(γ ) ∝ π |γ |(1− π)1−|γ |
√

det
(

X ′
γXγ

)
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outcome. To avoid confusion, the constant defining the ratio of a circle’s circumference 
to its diameter is represented with π∗ , whereas π is used to denote the probability for the 
Bernoulli prior of γ . Under an orthogonal design and when π = 0.5 , w = 1 is equivalent 
with taking � =

√

8σ 2

π∗  and τ = �

2σ 2.
The spike-and-slab LASSO assigns the following prior to each βj:

with �1 small and �0 large and γj = 1 corresponding to a large βj effect and γj = 0 cor-
responding to a negligible or small βj effect [55]. The spike-and-slab LASSO has been 
extended to generalized linear models [20] and the Cox model [56] where a Bernoulli(π ) 
prior is assigned for each γj with π taking on either a fixed value [55] or assigned either a 
Beta [55] or Uniform [56] prior for π [20].

Our third model (Model III) is an extension of Ročková and George (2018) Spike-and-
Slab LASSO model [55]. We assume

Letting �0 be a large positive constant (e.g. �0 = 20 ), when γj = 0 , βj has small variance 
and clusters around 0. Instead of varying � at different values as Ročková and George 
(2018), we assign a Gamma prior � ∼ Gamma(a, b) . The model has the following 
formulation:

Model IV: regression approach with variable inclusion indicator

Kuo and Mallick [57] discussed one drawback of George and McCulloch’s method, that 
they need to choose sophisticated tuning factors for the two variances, i.e. σ 2

βj and s2j  , in 
the hierarchical prior for each βj [57]. Instead of specifying a hierarchical model, they 
specified a regression model that incorporates 2p submodels by including an indicator 
vector γ . Their linear regression model has the following form:

For j = 1, . . . , p, γj is an indicator variable that takes on a value of 0 or 1. As before, when 
γj = 1 , xj is included in the model. When γj = 0 , xj is omitted from the model.

βj|γj ∼
(

1− γj
)

DE

(

0,
1

�0

)

+ γjDE

(

0,
1

�1

)

,

βj|�, γj ∼
(

1− γj
)

× DE

(

0,
1

�0

)

+ γj × DE

(

0,
1

�

)

.

log

[

Pr(Yi ≤ k|xi)
Pr(Yi > k|xi)

]

= αk −
p

∑

j=1

βjxij , for k = 1, 2, . . . ,K − 1

βj|�, γj ∼
(

1− γj
)

× DE(0, 1/�0)+ γj × DE(0, 1/�), for j = 1, . . . , p

� ∼ Gamma(a, b)

αk ∼ Normal
(

0, σ 2
αk

)

, α1 < α2 < · · · < αK−1, for k = 1, 2, . . . ,K − 1

γj ∼ Bernoulli
(

πj

)

, for j = 1, . . . , p

πj = t or πj ∼ Beta(c, d), for j = 1, . . . , p

yi =
p

∑

j=1

γjβjxij + ǫi, for i = 1, . . . , n, j = 1, . . . , p.
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An independent Bernoulli prior, Bernoulli(πj ), can be assigned to each γj , j = 1, . . . , p . 
Kuo and Mallick [57] fixed πj at 0.5∀j so that the likelihood prior for each of the 2p mod-
els are the same. They approximated the posterior distribution of γ by means of γ from 
the Markov chain Monte Carlo (MCMC) algorithm, and suggested that predictors hav-
ing higher posterior variable inclusion indicator frequencies should be included in the 
model. Lykou and Ntzoufras [60] used an equivalent model for continuous outcomes 
and based their inferences on the posterior variable inclusion probabilities f (γj|y) , for 
j = 1, . . . , p where variable j is selected for model inclusion if the median of f (γj|y) is 
greater than 0.5. Kuo and Mallick [57] prior for β is equivalent to Geweke (1996) by let-
ting θj = γjβj , for j = 1, . . . , p [58]. Then the prior for θj is a mixture of point mass at 0 
with probability 1− πj and normal distribution with probability πj . This approach has 
been used by others [59, 60].

Our fourth model (Model IV) incorporates the Bayesian variable selection method 
from Kuo and Mallick [57] by including an indicator variable γj for each βj , j = 1, . . . , p . 
We assume each γj follows an independent Bernoulli distribution with probability πj , 
where πj can be a fixed constant. Following Kohn et al. [53], we will additionally consider 
a more flexible approach by considering a beta hyperprior for πj : πj ∼ Beta(c, d).

where t is a constant. The priors for πj are specified the same way as Model II.

Priors

Elicitation of prior distributions is non-trivial task in Bayesian modeling. When specify-
ing the prior variance for the α threshold parameters, we considered that given α1 and 
α2 serve as the thresholds for the latent continuous variable Z in determining the val-
ues of the ordinal response Y, both should lie within the interval [ min(Z), max(Z) ]. For 
that reason a variance σ 2

α = 10 should safely encompass the range of Z values expected. 
When specifying the prior variances for βj for Model II, we set σ 2

0 = 0.01 representing a 
small variance given our desire for a spike at 0 when γj = 0 . We then set σ 2

1 = 10 repre-
senting a large variance given our desire for a slab around 0 when γj = 1 . We also per-
formed extensive simulations which varied the values of a and b for the Gamma(a, b) 
prior for � so that the prior mean varied from 10−2 to 102 and the prior variance a

b2
 varied 

from 10−4 to 104. Our results indicate that the variable selection performance is not sen-
sitive to the values of a and b unless they are large, for example, 100. Therefore, we used 
a = b = 0.1 which has been used by others [49].

log

[

Pr(Yi ≤ k|xi)
Pr(Yi > k|xi)

]

= αk −
p

∑

j=1

γjβjxij , for k = 1, 2, . . . ,K − 1

βj|� ∼ DE(0, 1/�), for j = 1, . . . , p

� ∼ Gamma(a, b)

αk ∼ Normal
(

0, σ 2
αk

)

, α1 < α2 < · · · < αK−1, for k = 1, 2, . . . ,K − 1

γj ∼ Bernoulli
(

πj

)

, for j = 1, . . . , p

πj = t or πj ∼ Beta(c, d), for j = 1, . . . , p
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Code

R code for processing the application data and running all models is available at https://​
github.​com/​renny​zhang​77/​Bayes​ianPe​naliz​edCum​ulati​veLog​itMod​el/​tree/​master/​
BMC_​Bioin​forma​tics_​2021.
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tion operator; MCMC: Markov Chain Monte Carlo.
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