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Abstract 

Background:  The genetic basis of phenotypic traits is highly variable and usually 
divided into mono-, oligo- and polygenic inheritance classes. Relatively few traits are 
known to be monogenic or oligogeneic. The majority of traits are considered to have 
a polygenic background. To what extent there are mixtures between these classes is 
unknown. The rapid advancement of genomic techniques makes it possible to directly 
map large amounts of genomic markers (GWAS) and predict unknown phenotypes 
(GWP). Most of the multi-marker methods for GWAS and GWP falls into one of two 
regularization frameworks. The first framework is based on ℓ1-norm regularization (e.g. 
the LASSO) and is suitable for mono- and oligogenic traits, whereas the second frame-
work regularize with the ℓ2-norm (e.g. ridge regression; RR) and thereby is favourable 
for polygenic traits. A general framework for mixed inheritance is lacking.

Results:  We have developed a proximal operator algorithm based on the recent LAVA 
regularization method that jointly performs ℓ1 - and ℓ2-norm regularization. The algo-
rithm is built on the alternating direction method of multipliers and proximal transla-
tion mapping (LAVA ADMM). When evaluated on the simulated QTLMAS2010 data, it is 
shown that the LAVA ADMM together with Bayesian optimization of the regularization 
parameters provides an efficient approach with lower test prediction mean-squared-
error (65.89) than the LASSO (66.11), Ridge regression (83.41) and Elastic net (66.11). For 
the real pig data the test MSE of the LAVA ADMM is 0.850 compared to the LASSO, RR 
and EN with 0.875, 0.853 and 0.853, respectively.

Conclusions:  This study presents the LAVA ADMM that is capable of joint modelling 
of monogenic major genetic effects and polygenic minor genetic effects which can be 
used for both genome-wide assoiciation and prediction purposes. The statistical evalu-
ations based on both simulated and real pig data set shows that the LAVA ADMM has 
better prediction properies than the LASSO, RR and EN. Julia code for the LAVA ADMM 
is available at: https://​github.​com/​patwa​67/​LAVAA​DMM.
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Background
Mendelian, or classical, genetics is the study of traits that is controlled by a single locus. 
A mutation in a single gene can cause a disease, or another phenotypic alteration, that 
is inherited according to Mendel’s principles. Those traits are also referred to as mono-
genic [1]. In humans, there are 5000–8000 monogenic diseases due to mutations in sin-
gle genes [2], and numerous monogenic diseases can be found also in animals and plants 
[3, 4]. In contrast, quantitative genetics is generally defined as the study of characters 
that are influenced by a large number of genes where the effect of each gene is consid-
ered to be relatively small [5]. Most diseases and traits of economical importance are 
considered to have a complex polygenic basis [6]. Oligogenic inheritance refers to an 
intermediate between monogenic and polygenic inheritance where a trait that is consid-
ered to be determined by a small number of genes. Recently, several monogenic diseases 
have been found to constitue a mixture between effects from one major gene and several 
mediater genes contributing small effects [7, 8]. For a large part of the twentieth century, 
quantitative genetics was confined to speculations and restrictive assumptions regard-
ing the effects and distributions of alleles at genetic loci. However, the advent of high-
throughput sequencing techniques now makes it possible to assess the direct effects of 
markers that cover large parts of the genome [9].

In many situations, the genomic data will be wide, i.e. there will be many more predic-
tor variables (p) than observations (n). Moreover, the predictors are often substantially 
correlated with each other. Joint modeling of regression coefficients through standard 
multiple regression is not feasible in these situations. For example, when p > n the ordi-
nary least squares estimator is not unique and will overfit the data with low prediction 
accuracy as a result. Other problems with wide big data include spurious random cor-
relations, incidental endogeneity, and accumulation of noise [10]. One way to overcome 
these challenges is to use regularized regression approaches. Ridge regression (RR) [11] 
estimates the regression coefficients through an ℓ2-norm penalized least squares crite-
rion, which means that the coefficients of the predictors are shrunk with the same pro-
portion. However, even though RR can handle correlated predictors, no variables are 
set to exactly zero and therefore variable selection is not performed. In contrast, the 
LASSO [12] performs regularization with an ℓ1-norm penalty function which shrinks 
each coefficient by a constant amount �/2 (i.e. half of the regularization parameter), and 
also sets unimportant regression coefficients to exactly zero and therefore performs 
variable selection. However, the LASSO tends to have problems when predictors are 
highly correlated or have some form of group structure, and will usually pick one vari-
able and ignore the rest. Simulation studies have shown that neither RR nor the LASSO 
will universally outcompete the other. In general, one might expect the LASSO to per-
form better in a setting where a relatively small number of predictors have substantial 
coefficients, and the remaining predictors have coefficients that are very small or equal 
zero. RR will achive better prediction accuracy when the response is a function of many 
predictors, all with coefficients of roughly equal size [13].

Because of the shortcomings of RR and the LASSO, [14] proposed the elastic-net (EN) 
method, which is based on a penalty that combines the ℓ1-norm and ℓ2-norm penalties. 
Hence, the EN can perform variable selection of highly correlated predictors. However, 
optimization of the elastic-net function involves tuning of two regularization parameters 
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( �1 and �2 ), or one regularization parameter � and an α-ratio that determines how much 
weight should be given to the LASSO and RR, respectively. [15] demonstrated how 
cross-validation can be used to find the minimum mean-squared error along a � path 
for a certain α-ratio. [16] suggested 2D-tuning of �1 and �2 , but this approach tends to be 
computationally demanding. Further details on theoretical properties and algorithms for 
the EN method can be found in [17]. Recently, as an alternative to the EN, [18] developed 
the LAVA regression model which is based on the splitting of the regression component 
into one sparse and one dense part. In order to provide identifiability of the separate 
regression coefficients, the LAVA algorithm relies on the computation of a rather elabo-
rate projection matrix [19].

The LASSO is a specific variant of a structured non-smooth optimization problem, 
and therefore representative of a more generic class of problems encompassing con-
strained and nonconvex optimization. In this area, there has been a renewed interest 
in fast first-order proximal splitting algorithms [20, 21]. The main disadvantage of split-
ting algorithms is their low speed of convergence since most of them are based on some 
form of gradient descent approach. Hence, a considerable amount of research effort has 
been devoted to their tuning and acceleration. [22] proposed the fast iterative shrink-
age thresholding algorithm (FISTA), which turns out to be a proximal gradient method 
for LASSO regularization. A related optimization approach is the alternating direc-
tion method of multipliers (ADMM) [23], that easily can be adapted to fast large-scale 
LASSO regularization of genomic data [24].

The purpose of this study is to develop a proximal ADMM version of the LAVA 
method and apply it to genomic data where we suspect that the markers follow oligo-
genetic inheritance. We show how variable splitting in combination with translation 
mapping provides full identifiability of the regression parameters and results in a com-
putationally efficient approach that can handle the size of typical genome-wide data sets. 
This is to our knowledge the first implementation of a proximal gradient descent version 
of the LAVA regularizer. Moreover, the learning rate of the gradient descent iterations is 
optimized with backtracking line search [20] and the penalty parameters are stochasti-
cally tuned with Bayesian optimization using two different acquisition functions [25]. 
Hence, these optimization procedures provide a considerable computational advance-
ment of hyper-parameter tuning compared to earlier methods that facilitate large scale 
inference. The statistical properties of the LAVA method is compared with RR, LASSO 
and EN implementations on a simulated data set intended to mimic oligogenic inherit-
ance and a real data set from pig.

Results
Simulated data

After some initial runs with each of the regularizers, it was found that Bayesian opti-
mization (BO) converged faster for the methods with one regularization parameter (i.e. 
RR and LASSO) when using the upper confidence bound (UCB) acquisition function, 
and for the methods with two regularization parameters (i.e. EN and LAVA) the mutual 
information (MI) acquisition function worked better. The lower and upper bounds of 
�1 were set to 1000.0 and 30,000.0 for RR, and to 10.0 and 2000.0 for the LASSO. The 
EN bounds were set to 10.0 and 600.0 for �1 and to 0.001 and 1.0 for �2 , and for the 
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LAVA they were set to 10.0 and 2000.0 for �1 and to 5000.0 and 300,000.0 for �2 . BO 
was run for 250 iterations for all methods with 4 Gaussian process (GP) function evalu-
ations per iteration. The minimum test MSE was 83.41 and found at �1 = 4587.9 for RR, 
and for the LASSO, the minimum test MSE was 66.11 at �1 = 294.3 (Table 1). Moreo-
ver, the best result for the EN was found at �1 = 288.3 and �2 = 0.001 with a minimum 
test MSE of 66.11, which means that the EN made no improvements over the LASSO. 
The best result (MSE = 65.89) of all methods was found for the LAVA at �1 = 297.3 
and �2 = 211395.0 (Table 1). Timing of the last evaluation with optimized regularization 
parameters showed that RR was fastest taking only 10.5 seconds. The LASSO, EN and 
LAVA were 11.6, 11.7 and 19.2 times slower, respectively (Table 1).

The additive and dominance genetic effects for the LAVA model were also calcu-
lated. The additive genetic effects for regression coefficients c and d were computed as 
the difference between the regression coefficients of upper homozygote genotype 2 and 
the lower homozygote genotype 0 for each SNP. Most of the additive effects are cap-
tured by the ℓ1-norm regularized regression coefficient c (Additional file 1), but some 
additive variation is also explained by the ℓ2-norm regularized regression coefficient d 
(Additional file 2). The plot of the joint additive effects (c + d) are dominated by the scale 
of the ℓ1-norm coefficients (Fig. 1).

The dominace genetic effects for regression coefficients c and d were obtained as the 
regression coefficient for the heterozygote indicator. It can be seen that the three simu-
lated domianace effects are picked-up well by the ℓ1-norm regularized regression coef-
ficient c (Additional file 3). The dominance effects of the ℓ2-norm regularized regression 

Table 1  Minimum test MSE and optimal regularization parameters for RR, LASSO, EN and LAVA 
evaluated on the simulated QTLMAS data

Time in seconds is for the last evaluation with optimized regularization parameters

Method minMSE �1 �2 Time

RR 83.41 4587.9 10.5

LASSO 66.11 294.3 121.6

EN 66.11 288.3 0.001 123.2

LAVA 65.89 297.3 211,395.0 201.8

Fig. 1  Additive genetic effects from the joint regression coefficients (c + d) of the simulated QTLMAS2010 
data
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coefficient d are smaller than the domianace effects in c (Additional file  4). The joint 
plot of the dominance components follows the pattern of the additive plot where the the 
scale of ℓ1-norm coefficients dominates (Fig. 2).

Real data

In the analyzes of the pig data, 5-fold cross-validation with random allocations into 
training and test data was used to obtain minimum test MSE which was averaged over 
the folds. We used the same acquisition functions for the pig data as was used for the 
simulated data. However, the number of iterations was set to 100 and each GP itera-
tion used 3 function evaluations because of the larger number of markers. The lower and 
upper bounds of �1 were set to 10,000.0 and 250,000.0 for RR, and to 10.0 and 100.0 for 
the LASSO. For EN, the �1 bounds were choosen to be 10.0 and 200.0, while the bounds 
of �2 were 5000.0 and 100,000.0. The LAVA bounds of �1 were set to 10.0 and 200.0, and 
of �2 to 10,000.0 and 200,000.0. The minimum test MSE varied relatively little over the 
CV-folds for all methods, the largest standard deviation being 0.0435 for RR. The small-
est mean minimum test MSE was 0.850 for this data set and encountered with the LAVA 
method at the average estimates �1 = 11.4 and �2 = 44,058 (Table 2). The correspond-
ing minimum test MSE were 0.853, 0.875 and 0.853, for the RR, LASSO and EN meth-
ods, respectively (Table 2). The average timing over the folds of the last evaluation with 
optimized regularization parameters showed that RR and EN were fastest taking 43.4 
and 49.4 s, repsctively. The LASSO and LAVA were slower at 229.9 and 336.3 seconds 
(Table 2).

Fig. 2  Dominance genetic effects from the joint regression coefficients (c + d) of the simulated 
QTLMAS2010 data

Table 2  Mean minimum test MSE and optimal regularization parameters over 5 CV-folds for RR, 
LASSO, EN and LAVA evaluated on the pig data

Time in seconds is the average over the folds for the last evaluation with optimized regularization parameters

Method minMSE �1 �2 Time

RR 0.853 59719 43.4

LASSO 0.875 49.94 229.9

EN 0.853 18.04 9046.7 49.4

LAVA 0.850 53.81 73345 336.3
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The additive effects of the ℓ1-norm regularized part c of the LAVA model are larger in 
magnitude (Additional file 5) than the additive effects found by the ℓ2-norm regularized 
part d (Additional file 6). The plot of joint additive effects (c + d) are dominated by the 
scale of ℓ1-norm coefficients, but the ℓ2-norm contribution is proportionally larger than 
it is for the QTLMAS2010 data (Fig. 3).

A similar result can be seen for the domianace effects where the largest effects are cap-
tured for the ℓ1-norm part c (Additional file 7) and the dominance effects of the ℓ2-norm 
regularized regression coefficient d are smaller (Additional file 8). However, also here is 
the ℓ2-norm contribution proportionally larger than what can be seen for QTLMAS2010 
data (Fig. 4) . It is worth noting that one major positive additive effect is found at SNP 
position 44,686 and one major positive dominance effect at SNP position 15,013.

Discussion
One of the longest standing debates in genetics has been if most quantitative traits are 
determined by of a few loci with major effects or by many loci with minor effects [26, 
27]. Even though it is generally considered that most traits are controlled by a large 
number of loci with small effects and that this fits well with the infinitesimal model of 
inheritance [6], it has been stressed that there is plenty of empirical evidence also for 

Fig. 3  Additive genetic effects from the joint regression coefficients (c + d) of the Cleveland pig data

Fig. 4  Dominance genetic effects from the joint regression coefficients (c + d) of the Cleveland pig data
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traits with major effects loci and the question to answer is not how much does each 
class contribute but rather ’how do they work together?’ [28]. This discussion is closely 
intertwined with the statistical methods used for inference of the marker effects. Most 
methods used for effect estimation are based on linear models with Gaussian likelihood 
functions and errors, and it can be shown that they fall under the RR framework which 
means that they implicitly favour the infinitesimal model. On the other side are sparsity 
inducing methods like the LASSO and Bayesian variable selection with mixture priors 
that indirectly force the result to one with few loci of major effects. The LAVA method 
presented in this paper extracts the best of these two worlds and allows for joint estima-
tion of major and minor genetic effects.

The recent focus on sparsity in high-dimensional problems has resulted in a pletora 
of alternative methods and algorithms [17, 29]. However, it should be emphasized that 
the joint LAVA estimates (c + d) are dense which puts it in contrast to for example the 
LASSO and the EN. It has been stressed that the EN should be less sensitive to correla-
tions between predictors than the LASSO because of the RR part in the penalty [17]. 
However, it is mainly the variable selection properites that are improved with the EN 
because the prediction error is seldom improved, see for example [30]. [31] also pointed 
out that the LASSO suffer from unstable selections of correlated variables and inconsist-
ent selections of linearly dependent variables in GWAS data, and put forward the Preci-
sion Lasso which promotes sparse variable selection by regularization governed by the 
covariance and inverse covariance matrices of the explanatory variables. However, they 
also found that while the variable selection properties improved, there was no improve-
ment in terms of prediction accuracy. These findings contrast with the LAVA method in 
the current paper which improves in terms of prediction propeties, but puts less focus 
on the variable selection properties. Initially, we also tried a FISTA version of the LAVA 
regularizer, but it turned out to be difficult to reach repeatable results with the optimizer. 
If this was due to implementation issues or general identifiability problems of the (c + d) 
component is hard to say and requires further investigations.

There has been several comparative studies on the properties of various statistical 
methods in genome-wide prediction studies. [32] compared eleven genomic prediction 
methods using wheat, maize and barley data. All prediction models produced similar 
average prediction accuracies except for SVM. [33] evaluated 14 genomic prediction 
approaches on 2000 biallelic markers by simulating two complex traits in an F2 and 
backcross population resulting from crosses of inbred lines. They showed that the para-
metric methods predicted phenotypic values worse than those of non-parametric mod-
els in the presence of epistasis. [34] compared fifteen methods on four datasets (rice, pig, 
QTLMAS and maize) and found that different methods performed best on different data 
sets. However, variable selection based approaches (e.g. EN) tended to perform overall 
better than regularization approaches. [35] compared fourteen prediction methods on 
simulated data with different genetic architectures and found that when the trait was 
under additive gene action, the parametric prediction methods outperformed non-par-
ametric ones. On the other hand, when the trait was influenced by epistatic gene action, 
the non-parametric methods provided more accurate predictions. Hence, the conclu-
sion that can be drawn from these comparative studies is that the prediction properties 
to a large extent depends on the genetic architecture, which is not surprising since most 
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methods up-to-date either performs favourable on data sets with major gene action or 
on data with minor polygenic gene action. A large complementary simulation study that 
evaluates the properties of the LAVA ADMM on different genetic architectures is cur-
rently being undertaken.

In regard to these findings, it is interesting to note that the proportion of the variance 
of the ℓ2-norm regularized regression coefficients and ℓ1-norm regularized regression 
coefficients (i.e. VAR (d)/VAR (c) ) is considerably larger in the real Cleveland pig data 
(1.24E-3) than in the simulated QTLMAS data (2.55E-6). This measure provides impor-
tant information regarding the relative importance of minor and major effects and can 
easily be calulated for each of the norms as long as there are more than one selected 
marker in the ℓ1-norm. Alternatively, one could use MEAN ( ABS (d))/MEAN ( ABS (c)) 
in situations where the ℓ1-norm component results in only a few selected coefficients of 
similar size.

Conclusion
This study presents the LAVA ADMM that is capable of joint modelling of mixtures of 
monogenic major genetic effects and polygenic minor genetic effects which can be used 
for both genome-wide assoiciation and prediction purposes. The statistical evaluations 
based on both a simulated data set and a real pig data set shows that the LAVA ADMM 
has better prediction properies than the LASSO, RR and EN. However, the LAVA 
ADMM should be used in combination with these methods because pure sparse major 
genetic effects architectures are best modelled with the LASSO whereas pure ploygenic 
minor effects architectures are best modelled with RR.

Methods and data
The LAVA regularizer

First, we will review the LAVA regression method [18]. Consider a standard linear 
regression model

where y is a response (output) vector of length n, X is a predictor (input) matrix of size 
n× p , b is a regression coefficient (parameter) vector of length p and e is a residual 
(error) vector of length length n. Regularization provides a tool to put constraints on the 
regression coefficients, and a general optimization model can be formulated as

where f(b) is a loss function and g(b) is a penalty function. Ridge regression [11] is 
obtained as

where �·�2 is the Euclidean ℓ2-norm and � > 0 is the penalty parameter. RR produces a 
dense estimate of b. As an alternative, the LASSO [12] can be formulated as

(1)y = Xb+ e

(2)b̂ = argmin
b

{f (b)+ g(b)}

(3)b̂ = argmin
b

�y− Xb�22 + ��b�22
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where � · �1 is the ℓ1-norm. The LASSO performs variable selection and therefore pro-
duces a sparse b vector, i.e. some entries are set to zero. By combining the ℓ1-norm and 
ℓ2-norm penalties we arrive at the elastic-net (EN) method

which has two regularization prameters ( �1 and �2 ) to tune [14].
The LAVA regression model [18] is based on the splitting of the regression component 

into one sparse and one dense part b = c + d , and thereby obtaining the following opti-
mization problem

where the resulting estimator b̂ = ĉ + d̂ is non-sparse. Moreover, they suggested a rela-
tively simple three stage procedure for the estimation of these regression coefficients. At 
the first stage, define the ridge projection matrix

and calculate the transformed response and predictors

The second stage is an ordinary LASSO based on the transformed data

and the third stage consists of ridge regression on the original data with the sparse 
LASSO estimator

Unfortunately, this approach becomes computationally demanding when the size of X 
gets large.

Proximal operators

A proximal operator proxf  is used to evaluate a closed and proper convex function f(u) 
of a specific optimization subproblem that is assumed to be easier to solve than the orig-
inal problem. By iteratively evaluating proximal operators on subproblems, a proximal 
algorithm converges to the solution of the original problem [36]. The proximal operator 
is defined as

(4)b̂ = argmin
b

�y− Xb�22 + ��b�1

(5)b̂ = argmin
b

�y− Xb�22 + �1�b�1 + �2�b�22

(6)ĉ, d̂ = argmin
c,d

�y− X(c + d)�22 + �1�c�1 + �2�d�22,

(7)K�2
= In − X(XTX + �2Ip)

−1XT ,

(8)ỹ = K
1/2
�2

y, X̃ = K
1/2
�2

X .

(9)ĉ = argmin
c

�ỹ− X̃c�22 + �1�c�1,

(10)d̂ = (XTX + �2Ip)
−1XT

(y− Xĉ).

(11)proxf (u) = argmin
v

{f (v)+ (1/2)�|v − u�22}
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where u and v are vectors of length p. The right hand side of the argument is strongly 
convex so it has a unique minimizer for every u ∈ Rp . A scaled version of (11) is obtained 
by introducing parameter γ > 0 resulting in an operator where (1/2) is replaced by 
(1/2γ ) . This definition indicates that proxf (u) is a point that compromises between min-
imizing f and being close to u. γ can be seen as a trade-off parameter between these 
two terms. Also note the close relationship between ridge regression and the proximal 
operator.

The proximal operator has several useful properties [20]. Firstly, for an affine transforma-
tion f (u) = � z,u � + a the proximal operator becomes

which is a translation mapping. Hence, for a function with a standard addition, it is pos-
sible to define a translation function as T (u) = f (u+ z)− z . Another key property is for 
separable sum functions f (u, z) = g(u)+ h(z) where splitting leads to

Finally we note that there is a near relationship between proximal operators and gradient 
descent methods where

when γ is small and f(u) is differentiable. In this formulation, ∇ denotes the gradient and 
γ is an equivalent to the learning rate of a gradient optimizer [21].

LAVA ADMM

Proximal algorithms have become popular for large scale problems in statistics and opti-
mization [21, 36]. Most of them are based on some form of gradient descent approach 
and a generic iterative algorithm for the optimization problem in (2) follows

where γk is the step size and k the iteration index.
The alternating direction method of multipliers (ADMM) is an algorithm that solves 

optimization problems by dividing them into smaller subproblems, each of which are 
then easier to manage. This feature is very advantageous for a broad spectrum of appli-
cations and therefore it has become a benchmark method. First, consider for problem 
(2) that

(12)

proxf (u) = argmin
v

{� z, v � + a+ (1/2)�v − u�22}

= argmin
v

{� z,u � + a− (1/2)�z�22 + (1/2)�v − (u− z)�22}

= u− z

(13)proxf (u, z) = proxg (u)+ proxh(z).

(14)prox
γ f (u) ≈ u− γ∇f (u)

(15)

b(k+1) = argmin
b

{f (b(k))+ �∇f (b(k)), b− b(k) � + g(b)+ (1/2γ (k)
)�b− b(k)�22}

= proxgγ (b
(k) − γk∇f (b(k))),

(16)
b̂ = argmin

b

{f (b)+ g(b)} ⇐⇒ b̂ =argmin
b

{f (b)+ g(u)}

subject to b = u
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then, by combining the augmented Lagrangian

with the method of multipliers we end up with an iterative scheme for ADMM accord-
ing to

which can be reformulated using proximal operators as

It is now straightforward to implement a LAVA ADMM by first defining two translation 
functions T (u) = f (u+ v)− v and T (v) = f (v + u)− u , and then iterating

where proxgγ () is the soft-thresholding function with learning rate γ defined as

and proxhδ() is the ℓ2-norm regularization function with learning rate δ . 
The iterations are terminated when convergence is reached according to 
�(c(k) + d(k))− (u(k) + v(k))�∞ ≤ β(1+ �z(k) + w(k)

)�∞) for tolerance parameter β 
which was set to 10−5.

There are two main approaches to determine the learning rate γ and δ [20]. 
Firstly, since f(b) is convex, and therefore also Lipschitz continuous with inequality 
|f (b)− f (b0)| ≤ L

∥

∥b− b0
∥

∥ , the Lipschitz constant can be calculated as L = �max(X
TX) 

where �max denotes the maximum eigenvalue. A constant step size for all k can be chosen 
as γ k = 1/L . Unfortunately, the computation of the eigenvalues becomes labor-some when 
the size of X reaches an order of around 104 . The second option is to use backtracking line-
search which can be implemented for γ following

(17)Lγ (b,u, z) = f (b)+ g(u)+ zT (Xb− Xu− y)+ (γ /2)�Xb− Xu− y�22,

(18)

b(k+1) = argmin
b

Lγ (b
(k),u(k), z(k))

u(k+1) = argmin
u

Lγ (b
(k+1),u(k), z(k))

z(k+1) = z(k) + γ (Xb(k+1) − Xu(k+1) − y),

(19)

b(k+1) = proxf γ (u
(k) − z(k))

u(k+1) = proxgγ (b
(k+1) + z(k))

z(k+1) = z(k) + b(k+1) − u(k+1).

(20)

c(k+1) = prox
T (u)γ (u

(k) − z(k))

u(k+1) = proxgγ (c
(k+1) + z(k))

z(k+1) = z(k) + c(k+1) − u(k+1)

d(k+1) = prox
T (v)δ(v

(k) − w(k)
)

v(k+1) = proxhδ(d
(k+1) + w(k)

)

w(k+1) = w(k) + d(k+1) − v(k+1)

(21)proxgγ (c + z) = Sγ (c + z) = [|c + z| − γ ]+sgn(c + z),
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where ∇f (c(k)) = XT
(X(c(k))− y) is the gradient. The same procedure is applied to δ by 

replacing c(k) and u(k) with d(k) and v(k) , respectively.

Bayesian optimization of the penalty parameters

Tuning of the penalty parameters �1 and �2 can be performed with cross-valida-
tion and grid search, but the number of evaluations easily becomes very large. For 
example, 100 values per penalty parameter amounts to optimizing 10,000 mod-
els per fold. Bayesian optimization (BO) is a sequential approach for global opti-
mization that has become popular for tuning of hyperparameters in machine 
learning [37]. In BO, the objective function l(�) is evaluated at T sequential points 
MSE(1) = l(�(1)),MSE(2) = l(�(2)), . . . ,MSE(T ) = l(�(T )

) , where MSE is the nega-
tive test mean squared error and the penalty parameters are collected in a vector 
� = [�1, �2] . By assuming that the negative test mean squared error follows a Gaussian 
distribution

and assigning a Gaussian process prior over the objective function

where the mean function m(�) usually is set to zero and the covariance function (i.e. ker-
nel) needs to be chosen, the posterior distribution will be

where Kll = k(�, �) . Given that the likelihood, the posterior and the conditional distribu-
tion of future observations all are Gaussian, the predictive distribution for MSE(t+1) will 
also be Gaussian

where µ(�
(t+1)

) = k(�(t+1), �)(Kll + σ
2I)−1MSE and 

�(�
(t+1), �(1,...,t)) = k(�(t+1), �(t+1)

)− (Kll + σ
2I)−1k(�(1,...,t), �(t+1)

).

The main idea behind BO is to perform a proxy optimization based on an acquisi-
tion function to determine the new prediction points of � to evaluate in the next itera-
tion following

(22)

Set α = 0.5, γ
(k=2) = 0.9

For each iteration k

γ
(k) = γ

(k−1)

while f (u(k)) > {f (c(k))+
γ
(k)∇f (c(k))T (−c(k))+

(1/2γ (k)
)

∥

∥

∥
−(c(k)

∥

∥

∥

2

2
}

repeat γ
(k) = αγ

(k)

end

(23)MSE(t) ∼ N (l(�(t)), σ 2
)

(24)l(�) ∼ GP(m(�), k(�, �′))

(25)l| � ∼ N (Kll(Kll + σ
2I)−1

(Kll − Kll(Kll + σ
2I)−1Kll),

(26)MSE(t+1) | �(t+1), σ 2 ∼ N (µ(�
(t+1)

),�(�
(t+1), �(1,...,t))+ σ

2I),
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where ψ(�) is driven by the mean function µ(�) and determines the exploitation ability, 
whereas φ(�) is determined by the variance function �(�) and controls the amount of 
exploration. There are several acquisition functions that trade-off between exploitation 
and exploration in different ways [25]. [38] introduced the Gaussian process upper con-
fidence bound (GP-UCB)

where β is a tuning parameter that determines the trade-off between exploitation and 
exploration. [39] recommended to use the mutual information (GP-MI) acquisition 
function

where ν = log(2/δ) is a calibration parameter that needs to be chosen for confidence 
0 < δ < 1 (in practice values between 10−1 and 10−9 seems to have similar effect). The 
parameter ξ controls the amount of exploration and is calculated based on the mutual 
information I(�(1,...t)) = (1/2)log det(I + σ

−2Kll) following ξ (t) = maxI(�(1,...t)) . Hence, 
the amount of exploration increases with t. To reach convergence of the BO (i.e. no more 
decrease in test MSE), it is recommended to evaluate different parameter bounds and 
different acquisition functions for different data sets.

Implementation

The LAVA ADMM algorithm was implemented in Julia 1.5 [40] using the Proximal-
Operators package [41]. The data sets were analyzed with RR, LASSO, EN and LAVA 
implementations using the ADMM algorithm. The BO was performed with the Bayes-
ianOptimization package with an ElasticGPE model that avoids refitting of the whole 
Gaussian process and the squared exponential automatic relevance determination 
(SEArd) kernel [42]. The initial values of b̂ , ĉ and d̂ were set to the marginal covari-
ances between y and X multiplied by 0.0001. All analyses were performed with a Lenovo 
ThinkPad laptop with Intel Core i5-8265U 16GB RAM and Windows 10.

Simulated data

The simulated data encompass 3226 individuals organised in a 5 generation pedigree 
originally created for the QTLMAS2010 work-shop [43]. 20 individuals (5 males and 15 
females) act as founders of the pedigree, and by mating each female once they give birth 
to approximately 30 progeny. A neutral coalescent model was used to simulate the SNP 
data where the genome is made up of five autosomal chromosomes each with a length 
of 100 Mbp. The procedure resulted in 10,031 markers, where 263 SNPs became mono-
morphic and 9768 SNPs turned out to be biallelic.

The continuous quantitative trait is controlled by 9 major QTLs at fixed positions, 
including two pairs of epistatic genes, 3 maternally imprinted genes and two additive 
major genes with phenotypic effects of − 3 and 3. The additive genes are positioned at 

(27)�
(t+1) = argmax

�

{ψ(�)+ φ(�)},

(28)�
(t+1) = argmax

�

{ψ(�)+ βφ(�)},

(29)�
(t+1) = argmax

�

{µ(�(t))+
√
ν(

√

�(�(t))+ ξ (t−1) −
√

ξ (t−1))},
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SNP indices 4354 and 5327, whereas the major epistatic locus is at SNP 931. Moreo-
ver, 28 minor QTLs, randomly dispersed on chromosome 1–4, have their additive effects 
sampled from a truncated normal distribution and their effects vary between  −  1.98 
and 1.93. The QTLs are enclosed by 19  to 47 polymorphic SNPs located within 1 Mb 
distance from the QTLs. A total of 364 SNPs exhibit moderate to high linkage disequi-
librium (LD) with the QTLs. Hence, the trait can be considered to be an example of 
oligogenic inheritance because it is controlled by both a few major QTLs and a larger 
number of minor QTLs. However, the true number and positions of the minor QTLs are 
unknown due to the random sampling of these QTL effects.

In addition, one dominance locus was positioned at SNP number 9212 by allocating 
an effect of 5.00 to the heterozygote and a value of 5.01 to the upper homozygote. Fur-
thermore, one over-dominance locus was placed at SNP 9404 by assigning an effect of 
5.00 to the heterozygote, and an effect of − 0.01 to the lower homozygote and 0.01 to the 
upper homozygote. Lastly, by assigning a value of − 5.00 to the heterozygote, an effect 
of − 0.01 to the lower homozygote and 0.01 to the upper homozygote, one under-domi-
nance locus was created at SNP id 9602. The effects of these new dominance QTLs were 
added to the original phenotype values. SNPs with minor allele frequency (MAF) less 
than 0.01 was discarded which ended up in 9723 markers. These SNPs were transformed 
into one-hot encoding which means one indicator variable for each genotype. Hence, the 
final number of genomic markers was 29169. Generation 1 to 4 (individual 1 to 2326) 
were used as training data and generation 5 (individual 2327 to 3226) acted as test data.

Real data

In order to evaluate the methods on a typical real data set, we used a public pig data-
set containing 3534 individuals with high-density genotypes, phenotypes, and estimated 
breeding values for five anonymous traits [44]. Genotypes were scored using the Porcin-
eSNP60 chip, and after quality control, 52,842 SNPs remained. Missing SNPs with both 
known and unknown positions were imputed using a probability score. The data was 
anonymised by randomising the map order and recoding the SNP identities. The num-
ber of SNPs was further reduced in this study using a more stringent MAF < 0.01 , which 
resulted in a final number of 50,276 SNPs.

Most of the genotyped animals were measured for five purebred traits (phenotypes in 
a single nucleus line). Heritabilities ranged from 0.07 to 0.62. For this study, we chose the 
trait that had a heritability of 0.38. The phenotypic data points were adjusted for envi-
ronmental factors and rescaled by correcting for the overall mean. By discarding indi-
viduals with missing phenotype data a final number of 3141 individuals was obtained.
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