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Background
RNA-seq is commonly used to obtain genome-wide expression data for genes [1, 2] and 
to identify differentially expressed genes (DEGs) for different groups or conditions [3, 4]. 
To date, several methods to enable the analysis of RNA-seq data have been developed, 
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including normalization [5–10], various R packages [11–16], and graphical user inter-
faces (GUI) [17–19]. Research on more efficient and accurate methods to identify DEGs 
continues, and new findings continue to be reported by researchers [20–25].

Obtaining a ranked gene list for the degree of differential expression (DE) is a start-
ing point for gaining biological insights into the groups being compared [26]. Several 
analysis methods such as gene ontology and the construction of co-expression networks 
have been used to examine the biological mechanisms underlying DEGs [25]. Addition-
ally, gene clustering based on the similarity of expression patterns has been widely used 
to group and classify DEGs [27–29]. Gene clustering has also been used for time-course 
and multi-group data in which several expression patterns may exist. However, the 
method is usually not used to classify DEGs obtained by two-group comparisons which 
is the minimum size for a comparative analysis and is used even less to identify DEGs.

In this study, we propose the use of model-based clustering algorithms for the iden-
tification of DEGs from RNA-seq count data. Although various sophisticated algo-
rithms for gene clustering are available [30–32], we focus our analysis on the R package 
MBCluster.Seq [28], as its framework is compatible with DE analysis and it is compara-
ble with other R packages dedicated to detecting DEGs. We describe the application of 
the model-based gene clustering method and the incorporation of a robust normaliza-
tion algorithm called DEGES [7, 14] for detecting DEGs. Next, we compare the method 
with other competing packages dedicated to DE analysis such as edgeR [11], DESeq2 
[15], and TCC [14] using simulated data and real data. Further, we discuss the potential 
limitations of the method and present a set of guidelines for practical use.

Results
Proposed method for identification of DEGs based on gene clustering

In this study, we devised a new analysis method that uses the functionalities of the 
MBCluster.Seq package. Therefore, for consistency and clarity, we used notations that 
were similar to those described in the original paper [28]. First, we outlined a method to 
describe the input/output relationship. We denote an input count matrix as one where 
each row indicates a gene g (= 1, …, G), each column a replicate j (= 1, …, ni) of group i 
(= 1, …, I), and each cell the number of counts. Here, G is the number of genes, I is the 
number of compared groups, and ni is the number of replicates for the group i. MBClus-
ter.Seq clusters gene vectors βg = (βg1, …, βgI), where βgi indicates the count of gene g in 
the group i relative to the overall mean on a log-scale. Therefore, the summation of βgi 
for a gene g across all compared groups was 0. βg can be described as the log fold-change 
(FC) between compared groups. Given a preselected number of clusters K, MBCluster.
Seq gives two results as an output. One is the center for cluster k, μk = (μk1, …, μkI) for 
k = 1, …, K, and the other is the posterior probability (PP) that gene g belongs to the kth 
cluster, pg = (pg1, …, pgK) for g = 1, …, G.

A ranked gene list for a cluster mainly consisting of non-DEGs can be obtained via 
MBCluster.Seq by using the assigned PPs. To identify the non-DEG cluster, we consider 
the L2 Norm of μk for each cluster center across groups, ||μk||2 = (|μk1|2 + ⋯ +|μkI|2)1/2. 
A smaller value of the norm for cluster k indicates a smaller degree of DE across groups 
for the cluster. Accordingly, we can regard the probability of a gene being located in the 
kth column as that in the non-DEG cluster, where k = argmin(||μ1||2, …, ||μK||2). A lower 
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value of the PP for gene g in the kth cluster (i.e., pgk) indicates a higher degree of DE 
between the compared groups. For simplicity, we call the proposed method based on 
MBCluster.Seq as “MBCdeg”.

MBCluster.Seq employs a scaling normalization algorithm [33] as the default, where 
the upper quartile (i.e., 75th percentile) counts for individual samples are used as the 
scaling factors to obtain equal values for upper quartile counts across all samples after 
the normalization. This type of conventional normalization algorithm assumes that the 
proportion of DEGs (PDEG) in the data is small (e.g., less than 5%) or that the propor-
tion of genes upregulated in individual groups in the DEGs is approximately balanced 
(i.e., P1 ≈ P2 when comparing groups 1 and 2; P1 + P2 = 1) [34–36]. However, in prac-
tice, these assumptions are invalid in certain cases, such as when PDEG ≈ 60% [37] and 
P1 >  > P2 [38]. To investigate the effect of various normalization algorithms on the data 
analysis, we employed a competing method (called DEGES) [7, 14]. The main arguments 
in its favor are (1) DEGES was originally designed to manipulate such scenarios (~ 25% 
of PDEG with P1 >  > P2), (2) it can be applied to ~ 60% of PDEG [35], and (3) the output 
(i.e., normalization factors) can easily be applied to the framework of MBCluster.Seq. 
Henceforth, we refer to MBCdeg using the default normalization algorithm and with the 
DEGES normalization algorithm as “MBCdeg1” and “MBCdeg2”, respectively.

Analysis of simulated data for a two‑group comparison

We show an example of MBCdeg based analysis for simulated data for two groups: 
G = 10,000, n1 = n2 = 3, PDEG = 0.25, P1 = 0.9 (or P2 = 0.1), and FC = 4. We performed a 
run for MBCdeg with K = 3, assuming three expression patterns: up-regulated in group 
1 (“DEG1” pattern), up-regulated in group 2 (“DEG2”), and consistent in both groups 
(“non-DEG”). Using this approach, we ideally obtain the centers for the cluster k (= 1, 
2, 3) as μ1 = (0.69, − 0.69), μ2 = (− 0.69, 0.69), and μ3 = (0.00, 0.00), with loge(2) = 0.69. 
Clearly, the third cluster has the smallest L2 Norm (i.e., ||μ3||2 = 0). We therefore regard 
this cluster as containing many non-DEGs and used the PPs assigned to this cluster for 
estimating the overall degree of DE.

Here, MBCdeg1 gives the output μ1 = (0.56, − 0.56), μ2 = (− 0.14, 0.14), and 
μ3 = (− 0.81, 0.81) and uses the PPs of the second cluster displaying the smallest norm 
(||μ2||2 = 0.195) for gene ranking. Meanwhile, MBCdeg2 outputs μ1 = (0.68, − 0.68), 
μ2 = (− 0.69, 0.69), and μ3 = (− 0.02, 0.02) and uses the PPs of the third cluster displaying 
the smallest norm (||μ3||2 = 0.027) for gene ranking. The expression patterns for the clus-
ter centers from MBCdeg2 were closer to the ideal patterns than those from MBCdeg1. 
This result suggests that the DEGES normalization may be useful in the framework for 
MBCdeg, at least in similar scenarios.

Next, we evaluated the performance of the overall gene ranking using the area under 
the receiver operating characteristic (ROC) curve (i.e., AUC). The AUC enables data 
comparisons without a tradeoff in sensitivity and specificity because the ROC curve is 
created by plotting the true positive rate (i.e., sensitivity) against the false positive rate 
(1 − specificity) obtained for each possible threshold value [39–41]. Therefore, an accu-
rate method should provide high AUC values. We compared five methods: two cluster-
ing-based methods (MBCdeg1 and MBCdeg2) and three conventional methods (edgeR 
[11], DESeq2 [15], and TCC [14]). The edgeR and DESeq2 packages are widely used [25]. 
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TCC is used as the main alternative to MBCdeg as it utilizes the DEGES normalization 
algorithm.

Figure  1 shows the AUC values for the five methods using various simulations: 
PDEG = 0.05 and 0.25, with P1 = 0.5, 0.7, 0.9, and 1.0. A higher P1 value indicates a higher 
degree of upregulated DEGs in group 1, ranging from symmetric (P1 = 0.5) to com-
pletely asymmetric (P1 = 1.0) conditions. The AUC values for the two MBCdeg meth-
ods were higher than those from the conventional DE methods. TCC showed the best 
among the three conventional methods because the simulated data was generated using 
this package and the DEGES normalization algorithm in TCC was originally designed to 
manipulate such asymmetric scenarios (i.e., P1 > 0.5). Therefore, the high performance of 
MBCdeg over TCC is an interesting result.

The performance of MBCdeg does not appear to depend on whether the simulation 
scenario is symmetric or asymmetric. Most of the trials of MBCdeg showed AUC values 
of 0.93, and the range of P1 from 0.5 to 0.9, suggesting that the framework of MBCdeg 
is intrinsically robust for both symmetric and asymmetric data. As indicated above, we 
confirmed that MBCdeg2 tends to have lower norm values for non-DEG clusters (i.e., 
||μk||2 with k = argmin(||μ1||2, …, ||μK||2)) than MBCdeg1 in scenarios with P1 > 0.5. This 
can be explained by the use of DEGES in the MBCdeg2 algorithm.

The overall performance of MBCdeg2 was very similar to that of MBCdeg1 although 
the former performs better than the latter in completely asymmetric scenarios (i.e., 
P1 = 1.0). We hypothesized that the key to accurate gene ranking may be to identify non-
DEG cluster, and not to make the ideal non-DE pattern. This trend was also observed 
when the number of replicates per group was increased to n1 = n2 = 6, 9, and 12 (Addi-
tional file 1). In a comparison of the performance of each method using different num-
bers of replicates (Fig.  1 and Additional file  1), we observed that AUC values tend to 
increase as the number of replicates increases and this trend is consistent with a previ-
ous report [20].

Effect on different numbers of clusters

We noted that MBCdeg tends to increase the variation in AUC between trials in associa-
tion with an increase in P1 values, and this effect was greatest at P1 = 1.0. For example, 
the AUC values for MBCdeg1 and MBCdeg2 were less than 0.8 for ten and three trials, 
respectively, when PDEG = 0.05 (Fig. 1). The relatively poor performance of MBCdeg at 
P1 = 1.0 than with other values of P1 can be explained by the difference between the true 
number of clusters (i.e., Ktruth = 2) in this condition and the number of clusters that were 
used (K = 3). The simulated data obtained with P1 = 1.0 has two expression patterns; 
“DEG1” and “non-DEG”, and does not have the “DEG2” pattern.

To demonstrate the effect of using MBCdeg on a predefined number of clusters, we 
investigated the AUC values for MBCdeg with K = 2–4 (Fig. 2). Our results showed that 
the AUC values were the highest when K = Ktruth. The highest AUC values for P1 = 0.5, 
0.7, 0.9, and 1.0 were obtained using K = 3, 3, 3, and 2, respectively (indicated by the 
downward arrow in light blue). This result suggests that the use of an accurate number 
of clusters is important when performing an analysis using MBCdeg. The distributions 
of the AUC values indicate the K values that should be used in practice. At P1 = 0.5 and 
0.7 (i.e., Ktruth = 3), the results for K > Ktruth (i.e., K = 4) were more accurate than those 
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with K < Ktruth (i.e., K = 2). Further, this trend was observed when the number of repli-
cates per group was increased to n1 = n2 = 6, 9, and 12 (Additional file 2).

In practice, it may be safe to adopt a larger K value. For two-group comparisons, the 
user would only need to run MBCdeg with K ≥ 3. Although the frequency of trials that 
result in a low performance of gene ranking is relatively high at larger P1 values, the 
probability of obtaining extremely asymmetric results such as P1 = 1.0 is low, and may at 
most indicate P1 = 0.9. Therefore, both methods (MBCdeg1 and MBCdeg2) may be use-
ful in scenarios that are similar to the conditions investigated.

Although the probability of extremely low performance at P1 ≤ 0.9 is at most 2%, we 
should discuss the reasons. For example, the use of MBCdeg2 with K = 3 outputs one 
such result (AUC = 0.634) with PDEG = 0.25 and P1 = 0.5. As this simulated data consists 
of 1250 DEG1, 1250 DEG2, and 7500 non-DEG patterns, almost all trials with high AUC 
values (> 0.92) gave three clusters, each of which consisted of many genes that resembled 
one of the three patterns, and having one predominant pattern (Table 1a). However, for 
the trial with low AUC value (0.634), the numbers of genes in the three clusters were 
1299, 8670, and 31, respectively (Table  1b). Of these, the first cluster consisted of the 
most genes showing the DEG2 pattern, i.e., 12 DEG1, 935 DEG2, and 352 non-DEG pat-
terns. The second cluster consisted of a great majority of genes with non-DEG patterns, 
i.e., 1238 DEG1, 289 DEG2, and 7143 non-DEG patterns. As this non-DEG cluster con-
tains 1238/1250 = 99.0% of the genes with a true DEG1 pattern, these ranking inaccura-
cies may be responsible for the low AUC values obtained. As per our analysis, most low 
AUC values result due to the incorporation of DEGs (i.e., the DEG1 or DEG2 patterns) 
into the non-DEG clusters.

The third cluster shown in Table  1b had very few genes (i.e., 26 DEG2 and 5 non-
DEGs). These results indicate that the first two clusters determine the performance 
of the trial. The results from using K = 2 with the same simulation conditions (i.e., 
PDEG = 0.25 and P1 = 0.5 in Fig. 2) indicate that the distribution of AUC values located 
around 0.63 may thus be reasonable. Similar inferences can be made for other results, 
for example, with PDEG = 0.25 and P1 = 0.7. As the simulated data consists of 1750 DEG1, 
750 DEG2, and 7500 non-DEG patterns, MBCdeg with K = 2 tends to output one cluster 
that is mainly composed of non-DEG and DEG2 genes, with the second cluster mainly 

Table 1  Results for trials using MBCdeg2 with PDEG = 0.25 and P1 = 0.5

Two trial results with (a) high and (b) low AUC values as shown in Fig. 1 are described. MBCdeg2 was performed using K = 3, 
both trials output three clusters. The third and second clusters for the trials (a) and (b) were considered to be non-DEG 
clusters, respectively. For details, see the main text

DEG1 DEG2 non-DEG Total L2 Norm

(a) AUC = 0.9295

 First cluster 884 3 317 1204 0.9792

 Second cluster 3 900 222 1125 0.9779

 Third cluster 363 347 6961 7671 0.0029

(b) AUC = 0.6336

 First cluster 12 935 352 1299 0.9546

 Second cluster 1238 289 7143 8670 0.1904

 Third cluster 0 26 5 31 1.7785

Truth 1250 1250 7500 10,000



Page 8 of 20Osabe et al. BMC Bioinformatics          (2021) 22:511 

composed of DEG1 genes. The median AUC values (≈ 0.77) when using MBCdeg with 
K = 2 at P1 = 0.7 are higher than those (≈ 0.63) at P1 = 0.5, and this can be explained by 
the smaller number of true DEG patterns (750 < 1250) contained in the non-DEG clus-
ter. As this phenomenon was observed using both MBCdeg1 and MBCdeg2, it does 
not result due to the differences in the normalization algorithms. MBCdeg determines 
clusters stochastically, and therefore an output of results that appear as outliers will be 
obtained with a certain probability.

Effect on different degrees of DE

For the simulation analysis described above, the degree of DE was fixed at fourfold (i.e., 
FC = 4), which limits the expression pattern of genes upregulated in a group to one, 
which is favorable when using MBCdeg. However, in practice, the degree of DE would 
differ for genes. Therefore, we performed simulations using different degrees of DE [7], 
where the FCs for DEGs were randomly sampled from “1.2 + a gamma distribution with 
shape = 2.0 and scale = 0.5.” Accordingly, the minimum and mean fold-change were 
approximately 1.2 and 2.2 (= 1.2 + 2.0 × 0.5), respectively.

The results of the analysis indicated that greater variability in the performance of 
MBCdeg is observed compared to the results obtained using fixed FC, as shown in Fig. 1 
(Additional file  3). AUC values are lower overall than those from the fixed FC com-
parison (Fig.  1) in the same condition, and this can be explained by the lower degree 
of DE (fourfold → 2.2-fold). Though MBCdeg gave superior results than other pack-
ages (edgeR, DESeq2, and TCC) with PDEG = 0.25, it did not perform as well using 
PDEG = 0.05. This may occur due to the small number of DEGs (10,000 × 0.05 = 500 
genes) under the conditions used for analysis and the resulting instability of clusters that 
mainly consisted of DEG1 or DEG2 patterns. As the total number of DEGs is relatively 
large with PDEG = 0.25, clusters containing more DEG1 or DEG2 patterns are more likely 
to result and are probably more stable.

Notably, the AUC values for MBCdeg are not always the highest when K = Ktruth 
(Additional file  4). With PDEG = 0.25 and P1 = 0.9, the AUC values tend to increase as 
the number of clusters K increases. This may occur because the simulated data contains 
more expression patterns than Ktruth. In the conditions used here, Ktruth = 3 was used for 
convenience. However, genes upregulated in a group may show various degrees of DE, 
such as 2.1-fold and 2.7-fold, and allowing the formation of separate clusters would have 
reduced the possibility of the inclusion of these genes in the non-DEG cluster.

Effect on larger PDEG values

The results described above were obtained with PDEG ≤ 0.25 and K = 3, and it may be rea-
sonable to expect the largest cluster to consist of many non-DEGs for PDEG < 0.5. How-
ever, there may be instances where PDEG > 0.5 [37, 42], and we investigated the effect of 
P1 = 0.5, 0.7, 0.9, and 1.0 on larger PDEG values (= 0.45–0.75) (Fig. 3). Our results showed 
that MBCdeg gave high AUC values in most trials with PDEG ≤ 0.55 and P1 ≤ 0.9. How-
ever, its performance was decreased drastically in other conditions (e.g., P1 ≥ 0.9 and 
PDEG ≥ 0.65).

Overall, the performance of MBCdeg was similar to TCC, and there were few differ-
ences between the performance of MBCdeg1 and MBCdeg2. However, MBCdeg1 is 
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superior to both TCC and MBCdeg2 for PDEG = 0.75 and P1 = 0.7. This may be explained 
by the failure of DEGES normalization that was used in TCC and MBCdeg2. The DEGES 
normalization works well in the conditions where PDEG ≤ 0.45 and P1 ≤ 1.0, PDEG ≤ 0.55 
and P1 ≤ 0.9, PDEG ≤ 0.65 and P1 ≤ 0.7, and PDEG ≤ 0.75 and P1 ≤ 0.5. However, the perfor-
mance of the normalization decreases in other conditions, and these results are similar 
to those reported by Evans et al. [35].

Table 2 shows a representative result for MBCdeg for PDEG = 0.75, and P1 = 0.7. In 
this condition, 5250 DEG1, 2250 DEG2, and 2500 non-DEG patterns were observed. 
MBCdeg1 gave three clusters, each of which consisted of many genes that resem-
bled one of the three patterns, with a particular pattern predominating. In the trial 
shown in Table  2a, MBCdeg1 successfully identified the third cluster displaying the 
minimum norm value (= 0.3145) as the non-DEG cluster and produced an accurately 
ranked gene list with a high AUC value (= 0.9329). However, in the same trial shown 
in Table 2b, MBCdeg2 incorrectly determined the third cluster displaying the mini-
mum norm value (= 0.0762) as the non-DEG cluster and produced an inaccurately 
ranked gene list with a low AUC value (= 0.2421). As the third cluster mainly consists 
of genes with the DEG1 pattern (4942/5637 = 87.7%), genes that belong to the first 
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Fig. 3  Effect on larger PDEG values (PDEG ≥ 0.45). Boxplots of AUC values (50 trials) for five methods for a 
total of 16 conditions, P1 = 0.5 (left) to 1.0 (right) with PDEG = 0.45 (top) to 0.75 (bottom). MBCdeg1 and 
MBCdeg2 were used for analysis with K = 3. The performance of MBCdeg2 partly depended on the of DEGES 
normalization (see Tables 2 and 3)
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and second clusters will be located at the top of the ranked gene list. The AUC value 
(= 0.2421) may result due to genes in the first cluster showing predominantly DEG2 
patterns (1979/2436 = 81.2%) that are correctly ranked at the top.

In the scenario where MBCdeg1 is inferior to MBCdeg2, we observed 22% of tri-
als (= 11/50) with extremely low AUC values (< 0.2) for MBCdeg1 with PDEG = 0.45 
and P1 = 1.0. As this condition has 4500 DEG1 and 5500 non-DEG patterns, the accu-
rate number of clusters is two (i.e., Ktruth = 2). Table 3 shows the representative case 
of an MBCdeg trial with K = 3. We observed that MBCdeg1 incorrectly determined 
the third cluster that displayed the minimum norm value (0.4100) as non-DEG one 
and produced an inaccurately ranked gene list with an extremely low AUC value 
(= 0.1195). As this condition does not contain any DEG2 pattern, the failure to iden-
tify non-DEG cluster results in a non-ideal and incorrectly ranked gene list. This pro-
duces several extremely inferior results (11/50 = 22% of trials) when using MBCdeg1. 
A greater number of successful trials using MBCdeg1 (39/50 = 78% of trials) with 
PDEG = 0.45 and P1 = 1.0 may result due to the number of non-DEG patterns being 
greater than DEG1 patterns (i.e., 55:45). Similar explanations for the fewer success-
ful cases using MBCdeg with PDEG = 0.55 and P1 = 1.0 may be valid as the number of 
non-DEG patterns is fewer than the number of DEG1 patterns (i.e., 45:55). MBCdeg2 

Table 2  Representative results for MBCdeg with PDEG = 0.75 and P1 = 0.7

The results for (a) MBCdeg1 and (b) MBCdeg2 in the same trial as described in Fig. 3 are shown. The results indicate that 
MBCdeg1 outperforms MBCdeg2

DEG1 DEG2 non-DEG Total L2 Norm

(a) MBCdeg1 (AUC = 0.9329)

 First cluster 113 1971 345 2429 1.3039

 Second cluster 4941 140 557 5638 0.6636

 Third cluster 196 139 1598 1933 0.3145

(b) MBCdeg2 (AUC = 0.2421)

 First cluster 113 1979 344 2436 1.8909

 Second cluster 195 132 1600 1927 0.9017

 Third cluster 4942 139 556 5637 0.0762

Truth 5250 2250 2500 10,000

Table 3  Results for MBCdeg with PDEG = 0.45 and P1 = 1.0

The results for (a) MBCdeg1 and (b) MBCdeg2 in the same trial as described in Fig. 3 are shown. The results indicate that 
MBCdeg2 outperforms MBCdeg1

DEG1 DEG2 non-DEG Total L2 Norm

(a) MBCdeg1 (AUC = 0.1195)

 First cluster 3269 0 391 3660 0.5717

 Second cluster 788 0 5081 5869 0.4541

 Third cluster 443 0 28 471 0.4100

(b) MBCdeg2 (AUC = 0.9547)

 First cluster 3894 0 589 4483 0.8698

 Second cluster 22 0 3 25 3.0380

 Third cluster 584 0 4908 5492 0.1118

Truth 4500 0 5500 10,000
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shows stable and relatively accurate performance for PDEG ≤ 0.45, regardless of the 
value of P1 and it may be useful in these conditions. This trend was also observed 
when the number of replicates per group was increased to n1 = n2 = 6, 9, and 12 
(Additional file 5).

Three‑group simulated data

Next, we investigated the performance of MBCdeg in a multi-group comparison. Tang 
et al. [43] evaluated the performance of 12 DE pipelines available across nine R packages 
(TCC [14], edgeR [11], DESeq [44], DESeq2 [15], limma [45], samr [46], PoissonSeq [47], 
baySeq [12], and EBSeq [13]) and recommended the use of TCC when performing three-
group count data. Therefore, we followed the conditions where TCC performed the best 
in the previous simulation analysis and investigated whether MBCdeg could exceed TCC 
as well as the other two methods (i.e., edgeR and DESeq2).

As in the evaluation study described [43], we focused on a three-group data with equal 
numbers of replicates (i.e., three replicates per group; n1 = n2 = n3 = 3). The other simula-
tion conditions were G = 10,000, PDEG = 0.25, and FC = 4. For the proportion of upregu-
lated DEGs in individual groups (P1, P2, P3), we prepared a total of four conditions: (1/3, 
1/3, 1/3), (0.6, 0.2, 0.2), (0.5, 0.5, 0.0), and (1.0, 0.0, 0.0). The numbers of true clusters 
Ktruth for these conditions were 4, 4, 3, and 2, respectively. The first two conditions are 
the same as those used in the previous study, and the other two conditions were used 
to examine the effect on different Ktruth values (i.e., 3 and 2). We compared a total of 
four K values (K = 2, 3, 4, and 5) when performing an analysis using MBCdeg. For the 
three packages (edgeR, DESeq2, and TCC), gene ranking was performed based on an 
ANOVA-like p-value, where a low p-value for a gene indicates a high degree of DE in at 
least one of the groups compared.

Figure 4 shows the boxplots of AUC values using these methods in the four conditions 
described. We observed that the AUC values were the highest when K = Ktruth and that 
the performances with K > Ktruth were higher than those with K < Ktruth. Further, this trend 
was observed when the number of replicates per group was increased to n1 = n2 = n3 = 6, 
9, and 12 (Additional file 6). However, for simulated data with variable FC values, AUC 
values for MBCdeg with K ≥ Ktruth tended to be higher than those with K = Ktruth (Addi-
tional file 7). This is consistent with the results of the two-group data (Additional file 4). 
Together, these results indicate that MBCdeg yields better performance with larger K 
values (e.g., K > I + 1) when using real data with a group number I.

Two‑group real data

We examined the performance of MBCdeg for a real count dataset available from the 
recount2 database [48]. As with previous analyses, we compared a total of five meth-
ods: edgeR, DESeq2, TCC, MBCdeg1, and MBCdeg2. For the first three packages, genes 
with a false discovery rate (FDR) of 0.1 or higher were defined as non-DEGs. The other 
genes were identified as having DEG1 or DEG2 patterns in the direction of DE. Some 
may argue that this cut-off (10% FDR) is somewhat looser than the commonly used ones 
(e.g., 1% or 5%). However, we empirically know that even with such a loose threshold of 
10% FDR, the number of genes satisfying the threshold will be lower than the true num-
ber of DEGs [20]. Hence, we decided that it is more reasonable to use the default TCC 
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threshold of 10% FDR for the sake of comparison in the context of the MBCdeg results. 
For MBCdeg, we investigated the effect on different K values (= 3, 4, and 5). As previ-
ously described, genes belonging to the cluster with the smallest L2 Norm were consid-
ered as non-DEGs. The other genes were identified as having DEG1 or DEG2 patterns in 
the direction of DE, regardless of the cluster to which the genes belonged. As the true DE 
results are not known, we focus our attention on the similarities between the methods.

The real dataset (called “Pickrell”) consisting of 51,910 × 69 samples was designed to 
compare the expression levels of lymphoblastoid cell lines between 40 females and 29 
males [49]. This dataset has been widely used for validation purposes [50]. Table 4 shows 
the results of the gene classification into one of the three patterns. Overall, MBCdeg1 
with K = 5 showed (i) the maximum PDEG value of (1291 + 3433)/51,910 = 0.0910, 
and (ii) the maximum degree of asymmetry, defined as max(P1, P2), of 3433/
(1291 + 3433) = 0.7267. These values are within the range used in the simulation analysis 
(see Additional files 2 and 4). The values in parentheses indicate the average log2(FC) 
values for the genes. Our results showed that the values for DEG1 and DEG2 are 
approximately 1.8 (i.e., the average FC is about 2^1.8 = 3.5), which is within the values of 
FC = 2.5 and 4 introduced in the current simulation analysis.

DESeq2 and TCC showed similar results (99.8% concordance), and edgeR and 
MBCdeg also showed similar results (> 97% concordance). Even the lowest concordance 
rate was found between DESeq2 and MBCdeg1 with K = 5 at 90.86% (see “Sheet1” in 
Additional file 8). This high concordance rate (≥ 90.86%) among the methods is reason-
able as the maximum PDEG value is 9.10% (i.e., mostly determined as non-DEGs). We 
observed a high similarity between the results from six MBCdeg methods, where the 
lowest concordance rate was found between MBCdeg1 with K = 5 and MBCdeg2 with 
K = 4 at 97.26%. This suggests that a cluster of DEG1 (or DEG2) patterns obtained by 
K = 3 is divided into sub-clusters when K = 4 or 5. Indeed, MBCdeg1 with K = 4 pro-
duced two clusters (containing 1939 genes and 1454 genes, respectively) assigned to the 
DEG2 pattern (see “Sheet2” in Additional file 8). Of a total of 3393 genes, 2713 genes 
were included in the 3298 DEG2 genes obtained by MBCdeg1 with K = 3 (Table 4).

Similar to the analysis using MBCdeg1 with K = 4, MBCdeg2 with K = 4 produced 
two clusters (containing 60 genes and 1291 genes, respectively) assigned to the DEG1 

Table 4  DE results using the Pickrell data

The number of genes and average log2(FC) values in each pattern are shown. The FC is defined as the mean normalized 
count of samples in group 2 (male group) divided by the mean normalized count of samples in group 1 (female group). To 
evaluate the differences in the genes assigned to each pattern between methods, the log2(FC) values for individual genes 
obtained by edgeR were used for the other methods

Method DEG1 DEG2 Non-DEG

edgeR 1675 (− 1.677) 2872 (1.911) 47,363 (0.074)

DESeq2 66 (− 1.520) 52 (4.083) 51,792 (0.117)

TCC​ 65 (− 1.935) 123 (3.695) 51,722 (0.113)

MBCdeg1 (K = 3) 1291 (− 1.742) 3298 (1.800) 47,321 (0.053)

MBCdeg1 (K = 4) 1291 (− 1.742) 3393 (1.894) 47,226 (0.043)

MBCdeg1 (K = 5) 1291 (− 1.742) 3433 (1.889) 47,186 (0.041)

MBCdeg2 (K = 3) 1291 (− 1.742) 3209 (1.802) 47,410 (0.056)

MBCdeg2 (K = 4) 1351 (− 1.694) 3219 (1.802) 47,340 (0.057)

MBCdeg2 (K = 5) 1329 (− 1.715) 3302 (1.907) 47,279 (0.046)
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pattern (“Sheet2” in Additional file 8). Interestingly, the 1291 genes in the second cluster 
were identical to the 1291 DEG1 genes obtained using MBCdeg2 with K = 3, and 1290 
of the 1291 genes were the same as those obtained using MBCdeg1 with K = 3–4. In the 
results obtained using MBCdeg2 with K = 4, we found that the representative expres-
sion patterns for the remaining 60 genes assigned to the DEG1 pattern (the cluster 
centers μ = (0.184, − 0.184)) were very similar to those assigned to the non-DEG pat-
tern (μ = (0.014, − 0.014)) than the other 1291 genes to the DEG1 pattern (μ = (3.117, 
− 3.117)), given the degrees of DE. These 60 genes were assigned to non-DEG pattern at 
K = 3. Although we defined only one cluster with the smallest L2 Norm as of non-DEG, 
it may be better to define the clusters with low L2 Norm as of non-DEGs and to consider 
their assignments when using other K values.

In the results with K = 5, we observed that MBCdeg2 gave two DEG1 clusters con-
taining 38 and 1291 genes, and two DEG2 clusters containing 1938 and 1364 genes. 
Additionally, MBCdeg1 gave one DEG1 cluster containing 1291 genes and three DEG2 
clusters containing 1923, 39, and 1471 genes, respectively. As described earlier, the 
1291 DEG1 genes obtained by MBCdeg2 with K = 5 were identical to those obtained by 
MBCdeg2 with K = 3–4 and 1290 out of the 1291 DEG1 genes were the same as those 
obtained by MBCdeg1 with K = 3–5. The degrees of DE in the three DEG2 clusters 
obtained when using MBCdeg1 were sorted in descending order of the clusters consist-
ing of 1923, 39, and 1471 genes (“Sheet2” in Additional file 8). The 1962 genes from the 
first two DEG2 clusters were included in the DEG2 cluster containing 3298 genes, that 
was obtained by using MBCdeg1 with K = 3. However, 751 (or 720) of the remaining 
1471 genes with the lowest degree of DE from the last DEG2 cluster, were included alone 
in the DEG2 (or non-DEG) cluster obtained by using MBCdeg1 with K = 3. These results 
suggest that the use of MBCdeg for DE analysis should take into account the fluctua-
tion of expression patterns in clusters obtained at various K values, as well as the PPs 
assigned to each gene.

Discussion
Gene clustering has been used to classify DEGs with similar expression patterns. The 
MBCluster.Seq package was originally developed to be used as a post-DE analysis tool. 
In this study, we propose the use of this model-based gene clustering algorithm for DE 
analysis itself (i.e., the identification of DEGs). Although the creators of MBCluster.Seq 
have not envisioned this possibility, the DE framework based on the package (called 
MBCdeg) outperformed three other packages (edgeR, DESeq2, and TCC) dedicated to 
DEG identifications in many DE scenarios with PDEG < 50%.

Several bioinformatics studies have made comparisons with typical conventional anal-
ysis methods and claimed about superior results by using the methods of interest [51]. 
However, a typical package may not be the best suited for the analysis. As demonstrated 
in this study, the less well-known TCC package gave better results in our analysis than 
the typical packages (edgeR and DESeq2). The main contribution of this study is the 
demonstration that clustering-based DE framework (MBCdeg) performed better than 
TCC under the scenarios for which TCC performed well.

MBCdeg2 (MBCdeg with robust DEGES normalization) was slightly more stable 
and accurate than MBCdeg1 (MBCdeg with the default normalization) when using the 
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simulation analysis employed in our study. A common disadvantage of the MBCdeg is 
that in datasets with a very large proportion of DEGs (PDEG ≥ 50%), the identification 
of the non-DEG cluster, which is the key to the framework proposed here, fails fre-
quently and results in incorrect rankings. Therefore, conventional methods must be 
used in conjunction with MBCdeg to ensure that the overall similarities in the rankings 
are maintained. Additionally, it is necessary to verify various K values to investigate the 
cluster-wise fluctuations for DEGs and the number of clusters identified as optimal by 
MBCdeg. While the current simulation analysis was done with TCC, there are several 
other simulation frameworks available (e.g., polyester [52] and countsimQC [53]). The 
proposed method requires (i) evaluation based on those simulation frameworks, (ii) real 
data with various experimental settings and organisms, and (iii) additional fine-tuning 
described above.

Conclusions
The model-based gene clustering allowed by the MBCluster.Seq package is a promis-
ing tool for both the identification and classification of DEGs in one step. The proposed 
procedure, MBCdeg, can be used in the context of RNA-seq count data in which the 
percentage of DEGs is less than half (PDEG < 50%).

Methods
All analyses were performed using CRAN/R (ver. 3.6.3) [54] and Bioconductor [55]. The 
versions of the major R packages used were MBCluster.Seq ver. 1.0 [28], TCC ver. 1.26.0 
[14], edgeR ver. 3.28.1 [11], DESeq2 ver. 1.26.0 [15], ROC ver. 1.6.3, and recount ver. 
1.12.1. The R-codes leading to the results described in this paper are available on GitHub 
(https://​github.​com/​takosa/​MBCdeg-​paper). A two-group sample data and R-codes 
(MBCdeg1 and MBCdeg2) for data execution are also provided.

Simulated data

The simulated data for two- and three-group comparisons were generated using the sim-
ulateReadCounts function in TCC [14]. The number of genes (G = 10,000) was given in 
the Ngene option. The number of replicates for individual groups (i.e., n1, n2, …, nI for 
I-group comparison) were specified in the replicates option. The proportion of DEGs 
(PDEG) was given in the PDEG option. The assignment of DEGs upregulated in individ-
ual groups (i.e., P1, P2, …, PI, and P1 + P2 + … + PI = 1) was specified in the DEG.assign 
option. The fixed degrees of DE (FC = 4) were specified in the DEG.foldchange option. 
To generating different degrees of DE, the makeFCMatrix function was used, and the 
output object was used as the input for the fc.matrix option in the simulateReadCounts 
function. The output of the simulateReadCounts function was stored in the TCC class 
object with information about the simulation conditions and is therefore ready-to-ana-
lyze in the DE analysis.

Real data

Pickrell’s real data was obtained by searching the recount2 database with the accession 
number “SRP001540”. The original count matrix (58,037 genes × 160 samples) con-
sists of human data obtained from two different sequencing centers; one from Yale and 

https://github.com/takosa/MBCdeg-paper
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the other from Argonne [48, 49]. Since both datasets have been found to show similar 
results [50], we analyzed the Yale count data of 79 samples alone. The matrix was col-
lapsed by summing the data for technical replicates, resulting in a reduced number of 
columns/samples (79 → 69). Genes with a count of zero in all samples were excluded 
(58,037 → 51,910). DE analysis was performed using 40 female samples vs. 29 male 
samples.

DE analysis

DE analysis using edgeR was performed by applying the following functions with the 
default options in the sequence indicated: DGEList, calcNormFactors, estimateDisp, 
glmQLFit, glmQLFTest, and topTags. The p-values for individual genes were obtained by 
the output of the topTags function. The genes were ranked in ascending order based on 
the p-values and the ranks were used to calculate the AUC values. The AUC values were 
calculated using the AUC​ function in the ROC package. The p-values were adjusted for 
multiple testing by using the Benjamini–Hochberg procedure [56]. The adjusted p-val-
ues (q-values) were obtained using the p.adjust function with the method = ”BH” option. 
Genes that had a q-value greater than 0.1 were defined as having a non-DEG pattern. 
The log2(FC) values for individual genes were obtained from the output of the topTags 
function (the logFC column in the table slot). Genes that showed a q-value less than 0.1, 
and genes with log2(FC) values less (or greater) than 0 were defined as having a DEG1 
(or DEG2) pattern.

DE analysis using DESeq2 [15] was performed by applying the following functions 
with default options in the sequence indicated: DESeqDataSetFromMatrix, DESeq, and 
results. The p-values for individual genes were obtained by using the output of the results 
function (the pvalue column). The adjusted p-values (q-values) were obtained from the 
output of the results function (the padj column). The other procedures followed were 
the same as those described in edgeR.

DE analysis using TCC was performed by using the following functions with default 
options in the sequence indicated: new, calcNormFactors, estimateDE, and getResult. The 
gene ranking information and q-values were obtained directly from the output of the 
getResult function. The other procedures were the same as those described in edgeR. 
The normalization factors assigned for individual samples were obtained from the out-
put of the calcNormFactors function in TCC. The normalization factors were converted 
to size factors, and the log-transformed values were used in the Normalizer option in the 
RNASeq.Data function when using MBCdeg2.

The DE analysis based on the MBCluster.Seq method [28] (i.e., MBCdeg) was per-
formed by applying the following functions in sequence: RNASeq.Data, KmeansPlus.
RNASeq, and Cluster.RNASeq. The Normalizer = NULL option in the RNASeq.Data 
function was used when performing an analysis using MBCdeg1 as it corresponds 
to the default normalization algorithm [33] employed in MBCluster.Seq. The pre-
selected number of clusters K was introduced in the nK option in the KmeansPlus.
RNASeq function. The negative binomial model (“nbinom”) was used in the model 
option in both KmeansPlus.RNASeq and Cluster.RNASeq functions. The output of 
the KmeansPlus.RNASeq function was used as the initial cluster center when execut-
ing the Cluster.RNASeq function. The expectation–maximization (EM) algorithm 
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was used to iteratively update the estimates of clusters and their centers. This cor-
responds to the method = “EM” option in the Cluster.RNASeq function. The centers 
for K clusters (k = 1, …, K) across I groups (i = 1, …, I), μki, were used to calculate the 
L2 Norm values ||μk||2 for individual clusters. The information for cluster centers and 
the PPs for individual genes (g = 1, …, G) across clusters were obtained as the outputs 
of the Cluster.RNASeq function. Genes in a cluster that had the smallest L2 Norm 
value were regarded as non-DEGs. The other genes were determined to have DEG1 
or DEG2 patterns in the direction of DE when performing a two-group comparison 
(I = 2). The overall gene ranking was performed based on the PPs assigned to the non-
DEG cluster.
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ANOVA: Analysis of variance; AUC​: The area under the receiver operating characteristic curve; βgi: Count of gene g in 
group i relative to the overall mean on log-scale; DE: Differential expression; DEG: Differentially expressed gene; DEG1: 
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Additional file 1. Results corresponding to Fig. 1 with a larger number of replicates. Boxplots of AUC values (100 tri-
als) for individual methods with n1 = n2 = (a) 6, (b) 9, and (c) 12 are shown. In the simulation, the degree of DE was 
fixed at 4-fold (i.e., FC = 4).

Additional file 2. Results corresponding to Fig. 2 with a larger number of replicates. Boxplots of AUC values (100 
trials) for MBCdeg (K = 2–4) with n1 = n2 = (a) 6, (b) 9, and (c) 12 are shown.

Additional file 3. Effect on different degrees of DE for the five methods.  Boxplots of AUC values (100 trials) for 
individual methods with n1 = n2 = (a) 3, (b) 6, (c) 9, and (d) 12 are shown. In contrast to Fig. 1 and Additional file 1, 
simulations were performed using different degrees of DE.

Additional file 4. Effect on different degrees of DE for MBCdeg with K = 2–4. Boxplots of AUC values (100 trials) for 
MBCdeg (K = 2–4) with n1 = n2 = (a) 3, (b) 6, (c) 9, and (d) 12 are shown. In contrast to Fig. 2 and Additional file 2, 
simulations were performed using different degrees of DE. The AUC values for MBCdeg with K = 3 were almost the 
same as those in Additional file 3 (different trials were used).

Additional file 5. Results corresponding to Fig. 3 with a larger number of replicates. Boxplots of AUC values (50 tri-
als) for individual methods with n1 = n2 = (a) 6, (b) 9, and (c) 12 are shown.

Additional file 6. Results corresponding to Fig. 4 with a larger number of replicates. Boxplots of AUC values (50 tri-
als) for individual methods with n1 = n2 = n3 = (a) 6, (b) 9, and (c) 12 are shown.

Additional file 7. Results corresponding to Additional file 4 on the three-group simulated data.  Boxplots of AUC 
values (50 trials) for individual methods with n1 = n2 = n3 = (a) 3, (b) 6, (c) 9, and (d) 12 are shown.

Additional file 8. Concordance rate between methods for Pickrell data. This file provides additional information 
given in Table 4. The “Sheet1” shows the percentage of genes assigned to the same pattern that are common 
between the two methods. For example, DESeq2 and TCC have a total of 51,812 similar patterns, and the concord-
ance rate is therefore calculated as 51,812/51,910 = 0.9981. The “Sheet2” shows the results for each cluster obtained 
using MBCdeg-based methods: (a–c) MBCdeg1 with K = 3–5 and (d–f ) MBCdeg2 with K = 3–5. The number of 
genes (column B), centers m (columns C–E), L2 Norm (column F), and the patterns assigned (column G) for each 
cluster are shown.
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